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Introduction

Nektar++ is a tensor product based finite element package designed to allow one to
construct efficient classical low polynomial order h-type solvers (where h is the size of
the finite element) as well as higher p-order piecewise polynomial order solvers. The
framework currently has the following capabilities:

• Representation of one, two and three-dimensional fields as a collection of piecewise
continuous or discontinuous polynomial domains.

• Segment, plane and volume domains are permissible, as well as domains representing
curves and surfaces (dimensionally-embedded domains).

• Hybrid shaped elements, i.e triangles and quadrilaterals or tetrahedra, prisms and
hexahedra.

• Both hierarchical and nodal expansion bases.

• Continuous or discontinuous Galerkin operators.

• Cross platform support for Linux, Mac OS X and Windows.

The framework comes with a number of solvers and also allows one to construct a variety
of new solvers.

Our current goals are to develop:

• Automatic auto-tuning of optimal operator implementations based upon not only
h and p but also hardware considerations and mesh connectivity.

• Temporal and spatial adaption.

• Features enabling evaluation of high-order meshing techniques.

viii
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Getting Started
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Chapter 1
Installation

Nektar++ is available in both a source-code distribution and a number of pre-compiled
binary packages for a number of operating systems. We recommend using the pre-
compiled packages if you wish to use existing Nektar++ solvers for simulation and do
not need to perform additional code development.

1.1 Installing Debian/Ubuntu Packages

Binary packages are available for current Debian/Ubuntu based Linux distributions.
These can be installed through the use of standard system package management utilities,
such as Apt, if administrative access is available.

1. Add the appropriate line for the Debian-based distribution to the end of the file
/etc/apt/sources.list

Distribution Repository

Debian 7.0 (wheezy) deb http://www.nektar.info/debian wheezy contrib
Ubuntu 14.04 (trusty) deb http://www.nektar.info/ubuntu trusty contrib

2. Update the package lists

apt-get update

3. Install the required Nektar++ packages:

apt-get install nektar++

Any additional dependencies required for Nektar++ to function will be automati-
cally installed.

2



1.2 Installing Redhat/Fedora Packages 3

Tip
Nektar++ is split into multiple packages for the different components of
the software. A list of available Nektar++ packages can be found using:

apt-cache search nektar++

1.2 Installing Redhat/Fedora Packages

Add a file to the directory /etc/yum.repos.d/nektar.repo with the following contents

[Nektar]
name=nektar
baseurl=<baseurl>

substituting <baseurl> for the appropriate line from the table below.

Distribution <baseurl>

Fedora 20 http://ww.nektar.info/fedora/20/$basearch

Note
The $basearch variable is automatically replaced by Yum with the architecture
of your system.

1.3 Installing from Source

This section explains how to build Nektar++ from the source-code package.

Nektar++ uses a number of third-party libraries. Some of these are required, others are
optional. It is generally more straightforward to use versions of these libraries supplied
pre-packaged for your operating system, but if you run into difficulties with compilation
errors or failing regression tests, the Nektar++ build system can automatically build
tried-and-tested versions of these libraries for you. This requires enabling the relevant
options in the CMake configuration.

1.3.1 Obtaining the source code

There are two ways to obtain the source code for Nektar++:

• Download the latest source-code archive from the Nektar++ downloads page.

http://www.nektar.info/downloads


4 Chapter 1 Installation

• Clone the git repository

– Using anonymous access. This does not require credentials but any changes
to the code cannot be pushed to the public repository. Use this initially if you
would like to try using Nektar++.

git clone http://gitlab.nektar.info/clone/nektar.git nektar++

– Using authenticated access. This will allow you to directly contribute back
into the code.

git clone git@gitlab.nektar.info:nektar.git nektar++

Tip
You can easily switch to using the authenticated access from anony-
mous access at a later date.

1.3.2 Linux

Prerequisites

Nektar++ requires the following to be pre-installed on your system

• CMake

• BLAS and LAPACK

• A modern C++ compiler: g++, icpc, etc

This software should be available through your Linux distribution.

Note
CMake 2.8.7 or later is required.

Quick Start

Open a terminal.

If you have downloaded the tarball, first unpack it:

tar -zxvf nektar++-4.0.0.tar.gz
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Change into the nektar++ source code directory

mkdir -p build && cd build
ccmake ../
make install

Detailed instructions

From a terminal:

1. If you have downloaded the tarball, first unpack it

tar -zxvf nektar++-4.0.0.tar.gz

2. (Optional) If you have administrative access, install the third-party libraries supplied
with your Linux distribution.

Warning
Boost version 1.51 has a bug which prevents Nektar++ working correctly.
Please use a newer version.

Note
FFTW and Arpack are optional. They provide additional or optimised
functionality, but alternative implementations are included as part of
Nektar++.

3. Change into the source-code directory, create a build subdirectory and enter it

mkdir -p build && cd build

4. Run the CMake GUI and configure the build

ccmake ../

• Select the components of Nektar++ (prefixed with NEKTAR_BUILD_ ) you would
like to build. Disabling solvers which you do not require will speed up the
build process.
• Select the optional libraries you would like to use (prefixed with NEKTAR_USE_ )
for additional functionality.

A full list of configuration options can be found in Section 1.3.5.
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5. Press c to configure the build. If errors arise relating to missing libraries, review the
THIRDPARTY_BUILD_ selections in the previous step or install the missing libraries
from system packages.

6. When configuration completes without errors, press c again until the option g to
generate build files appears. Press g to generate the build files and exit CMake.

7. Compile the code

make install

During the build, missing third-party libraries will be automatically downloaded,
configured and built in the Nektar++ build directory.

Tip
If you have multiple processors/cores on your system, compilation
can be significantly increased by adding the -jX option to make,
where X is the number of simultaneous jobs to spawn. For example,

make -j4 install

8. Test the build by running unit and regression tests.

ctest

1.3.3 OSX

Prerequisites

To compile Nektar++ on OSX, Apple’s Xcode Developer Tools must be installed. They
can be installed either from the App Store (only on Mac OS 10.7 and above) or downloaded
directly from http://connect.apple.com/ (you are required to have an Apple Developer
Connection account).

Nektar++ also requires the following to be pre-installed on your system

• CMake

• BLAS and LAPACK

This software should be available through your Linux distribution.

Note
CMake 2.8.7 or later is required.

http://connect.apple.com/
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Quick Start

Open a terminal (Applications->Utilities->Terminal).

If you have downloaded the tarball, first unpack it:

tar -zxvf nektar++-4.0.0.tar.gz

Change into the nektar++ source code directory

mkdir -p build && cd build
ccmake ../
make install

Detailed instructions

From a terminal (Applications->Utilities->Terminal):

1. If you have downloaded the tarball, first unpack it

tar -zxvf nektar++-4.0.0.tar.gz

2. (Optional) If you have administrative access, install the third-party libraries from
MacPorts:

sudo port install cmake zlib fftw-3 arpack

Warning
Boost version 1.51 has a bug which prevents Nektar++ working correctly.
Please use a newer version.

Note
FFTW and Arpack are optional. They provide additional or optimised
functionality, but alternative implementations are included as part of
Nektar++.

3. Change into the source-code directory, create a build subdirectory and enter it

mkdir -p build && cd build

4. Run the CMake GUI and configure the build
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ccmake ../

• Select the components of Nektar++ (prefixed with NEKTAR_BUILD_ ) you would
like to build. Disabling solvers which you do not require will speed up the
build process.
• Select the optional libraries you would like to use (prefixed with NEKTAR_USE_ )
for additional functionality.

A full list of configuration options can be found in Section 1.3.5.

5. Press c to configure the build. If errors arise relating to missing libraries, review the
THIRDPARTY_BUILD_ selections in the previous step or install the missing libraries
from system packages.

6. When configuration completes without errors, press c again until the option g to
generate build files appears. Press g to generate the build files and exit CMake.

7. Compile the code

make install

During the build, missing third-party libraries will be automatically downloaded,
configured and built in the Nektar++ build directory.

Tip
If you have multiple processors/cores on your system, compilation
can be significantly increased by adding the -jX option to make,
where X is the number of simultaneous jobs to spawn. For example,

make -j4 install

8. Test the build by running unit and regression tests.

ctest

1.3.4 Windows

The following software must be pre-installed on your system:

• Microsoft Visual Studio 2008

– Visual Studio 2008 Service Pack 1 is required
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• Python Compiler 2.7.2+ (download from http://www.http//python.org/download/)

• CMake 2.8.7+ (download from http://www.cmake.org/HTML/index.html)

– When prompted, select the option to add CMake to the system PATH.

• WinRAR (download from http://www.rarlab.com/download.htm)

Unpack the tarballs

• Unpack the nektar++-4.0.0 .tar.gz file using WinRAR

• Unpack the ThirdParty-4.0.0 .tar.gz file using WinRAR

• Rename the resulting directory to ThirdParty and put it in nektar++-4.0.0 .
(This will mean library and ThirdParty are both sub-directories of the original
nektar++-4.0.0 .) Note: Some windows version do not recognise the path of a
folder which has ’++’ in the name. If you think that your windows version can not
handle path containing special characters, you should rename nektar++-4.0.0 to
nektar-4.0.0 .

Building ThirdParty libraries

• TinyXML Extract the tinyxml_2_4_3.zip archive into the ThirdParty directory
using WinRAR. This will create a tinyxml sub-directory.

• Loki Extract the loki-0.1.3.tar.bz2 archive into the ThirdParty directory
using WinRAR. This will create a loki-0.1.3 sub-directory.

• Mod-METIS Extract the modmetis-4.0.tar.bz2 archive into the ThirdParty
directory using WinRAR. This will create a modmetis-4.0 sub-directory.

– Open a command-line terminal and change to ThirdParty\modmetis-4.0\build .

– Run

cmake ..\
vcbuild "ModifiedMetis.sln"
vcbuild "INSTALL.vcproj"

• NIST SparseBLAS Extract the spblastk0.9b archive into the ThirdParty
directory using WinRAR. This will create a spblastk0.9b sub-directory.

– From a command-line terminal change to ThirdParty\spblastk0.9b\build .

– Run

http://www.http//python.org/download/
http://www.cmake.org/HTML/index.html
http://www.rarlab.com/download.htm


10 Chapter 1 Installation

cmake ..\
vcbuild "NistSparseBlasToolkit.sln"
vcbuild "INSTALL.vcproj"

• BLAS/LAPACK Extract the blaslapack-dll.zip archive into the ThirdParty
directory using WinRAR. This will create blas_win32.* and lapack_win32.*
files in the ThirdParty directory.

• ZLib Extract the zlib-1.2.3.tar.bz2 archive using WinRAR. This will create
a zlib-1.2.3 sub-directory.

• Boost Extract the boost_1_49_0.tar.bz2 archive using WinRAR. This will
create a boost_1_49_0 sub-directory.

– Open a command-line terminal and change to the boost_1_49_0 directory
and run:

bootstrap.bat
b2.exe -s ZLIB_SOURCE=..\..\..\..\zlib-1.2.3 \

--prefix=..\boost toolset=msvc-9.0 install

Note
Boost might not be able to find the zlib-1.2.3 directory specified by the
relative path in the command line above. If this happens, you can replace
the relative path with the absolute path of the zlib-1.2.3 directory
(surround it in quotes).

Building Nektar++

Change to the nektar++-4.0.0 \builds directory.

cmake ..\
vcbuild "Nektar++.sln"
vcbuild "INSTALL.vcproj"

To modify the default configuration use cmake -i ..\ or use the CMake-gui application.

Notes on building on windows 7 64 bit with Visual Studio 10

To get a build working on a windows 7 64 bit machine with VS10, the following modifi-
cations were helpful or necessary:

• Instead of vcbuild (which doesn’t exist in VS10) use msbuild.



1.3 Installing from Source 11

• You may need to run
C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\vcvarsall.bat
first to set up some registry entries to run msbuild. Try without first.

• You will probably wish to put msbuild into your path

• project files created by cmake are likely to have the extension .vcxproj rather than
.vcproj.

• When running b2.exe, provide the full path to zlib. Not doing so will only cause
an error later when running cmake for Nektar++

• When running b2.exe, use toolset=msvc-10.0 instead of toolset=msvc-9.0

• When using cmake for nektar++, it is helpful to use the cmake gui

• Using the cmake gui, set the BOOST_ROOT variable to the appropriate path
for boost * Set Boost_USE_STATIC_LIBS = ON (I did this by editing CMake-
Lists.txt, but setting it from the gui should work)

• When running msbuild "Nektar++.sln" I got error can’t find zlib.lib. As a
workaround, copy the files zlibd.lib (two of them) and rename the copies zlib.lib.
However, I believe these are the debug builds, so it would be better to work out
how to build in release mode.

• At this stage, when running msbuild "Nektar++.sln", I got boost link errors. To
fix them, look for the line

ADD_DEFINITIONS(-DBOOST_ALL_NO_LIB -DBOOST_PROGRAM_OPTIONS_DYN_LINK \
-DBOOST_IOSTREAMS_DYN_LINK -DBOOST_THREAD_DYN_LINK)

in the CMakeLists.txt file and comment it out (and run cmake again)

• At this point, when building Nektar, linking against boost is fine, but I got a
compile error in TestData.cpp. This could be fixed by editing TestData.cpp and
replacing the line

m_doc = new TiXmlDocument ( pFilename . f i l e _ s t r i n g ( ) . c_str ( ) ) ;

with

m_doc =new TiXmlDocument ( pFilename . s t r i n g ( ) . c_str ( ) ) ;

Note
The step of building INSTALL.vcproj causes executables and dlls to be copied
into a directory <path>\nektar\builds-test\dist\bin . The executables
should be run from here so that they can find the dlls they need.
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If you wish to put a breakpoint in to step through Nektar++, you may need to run from
the folder the executable was built in so that the pdb files are in the expected place.
Then a workaround is to copy the dlls into that folder.

1.3.5 CMake Option Reference

This section describes the main configuration options which can be set when building
Nektar++. The default options should work on almost all systems, but additional
features (such as parallelisation and specialist libraries) can be enabled if needed.

Components

The first set of options specify the components of the Nektar++ toolkit to compile. Some
options are dependent on others being enabled, so the available options may change.

Components of the Nektar++ package can be selected using the following options:

• NEKTAR_BUILD_DEMOS (Recommended)
Compiles the demonstration programs. These are primarily used by the regression
testing suite to verify the Nektar++ library, but also provide an example of the
basic usage of the framework.

• NEKTAR_BUILD_LIBRARY (Required)
Compiles the Nektar++ framework libraries. This is required for all other options.

• NEKTAR_BUILD_SOLVERS (Recommended)
Compiles the solvers distributed with the Nektar++ framework.
If enabling NEKTAR_BUILD_SOLVERS , individual solvers can be enabled or disabled.
See Chapter ?? for the list of available solvers. You can disable solvers which are
not required to reduce compilation time. See the NEKTAR_SOLVER_X option.

• NEKTAR_BUILD_TESTS (Recommended)
Compiles the testing program used to verify the Nektar++ framework.

• NEKTAR_BUILD_TIMINGS

Compiles programs used for timing Nektar++ operations.

• NEKTAR_BUILD_UNIT_TESTS

Compiles tests for checking the core library functions.

• NEKTAR_BUILD_UTILITIES

Compiles utilities for pre- and post-processing simulation data.

• NEKTAR_SOLVER_X

Enabled compilation of the ’X’ solver.
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A number of ThirdParty libraries are required by Nektar++. There are also optional
libraries which provide additional functionality. These can be selected using the following
options:

• NEKTAR_USE_BLAS_LAPACK (Required)
Enables the use of Basic Linear Algebra Subroutines libraries for linear algebra
operations.

• NEKTAR_USE_SYSTEM_BLAS_LAPACK (Recommended)
On Linux systems, use the default BLAS and LAPACK library on the system.
This may not be the implementation offering the highest performance for your
architecture, but it is the most likely to work without problem.

• NEKTAR_USE_OPENBLAS

Use OpenBLAS for the BLAS library. OpenBLAS is based on the Goto BLAS
implementation and generally offers better performance than a non-optimised
system BLAS. However, the library must be installed on the system.

• NEKTAR_USE_MKL

Use the Intel MKL library. This is typically available on cluster environments and
should offer performance tuned for the specific cluster environment.

• NEKTAR_USE_MPI (Recommended)
Build Nektar++ with MPI parallelisation. This allows solvers to be run in serial
or parallel.

• NEKTAR_USE_FFTW

Build Nektar++ with support for FFTW for performing Fast Fourier Transforms
(FFTs). This is used only when using domains with homogeneous coordinate
directions.

• NEKTAR_USE_ARPACK

Build Nektar++ with support for ARPACK. This provides routines used for linear
stability analyses. Alternative Arnoldi algorithms are also implemented directly in
Nektar++.

• NEKTAR_USE_VTK

Build Nektar++ with support for VTK libraries. This is only needed for specialist
utilities and is not needed for general use.

Note
The VTK libraries are not needed for converting the output of simulations
to VTK format for visualization as this is handled internally.
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The THIRDPARTY_BUILD_X options select which third-party libraries are automatically
built during the Nektar++ build process. Below are the choices of X:

• BOOST

The Boost libraries are frequently provided by the operating system, so automatic
compilation is not enabled by default. If you do not have Boost on your system,
you can enable this to have Boost configured automatically.

• GSMPI

(MPI-only) Parallel communication library.

• LOKI

An implementation of a singleton.

• METIS

A graph partitioning library used for substructuring of matrices and mesh parti-
tioning when Nektar++ is run in parallel.

• TINYXML

Library for reading and writing XML files.



Chapter 2
Mathematical Formulation

2.1 Background

The spectral/hp element method combines the geometric flexibility of classical h-type
finite element techniques with the desirable resolution properties of spectral methods. In
this approach a polynomial expansion of order P is applied to every elemental domain of a
coarse finite element type mesh. These techniques have been applied in many fundamental
studies of fluid mechanics [?] and more recently have gained greater popularity in the
modelling of wave-based phenomena such as computational electromagnetics [?] and
shallow water problems [?] - particularly when applied within a Discontinuous Galerkin
formulation.

There are at least two major challenges which arise in developing an efficient implemen-
tation of a spectral/hp element discretisation:

• implementing the mathematical structure of the technique in a digestible, generic
and coherent manner, and

• designing and implementing the numerical methods and data structures in a matter
so that both high- and low-order discretisations can be efficiently applied.

In order to design algorithms which are efficient for both low- and high-order spectral/hp
discretisations, it is important clearly define what we mean with low- and high-order.
The spectral/hp element method can be considered as bridging the gap between the
high-order end of the traditional finite element method and low-order end of conventional
spectral methods. However, the concept of high- and low-order discretisations can mean
very different things to these different communities. For example, the seminal works by
Zienkiewicz & Taylor [?] and Hughes list examples of elemental expansions only up to
third or possibly fourth-order, implying that these orders are considered to be high-order
for the traditional h-type finite element community. In contrast the text books of the
spectral/hp element community typically show examples of problems ranging from a

15
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low-order bound of minimally fourth-order up to anything ranging from 10th-order to
15th-order polynomial expansions. On the other end of the spectrum, practitioners of
global (Fourier-based) spectral methods [?] would probably consider a 16th-order global
expansion to be relatively low-order approximation.

One could wonder whether these different definitions of low- and high-order are just
inherent to the tradition and lore of each of the communities or whether there are more
practical reasons for this distinct interpretation. Proponents of lower-order methods might
highlight that some problems of practical interest are so geometrically complex that one
cannot computationally afford to use high-order techniques on the massive meshes required
to capture the geometry. Alternatively, proponents of high-order methods highlight that
if the problem of interest can be captured on a computational domain at reasonable
cost then using high-order approximations for sufficiently smooth solutions will provide a
higher accuracy for a given computational cost. If one however probes even further it also
becomes evident that the different communities choose to implement their algorithms
in different manners. For example the standard h-type finite element community will
typically uses techniques such as sparse matrix storage formats (where only the non-zero
entries of a global matrix are stored) to represent a global operator. In contrast the
spectral/hp element community acknowledges that for higher polynomial expansions
more closely coupled computational work takes place at the individual elemental level
and this leads to the use of elemental operators rather than global matrix operators. In
addition the global spectral method community often make use of the tensor-product
approximations where products of one-dimensional rules for integration and differentiation
can be applied.

2.2 Methods overview

Here a review of some terminology in order to situate the spectral/hp element method
within the field of the finite element methods.

2.2.1 The finite element method (FEM)

Nowadays, the finite element method is one of the most popular numerical methods in the
field of both solid and fluid mechanics. It is a discretisation technique used to solve (a set
of) partial differential equations in its equivalent variational form. The classical approach
of the finite element method is to partition the computational domain into a mesh of
many small subdomains and to approximate the unknown solution by piecewise linear
interpolation functions, each with local support. The FEM has been widely discussed
in literature and for a complete review of the method, the reader is also directed to the
seminal work of Zienkiewicz and Taylor [?].

2.2.2 High-order finite element methods

While in the classical finite element method the solution is expanded in a series of linear
basis functions, high-order FEMs employ higher-order polynomials to approximate the



2.2 Methods overview 17

solution. For the high-order FEM, the solution is locally expanded into a set of P + 1
linearly independent polynomials which span the polynomial space of order P . Confusion
may arise about the use of the term order. While the order, or degree, of the expansion
basis corresponds to the maximal polynomial degree of the basis functions, the order of
the method essentially refers to the accuracy of the approximation. More specifically, it
depends on the convergence rate of the approximation with respect to mesh-refinement.
It has been shown by Babuska and Suri [?], that for a sufficiently smooth exact solution
u ∈ Hk(Ω), the error of the FEM approximation uδ can be bounded by:

||u− uδ||E ≤ ChP ||u||k.

This implies that when decreasing the mesh-size h, the error of the approximation
algebraically scales with the P th power of h. This can be formulated as:

||u− uδ||E = O(hP ).

If this holds, one generally classifies the method as a P th-order FEM. However, for
non-smooth problems, i.e. k < P + 1, the order of the approximation will in general be
lower than P , the order of the expansion.

h-version FEM

A finite element method is said to be of h-type when the degree P of the piecewise
polynomial basis functions is fixed and when any change of discretisation to enhance
accuracy is done by means of a mesh refinement, that is, a reduction in h. Dependent
on the problem, local refinement rather than global refinement may be desired. The
h-version of the classical FEM employing linear basis functions can be classified as a
first-order method when resolving smooth solutions.

p-version FEM

In contrast with the h-version FEM, finite element methods are said to be of p-type when
the partitioning of domain is kept fixed and any change of discretisation is introduced
through a modification in polynomial degree P . Again here, the polynomial degree
may vary per element, particularly when the complexity of the problem requires local
enrichment. However, sometimes the term p-type FEM is merely used to indicated that
a polynomial degree of P > 1 is used.

hp-version FEM

In the hp-version of the FEM, both the ideas of mesh refinement and degree enhancement
are combined.
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The spectral method

As opposed to the finite element methods which builds a solution from a sequence of local
elemental approximations, spectral methods approximate the solution by a truncated
series of global basis functions. Modern spectral methods, first presented by Gottlieb and
Orzag [?], involve the expansion of the solution into high-order orthogonal expansion,
typically by employing Fourier, Chebyshev or Legendre series.

The spectral element method

Patera [?] combined the high accuracy of the spectral methods with the geometric
flexibility of the finite element method to form the spectral element method. The multi-
elemental nature makes the spectral element method conceptually similar to the above
mentioned high-order finite element. However, historically the term spectral element
method has been used to refer to the high-order finite element method using a specific
nodal expansion basis. The class of nodal higher-order finite elements which have become
known as spectral elements, use the Lagrange polynomials through the zeros of the
Gauss-Lobatto(-Legendre) polynomials.

The spectral/hp element method

The spectral/hp element method, as its name suggests, incorporates both the multi-
domain spectral methods as well as the more general high-order finite element methods.
One can say that it encompasses all methods mentioned above. However, note that the
term spectral/hp element method is mainly used in the field of fluid dynamics, while the
terminology p and hp-FEM originates from the area of structural mechanics.

2.2.3 The Galerkin formulation

Finite element methods typically use the Galerkin formulation to derive the weak form
of the partial differential equation to be solved. We will primarily adopt the classical
Galerkin formulation in combination with globally C0 continuous spectral/hp element
discretisations.

To describe the Galerkin method, consider a steady linear differential equation in a
domain Ω denoted by

L(u) = f,

subject to appropriate boundary conditions. In the Galerkin method, the weak form of
this equation can be derived by pre-multiplying this equation with a test function v and
integrating the result over the entire domain Ω to arrive at: Find u ∈ U such that∫

Ω
vL(u)dx =

∫
Ω
vfdx, ∀v ∈ V,

where U and V respectively are a suitably chosen trial and test space (in the traditional
Galerkin method, one typically takes U = V). In case the inner product of v and L(u)
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can be rewritten into a bi-linear form a(v, u), this problem is often formulated more
concisely as: Find u ∈ U such that

a(v, u) = (v, f), ∀v ∈ V,

where (v, f) denotes the inner product of v and f . The next step in the classical Galerkin
finite element method is the discretisation: rather than looking for the solution u in the
infinite dimensional function space U , one is going to look for an approximate solution
uδ in the reduced finite dimensional function space Uδ ⊂ U . Therefore we represent the
approximate solution as a linear combination of basis functions Φn that span the space
Uδ, i.e.

uδ =
∑
n∈N

Φnûn.

Adopting a similar discretisation for the test functions v, the discrete problem to be
solved is given as: Find ûn (n ∈ N ) such that∑

n∈N
a(Φm,Φn)ûn = (Φm, f), ∀m ∈ N .

It is customary to describe this set of equations in matrix form as

Aû = f̂ ,

where û is the vector of coefficients ûn, A is the system matrix with elements

A[m][n] = a(Φm,Φn) =
∫

Ω
ΦmL(Φn)dx,

and the vector f̂ is given by

f̂ [m] = (Φm, f) =
∫

Ω
Φmfdx.



Part II

Applications and Utilities
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Chapter 3
ADRSolver

3.1 Synopsis

The ADRSolver is designed to solve partial differential equations of the form:

α
∂u

∂t
+ λu+ ν∇u+ ε∇ · (D∇u) = f (3.1)

in either discontinuous or continuous projections of the solution field. For a full list of
the equations which are supported, and the capabilities of each equation, see the table
below.

Equation to solve EquationType Dimensions Projections

∇2u = 0 Laplace All Continuous/Discontinuous

∇2u = f Poisson All Continuous/Discontinuous

∇2u + λu = f Helmholtz All Continuous/Discontinuous

ε∇2u + V∇u = f SteadyAdvectionDiffusion 2D only Continuous/Discontinuous

ε∇2u + λu = f SteadyDiffusionReaction 2D only Continuous/Discontinuous

ε∇2uV∇u + λu = f SteadyAdvectionDiffusionReaction 2D only Continuous/Discontinuous

∂u

∂t
+ V∇u = f UnsteadyAdvection All Continuous/Discontinuous

∂u

∂t
= ε∇2u UnsteadyDiffusion All Continuous/Discontinuous

∂u

∂t
+ V∇u = ε∇2u UnsteadyAdvectionDiffusion All Continuous/Discontinuous

∂u

∂t
+ u∇u = 0 UnsteadyInviscidBurger 1D only Continuous/Discontinuous

Table 3.1 Equations supported by the ADRSolver with their capabilities.

3.2 Usage

21
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ADRSolver session.xml

3.3 Session file configuration

The type of equation which is to be solved is specified through the EquationType
SOLVERINFO option in the session file. This can be set as in table 3.1. At present, the
Steady non-symmetric solvers cannot be used in parallel.

3.3.1 Solver Info

The solver info are listed below:

• Eqtype: This sets the type of equation to solve, according to the table above.

• TimeIntegrationMethod: The following types of time integration methods have
been tested with each solver:

EqType Explicit Diagonally Implicit IMEX Implicit

UnstedayAdvection X

UnstedayDifusion X X

UnstedayAdvectionDiffusion X

UnstedayInviscidBurger X

• Projection: The Galerkin projection used may be either:

– Continuous for a C0-continuous Galerkin (CG) projection.
– Discontinuous for a discontinous Galerkin (DG) projection.

• DiffusionAdvancement: This specifies how to treat the diffusion term. This will
be restricted by the choice of time integration scheme:

– Explicit Requires the use of an explicit time integration scheme.

– Implcit Requires the use of a diagonally implicit, IMEX or Implicit scheme.

• AdvectionAdvancement: This specifies how to treat the advection term. This
will be restricted by the choice of time integration scheme:

– Explicit Requires the use of an explicit or IMEX time integration scheme.

– Implicit Not supported at present.

• AdvectionType: Specifies the type of advection:
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– NonConservative (for CG only).
– WeakDG (for DG only).

• DiffusionType:

– LDG .

• UpwindType:

– Upwind .

3.3.2 Parameters

The following parameters can be specified in the PARAMETERS section of the session file:

• epsilon : sets the diffusion coefficient ε.
Can be used in: SteadyDiffusionReaction, SteadyAdvectionDiffusionReaction, Un-
steadyDiffusion, UnsteadyAdvectionDiffusion.
Default value: 0.

• d00 , d11 , d22 : sets the diagonal entries of the diffusion tensor D.
Can be used in: UnsteadyDiffusion
Default value: All set to 1 (i.e. identity matrix).

• lambda : sets the reaction coefficient λ.
Can be used in: SteadyDiffusionReaction, Helmholtz, SteadyAdvectionDiffusionRe-
action
Default value: 0.

3.3.3 Functions

The following functions can be specified inside the CONDITIONS section of the session file:

• AdvectionVelocity : specifies the advection velocity V.

• InitialConditions : specifies the initial condition for unsteady problems.

• Forcing : specifies the forcing function f.

3.4 Examples

Example files for the ADRSolver are provided in solvers/ADRSolver/Examples

3.4.1 1D Advection equation

In this example, it will be demonstrated how the Advection equation can be solved on a
one-dimensional domain.
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Advection equation

We consider the hyperbolic partial differential equation:

∂u

∂t
+ ∂f

∂x
= 0, (3.2)

where f = au i s the advection flux.

Input file

The input for this example is given in the example file Advection1D.xml

The geometry section defines a 1D domain consisting of 10 segments. On each segment
an expansion consisting of 4 Lagrange polynomials on the Gauss-Lobotto-Legendre points
is used as specified by

1 <EXPANSIONS>
2 <E COMPOSITE="C[0]" FIELDS="u" TYPE="GLL_LAGRANGE_SEM" NUMMODES="4"/>
3 </EXPANSIONS>

Since we are solving the unsteady advection problem, we must specify this in the solver
information. We also choose to use a discontinuous flux-reconstruction projection and
use a Runge-Kutta order 4 time-integration scheme.

1 <I PROPERTY="EQTYPE" VALUE="UnsteadyAdvection" />
2 <I PROPERTY="Projection" VALUE="DisContinuous" />
3 <I PROPERTY="AdvectionType" VALUE="FRDG" />
4 <I PROPERTY="UpwindType" VALUE="Upwind" />
5 <I PROPERTY="TimeIntegrationMethod" VALUE="ClassicalRungeKutta4"/>

We choose to advect our solution for 20 time units with a time-step of 0.01 and so provide
the following parameters

1 <P> FinTime = 20 </P>
2 <P> TimeStep = 0.01 </P>
3 <P> NumSteps = FinTime/TimeStep </P>

We also specify the advection velocity. We first define dummy parameters
1 <P> advx = 1 </P>
2 <P> advy = 0 </P>

and then define the actual advection function as
1 <FUNCTION NAME="AdvectionVelocity">
2 <E VAR="Vx" VALUE="advx" />
3 </FUNCTION>

Two boundary regions are defined, one at each end of the domain, and periodicity is
enforced
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1 <BOUNDARYREGIONS>
2 <B ID="0"> C[1] </B>
3 <B ID="1"> C[2] </B>
4 </BOUNDARYREGIONS>
5
6 <BOUNDARYCONDITIONS>
7 <REGION REF="0">
8 <P VAR="u" VALUE="[1]" />
9 </REGION>

10 <REGION REF="1">
11 <P VAR="u" VALUE="[0]" />
12 </REGION>
13 </BOUNDARYCONDITIONS>

Finally, we specify the initial value of the solution on the domain

1 <FUNCTION NAME="InitialConditions">
2 <E VAR="u" VALUE="exp(-20.0*x*x)" />
3 </FUNCTION>
4
5 <FUNCTION NAME="ExactSolution">
6 <E VAR="u" VALUE="exp(-20.0*x*x)" />
7 </FUNCTION>

Running the code

ADRSolver Advection1D.xml

To visualise the output, we can convert it into either TecPlot or VTK formats

FldToTecplot Advection1D.xml Advection1D.fld
FldToVtk Advection1D.xml Advection1D.fld

3.4.2 2D Helmholtz Problem

In this example, it will be demonstrated how the Helmholtz equation can be solved on a
two-dimensional domain.

Helmholtz equation

We consider the elliptic partial differential equation:

∇2u+ λu = f (3.3)

where ∇2 is the Laplacian and λ is a real positive constant.
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Input file

The input for this example is given in the example file Helmholtz2D_modal.xml

The geometry for this problem is a two-dimensional octagonal plane containing both
triangles and quadrilaterals. Note that a mesh composite may only contain one type of
element. Therefore, we define two composites for the domain, while the rest are used for
enforcing boundary conditions.

1 <COMPOSITE>
2 <C ID="0"> Q[22-47] </C>
3 <C ID="1"> T[0-21] </C>
4 <C ID="2"> E[0-1] </C>
5 .
6 .
7 <C ID="10"> E[84,75,69,62,51,40,30,20,6] </C>
8 </COMPOSITE>
9

10 <DOMAIN> C[0-1] </DOMAIN>

For both the triangular and quadrilateral elements, we use the modified Legendre basis
with 7 modes (maximum polynomial order is 6).

1 <EXPANSIONS>
2 <E COMPOSITE="C[0]" NUMMODES="7" FIELDS="u" TYPE="MODIFIED" />
3 <E COMPOSITE="C[1]" NUMMODES="7" FIELDS="u" TYPE="MODIFIED" />
4 </EXPANSIONS>

Only one parameter is needed for this problem. In this example λ = 1 and the Continuous
Galerkin Method is used as projection scheme to solve the Helmholtz equation, so we
need to specify the following parameters and solver information.

1 <PARAMETERS>
2 <P> Lambda = 1 </P>
3 </PARAMETERS>
4
5 <SOLVERINFO>
6 <I PROPERTY="EQTYPE" VALUE="Helmholtz" />
7 <I PROPERTY="Projection" VALUE="Continuous" />
8 </SOLVERINFO>

All three basic boundary condition types have been used in this example: Dirichlet,
Neumann and Robin boundary. The boundary regions are defined, each of which
corresponds to one of the edge composites defined earlier. Each boundary region is then
assigned an appropriate boundary condition.

1 <BOUNDARYREGIONS>
2 <B ID="0"> C[2] </B>
3 .
4 .
5 <B ID="8"> C[10] </B>
6 </BOUNDARYREGIONS>
7
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8 <BOUNDARYCONDITIONS>
9 <REGION REF="0">

10 <D VAR="u" VALUE="sin(PI*x)*sin(PI*y)" />
11 </REGION>
12 <REGION REF="1">
13 <R VAR="u" VALUE="sin(PI*x)*sin(PI*y)-PI*sin(PI*x)*cos(PI*y)"
14 PRIMCOEFF="1" />
15 </REGION>
16 <REGION REF="2">
17 <N VAR="u" VALUE="(5/sqrt(61))*PI*cos(PI*x)*sin(PI*y)-
18 (6/sqrt(61))*PI*sin(PI*x)*cos(PI*y)" />
19 </REGION>
20 .
21 .
22 </BOUNDARYCONDITIONS>

We know that for f = −(λ+2π2)sin(πx)cos(πy), the exact solution of the two-dimensional
Helmholtz equation is u = sin(πx)cos(πy). These functions are defined specified to
initialise the problem and verify the correct solution is obtained by evaluating the L2
and Linf errors.

1 <FUNCTION NAME="Forcing">
2 <E VAR="u" VALUE="-(Lambda + 2*PI*PI)*sin(PI*x)*sin(PI*y)" />
3 </FUNCTION>
4
5 <FUNCTION NAME="ExactSolution">
6 <E VAR="u" VALUE="sin(PI*x)*sin(PI*y)" />
7 </FUNCTION>

Running the code

ADRSolver Test\_Helmholtz2D\_modal.xml

This execution should print out a summary of input file, the L2 and Linf errors and the
time spent on the calculation.

Post-processing

Simulation results are written in the file Helmholtz2D_modal.fld. We can choose to
visualise the output in Gmsh

FldToGmsh Helmholtz2D\_modal.xml Helmholtz2D\_modal.fld

which generates the file Helmholtz2D_modal_u.pos as shown in Fig. 3.1

3.4.3 Advection dominated mass transport in a pipe

The following example demonstrates the application of the ADRsolver for modelling
advection dominated mass transport in a straight pipe. Such a transport regime is
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Figure 3.1 Solution of the 2D Helmholtz Problem.

encountered frequently when modelling mass transport in arteries. This is because the
diffusion coefficient of small blood borne molecules, for example oxygen or adenosine
triphosphate, is very small O(10−10).

Background

The governing equation for modelling mass transport is the unsteady advection diffusion
equation:

∂u

∂t
+ v∇u+ ε∇2u = 0

For small diffusion coefficient, ε, the transport is dominated by advection and this leads
to a very fine boundary layer adjacent to the surface which must be captured in order to
get a realistic representation of the wall mass transfer processes. This creates problems
not only from a meshing perspective, but also numerically where classical oscillations are
observed in the solution due to under-resolution of the boundary layer.

The Graetz-Nusselt solution is an analytical solution of a developing mass (or heat)
transfer boundary layer in a pipe. Previously this solution has been used as a benchmark
for the accuracy of numerical methods to capture the fine boundary layer which develops
for high Peclet number transport (the ratio of advection to diffusion). The solution
is derived based on the assumption that the velocity field within the mass transfer
boundary layer is linear i.e. the Schmidt number (the relative thickness of the momentum
to mass transfer boundary layer) is sufficiently large. The analytical solution for the
non-dimensional mass transfer at the wall is given by:

Sh(z) = 24/3(PeR/z)1/3

g1/3Γ(4/3)
,
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where z is the streamwise coordinate, R the pipe radius, Γ(4/3) an incomplete Gamma
function and Pe the Peclet number given by:

Pe = 2UR
ε

In the following we will numerically solver mass transport in a pipe and compare the
calculated mass transfer at the wall with the Graetz-Nusselt solution. The Peclet number
of the transport regime under consideration is 750000, which is physiologically relevant.

Input file

The geometry under consideration is a pipe of radius, R = 0.5 and length l = 0.5

Figure 3.2 Pipe.

Since the mass transport boundary layer will be confined to a very small layer adjacent
to the wall we do not need to mesh the interior region, hence the mesh consists of a layer
of ten prismatic elements over a thickness of 0.036R. The elements progressively grow
over the thickness of domain.

In this example we utilise heterogeneous polynomial order, in which the polynomial
order normal to the wall is higher so that we avoid unphysical oscillations, and hence the
incorrect solution, in the mass transport boundary layer. To do this we specify explicitly
the expansion type, points type and distribution in each direction as follows:

1 <EXPANSIONS>
2 <E COMPOSITE="C[0]"
3 NUMMODES="3,5,3"
4 BASISTYPE="Modified_A,Modified_A,Modified_B"
5 NUMPOINTS="4,6,3"
6 POINTSTYPE="GaussLobattoLegendre,GaussLobattoLegendre,GaussRadauMAlpha1Beta0"
7 FIELDS="u" />
8 </EXPANSIONS>
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The above represents a quadratic polynomial order in the azimuthal and streamwise
direction and 4th order polynomial normal to the wall for a prismatic element.

We choose to use a continuous projection and an first-order implicit-explicit time-
integration scheme. The DiffusionAdvancement and AdvectionAdvancement parameters
specify how these terms are treated.

1 <I PROPERTY="EQTYPE" VALUE="UnsteadyAdvectionDiffusion" />
2 <I PROPERTY="Projection" VALUE="Continuous" />
3 <I PROPERTY="DiffusionAdvancement" VALUE="Implicit" />
4 <I PROPERTY="AdvectionAdvancement" VALUE="Explicit" />
5 <I PROPERTY="TimeIntegrationMethod" VALUE="IMEXOrder1" />
6 <I PROPERTY="GlobalSysSoln" VALUE="IterativeStaticCond" />

We integrate for a total of 30 time units with a time-step of 0.0005, necessary to keep
the simulation numerically stable.

1 <P> TimeStep = 0.0005 </P>
2 <P> FinalTime = 30 </P>
3 <P> NumSteps = FinalTime/TimeStep </P>

The value of the ε parameter is ε = 1/Pe
1 <P> epsilon = 1.33333e-6 </P>

The analytical solution represents a developing mass transfer boundary layer in a pipe. In
order to reproduce this numerically we assume that the inlet concentration is a uniform
value and the outer wall concentration is zero; this will lead to the development of the
mass transport boundary layer along the length of the pipe. Since we do not model
explicitly the mass transfer in the interior region of the pipe we assume that the inner
wall surface concentration is the same as the inlet concentration; this assumption is valid
based on the large Peclet number meaning the concentration boundary layer is confined
to the region in the immediate vicinity of the wall. The boundary conditions are specified
as follows in the input file:

1 <BOUNDARYREGIONS>
2 <B ID="0"> C[3] </B> <!-- inlet -->
3 <B ID="1"> C[4] </B> <!-- outlet -->
4 <B ID="2"> C[2] </B> <!-- outer surface -->
5 <B ID="3"> C[5] </B> <!-- inner surface -->
6 </BOUNDARYREGIONS>
7
8 <BOUNDARYCONDITIONS>
9 <REGION REF="0">

10 <D VAR="u" VALUE="1" />
11 </REGION>
12 <REGION REF="1">
13 <N VAR="u" VALUE="0" />
14 </REGION>
15 <REGION REF="2">
16 <D VAR="u" VALUE="0" />
17 </REGION>
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18 <REGION REF="3">
19 <D VAR="u" VALUE="1" />
20 </REGION>
21 </BOUNDARYCONDITIONS>

The velocity field within the domain is fully devqeloped pipe flow (Poiseuille flow), hence
we can define this through an analytical function as follows:

1 <FUNCTION NAME="AdvectionVelocity">
2 <E VAR="Vx" VALUE="0" />
3 <E VAR="Vy" VALUE="0" />
4 <E VAR="Vz" VALUE="2.0*(1-(x*x+y*y)/0.25)" />
5 </FUNCTION>

We assume that the initial domain concentration is uniform everywhere and the same as
the inlet. This is defined by,

1 <FUNCTION NAME="InitialConditions">
2 <E VAR="u" VALUE="1" />
3 </FUNCTION>

Results

To compare with the analytical expression we numerically calculate the concentration
gradient at the surface of the pipe. This is then plotted against the analytical solution
by extracting the solution along a line in the streamwise direction, as shown in Fig. 3.3.

Figure 3.3 Concentration gradient at the surface of the pipe.



Chapter 4
Acoustic Perturbation Equations

Solver

4.1 Synopsis

The aim of APESolver is to predict aerodynamic sound generation. Through the
application of a splitting technique, the flow-induced acoustic field is totally decoupled
from the underlying incompressible hydrodynamic field. The acoustic perturbation
equations proposed by Ewert and Shroeder are employed as the governing equations of
the acoustic field and they assure stable aeroacoustic simulation due to the suppression of
the term related to the production of perturbed vorticity. These equations are similar to
the linearised perturbed compressible equations, but while in the original formulation the
flow decomposition is based on solenoidal vortical perturbations as well as irrotational
acoustic perturbations, in this case perturbations are assumed to be exclusively of acoustic
nature.

∂ρ′

∂t
+ (U · ∇)ρ′ + ρ0(∇ · u′) = 0

∂u′

∂t
+∇(u′ ·U) + 1

ρ0
∇p′ = 0

∂p′

∂t
+∇ · (γPu + p′U) = −DP

′

Dt

where (U, P ) represents the base flow, (u′, p′) the perturbations and D/Dt the material
derivative. P ′ = P − p∞ is the acoustic source term, with p∞ the pressure at a reference
value.

4.2 Usage

APESolver session.xml

32
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4.3 Session file configuration

4.3.1 Solver Info

• Eqtype Specifies the equation to solve. This should be set to APE .

• UpwindType

4.3.2 Parameters

• Rho0 : Density

• Gamma : Ratio of specific heats

• Pinfinity : Ambient pressure

4.3.3 Functions

• BaseFlow

• Source

• InitialConditions

4.4 Examples

4.4.1 Aeroacoustic Wave Propagation

In this section we explain how to set up a simple simulation of aeroacoustics in Nektar++.
We will study the propagation of an acoustic wave in the simple case where the base flow
is U = 0, P = p∞ = 106. The geometry consists of 64 quadrilateral elements, as shown
in Fig. 4.1.

Input file

We require a discontinuous Galerkin projection and use an explicit fourth-order Runge-
Kutta time integration scheme. We therefore set the following solver information:

1 <I PROPERTY="EQType" VALUE="APE"/>
2 <I PROPERTY="Projection" VALUE="DisContinuous"/>
3 <I PROPERTY="TimeIntegrationMethod" VALUE="ClassicalRungeKutta4"/>
4 <I PROPERTY="UpwindType" VALUE="Upwind"/>

To maintain numerical stability we must use a small time-step. The total simulation
time is 150 time units. Finally, we set the density, heat ratio and ambient pressure.
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Figure 4.1 Geometry used for the example case of modelling propagation of acoustic waves
where U = 0, P = p∞ = 106

1 <P> TimeStep = 0.00001 </P>
2 <P> NumSteps = 150 </P>
3 <P> FinTime = TimeStep*NumSteps </P>
4 <P> Rho0 = 1.204 </P> <!-- Incompressible density -->
5 <P> Gamma = 1.4 </P> <!-- Ratio of specific heats -->
6 <P> Pinfinity = 100000 </P> <!-- Ambient pressure -->

Let us note that to solve efficiently this problem a discontinuous Garlerkin approach was
used. The system is excited via the initial conditions putting a Gaussian pulse for pulse
fluctuations. Finally, it is necessary to specify the base flow and the eventual source
terms using the following functions:

1 <FUNCTION NAME="Baseflow">
2 <E VAR="U0" VALUE="0" />
3 <E VAR="V0" VALUE="0" />
4 <E VAR="P0" VALUE="Pinfinity" />
5 </FUNCTION>
6
7 <FUNCTION NAME="Source">
8 <E VAR="S" VALUE="0" />
9 </FUNCTION>

10
11 <!-- Gaussian pulse located at the origin -->
12 <FUNCTION NAME="InitialConditions">
13 <E VAR="p" VALUE="100*exp(-32*(((x)*(x))+((y)*(y))))" />



4.4 Examples 35

14 <E VAR="u" VALUE="0" />
15 <E VAR="v" VALUE="0" />
16 </FUNCTION>

Running the code

APESolver Test_pulse.xml

Results

Fig. 4.2 shows the pressure profile at different time steps, showing the acoustic propaga-
tion.

Figure 4.2

It is possible to show the profile of the pressure perturbations with respect to the spatial
coordinate. The pressure fluctuations, that are concentrated in a specific locations at the
beginning (as specified by the initial conditions), propagate with time and for sufficiently
large time the decay is exponential as predicted by literature [?].
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Figure 4.3



Chapter 5
Cardiac Electrophysiology Solver

5.1 Synopsis

The CardiacEPSolver is intended to model the electrophysiology of cardiac tissue, specif-
ically using the monodomain or bidomain model. These models are continuum models
and represent an average of the electrical activity over many cells. The system is a
reaction-diffusion system, with the reaction term modeling the flow of current in and out
of the cells using a separate set of ODEs.

5.1.1 Bidomain Model

The Bidomain model is given by the following PDEs,

gix
∂2Vi
∂x2 + giy

∂2Vi
∂y2 = χ

[
Cm

∂(Vi − Ve)
∂t

+Gm(Vi − Ve)
]

gex
∂2Ve
∂x2 + gey

∂2Ve
∂y2 = −χ

[
Cm

∂(Vi − Ve)
∂t

+Gm(Vi − Ve)
]
.

However, when solving numerically, one often rewrites these equations in terms of the
transmembrane potential and extracellular potential,

χ

[
Cm

∂Vm
∂t

+ Jion

]
= gex

∂2Ve
∂x2 + gey

∂2Ve
∂y2

(gix + gex)∂
2Ve
∂x2 + (giy + gey)

∂2Ve
∂y2 = −gix

∂2Vm
∂x2 − giy

∂2Vm
∂y2

5.1.2 Monodomain Model

In the case where the intracellular and extracellular conductivities are proportional, that
is gix = kgex for some k, then the above two PDEs can be reduced to a single PDE:

χ

[
Cm

∂Vm
∂t

+ Jion

]
= ∇ · (σ∇Vm)
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5.1.3 Cell Models

The action potential of a cardiac cell can be modelled at either a biophysical level of
detail, including a number of transmembrane currents, or as a phenomenological model,
to reproduce the features of the action potential, with fewer variables. Each cell model
will include a unique system of ODEs to represent the gating variables of that model.

A number of ionic cell models are currently supported by the solver including:

• Courtemanche, Ramirez, Nattel, 1998

• Luo, Rudy, 1991

• ten Tusscher, Panfilov, 2006 (epicardial, endocardial and mid-myocardial variants)

Phenomological cell models are also supported:

• Aliev-Panfilov

• Fitzhugh-Nagumo

It is important to ensure that the units of the voltage and currents from the cell model
are consistent with the units expected by the tissue level solver (monodomain/bidomain).
We will show as an example the Courtemanche, Ramirez, Nattel, 1998 human atrial
model.

The monodomain equation:

χ

[
Cm

∂Vm
∂t

+ Jion

]
= ∇ · (σ∇Vm)

5.2 Usage

CardiacEPSolver session.xml

5.3 Session file configuration

5.3.1 Solver Info

• Eqtype Specifies the PDE system to solve. This should take the value Monodomain .

• CellModel Specifies the cell model to use. Available cell models are
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Value Description No. of Var. Ref.
AlievPanfilov Phenomological 1 [?]
CourtemancheRamirezNattel98 Human atrial 20 [?]
FitzHughNagumo
Fox02
LuoRudy91 Mammalian ventricular 7 [?]
PanditGilesDemir03
TenTusscher06 Human ventricular 18 [?]
Winslow99

• Projection Specifies the Galerkin projection type to use. Only Continuous has
been extensively tested.

• TimeIntegrationMethod Specifies the time integration scheme to use for advancing
the PDE system. This must be an IMEX scheme. Suitable choices are: IMEXOrder1 ,
IMEXOrder2 , IMEXOrder3 , IMEXdirk_3_4_3 . The cell model state variables are
time advanced using Forward Euler for the ion concentrations, and Rush-Larsen
for the cell model gating variables.

• DiffusionAdvancement Specifies whether the diffusion is handled implicitly or
explicitly in the time integration scheme. The current code only supports Implicit
integration of the diffusion term. The cell model is always integrated explicitly.

5.3.2 Parameters

The following parameters can be specified in the PARAMETERS section of the session file.
Example values are taken from [?].

• Chi sets the surface-to-volume ratio (Units: mm−1).
Example: χ = 140mm−1

• Cm sets the specific membrane capacitance (Units: µF mm−2).
Example: Cm = 0.01µF mm−2

• Substeps sets the number of substeps taken in time integrating the cell model for
each PDE timestep.
Example: 4

• d_min , d_max , o_min , o_max specifies a bijective map to assign conductivity
values σ to intensity values µ when using the IsotropicConductivity function. The
intensity map is first thresholded to the range [dmin, dmax] and then the conductivity
is calculated as

σ = omax − omin
dmax − dmin

(1− µ) + omin
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5.3.3 Functions

The following functions can be specified inside the CONDITIONS section of the session file.
If both are specified, the effect is multiplicative. Example values are taken from [?].

• IsotropicConductivity specifies the conductivity σ of the tissue.
Example: σ = 0.13341 mS mm−1, based on σ = σiσe

σi+σe , σi = 0.17, σe = 0.62mS mm−1

The variable name to use is intensity since the conductivity may be derived from
late-Gadolinium enhanced MRA imaging. Example specifications are

1 <E VAR="intensity" VALUE="0.13341" />
2 <F VAR="intensity" FILE="scarmap.con" />

where scarmap.con is a Nektar++ field file containing a variable intensity
describing the conductivity across the domain.

• AnisotropicConductivity specifies the conductivity σ of the tissue.

5.3.4 Filters

• CheckpointCellModel checkpoints the cell model. Can be used along with the
Checkpoint Filter to record complete simulation state and regular intervals.

1 <FILTER TYPE="CheckpointCellModel">
2 <PARAM NAME="OutputFile"> session </PARAM>
3 <PARAM NAME="OutputFrequency"> 1 </PARAM>
4 </FILTER>

– OutputFile (optional) specifies the base filename to use. If not specified, the
session name is used. Checkpoint files are suffixed with the process ID and
the extension ‘.chk‘.

– OutputFrequency specifies the number of timesteps between checkpoints.

• Electrogram Computes virtual unipolar electrograms at a prescribed set of points.

1 <FILTER TYPE="Electrogram">
2 <PARAM NAME="OutputFile"> session </PARAM>
3 <PARAM NAME="OutputFrequency"> 1 </PARAM>
4 <PARAM NAME="Points">
5 0.0 0.5 0.7
6 1.0 0.5 0.7
7 2.0 0.5 0.7
8 </PARAM>
9 </FILTER>

– OutputFile (optional) specifies the base filename to use. If not specified, the
session name is used. The extension ‘.ecg‘ is appended if not already specified.
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– OutputFrequency specifies the number of resolution of the electrogram data.

– Points specifies a list of coordinates at which electrograms are desired. They
must not lie within the domain.

5.3.5 Stimuli

Electrophysiological propagaion is initiated through the stimulus current Iion. The
STIMULI section describes one or more regions of stimulus and the time-dependent
protocol with which they are applied.

1 <STIMULI>
2 ...
3 </STIMULI>

A number of stimulus types are available

Stimulus types

• StimulusRect stimulates a cuboid-shaped region of the domain, specified by two
coordinates (x1, y1, z1) and (x2, y2, z2). An additional parameter specifies the
"smoothness" of the boundaries of the region; higher values produce a sharper
boundary. Finally, the maximum strength of the stimulus current is specified in
µA/mm3

1 <STIMULUS TYPE="StimulusRect" ID="0">
2 <p_x1> -15.24 </p_x1>
3 <p_y1> 14.02 </p_y1>
4 <p_z1> 6.87 </p_z1>
5 <p_x2> 12.23 </p_x2>
6 <p_y2> 16.56 </p_y2>
7 <p_z2> 8.88 </p_z2>
8 <p_is> 100.00 </p_is>
9 <p_strength> 50.0 </p_strength>

10 </STIMULUS>

• StimulusCirc stimulates a spherical region of the domain, as specified by a centre
and radius. The smoothness and strength parameters are also specified as for
‘StimulusRect‘.

1 <STIMULUS TYPE="StimulusCirc" ID="0">
2 <p_x1> -15.24 </p_x1>
3 <p_y1> 14.02 </p_y1>
4 <p_z1> 6.87 </p_z1>
5 <p_r1> 12.23 </p_r1>
6 <p_is> 100.00 </p_is>
7 <p_strength> 50.0 </p_strength>
8 </STIMULUS>
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Protocols

A protocol specifies the time-dependent function indicating the strength of the stimulus
and one such PROTOCOL section should be included within each STIMULUS . This can be
expressed as one of:

• ProtocolSingle a single stimulus is applied at a given start time and for a given
duration

1 <PROTOCOL TYPE="ProtocolSingle">
2 <START> 0.0 </START>
3 <DURATION> 2.0 </DURATION>
4 </PROTOCOL>

• ProtocolS1 a train of pulses of fixed duration applied at a given start time and
with a given cycle length.

1 <PROTOCOL TYPE="ProtocolS1">
2 <START> 0.0 </START>
3 <DURATION> 2.0 </DURATION>
4 <S1CYCLELENGTH> 300.0 </S1CYCLELENGTH>
5 <NUM_S1> 5 </NUM_S1>
6 </PROTOCOL>

• ProtocolS1S2 same as ‘ProtocolS1‘ except with an additional single pulse applied
at a different cycle length at the end of the train of S1 pulses.

1 <PROTOCOL TYPE="ProtocolS1S2">
2 <START> 0.0 </START>
3 <DURATION> 2.0 </DURATION>
4 <S1CYCLELENGTH> 300.0 </S1CYCLELENGTH>
5 <NUM_S1> 5 </NUM_S1>
6 <S2CYCLELENGTH> 100.0 </S2CYCLELENGTH>
7 </PROTOCOL>
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Compressible Flow Solver

6.1 Synopsis

The CompressibleFlowSolver allows us to solve the unsteady compressible Euler and
Navier-Stokes equations for 1D/2D/3D problems using a discontinuous representation
of the variables. In the following we describe both the compressible Euler and the
Navier-Stokes equations.

6.1.1 Euler equations

The Euler equations can be expressed as a hyperbolic conservation law in the form

∂q
∂t

+ ∂fi
∂x

+ ∂gi
∂y

+ ∂hi
∂z

= 0, (6.1)

where q is the vector of the conserved variables, fi = fi(q), gi = gi(q) and hi = hi(q)
are the vectors of the inviscid fluxes

q =



ρ
ρu
ρv
ρw
E


, fi =



ρu
p+ ρu2

ρuv
ρuw

u(E + p)


, gi =



ρv
ρuv

p+ ρv2

ρvw
v(E + p)


, hi =



ρw
ρuw
ρvw

p+ ρw2

w(E + p)


,

(6.2)
where ρ is the density, u, v and w are the velocity components in x, y and z directions, p
is the pressure and E is the total energy. In this work we considered a perfect gas law
for which the pressure is related to the total energy by the following expression

E = p

γ − 1 + 1
2ρ(u2 + v2 + w2), (6.3)

where γ is the ratio of specific heats.
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6.1.2 Compressible Navier-Stokes equations

The Navier-Stokes equations include the effects of fluid viscosity and heat conduction and
are consequently composed by an inviscid and a viscous flux. They depend not only on
the conserved variables but also, indirectly, on their gradient. The second order partial
differential equations for the three-dimensional case can be written as:

∂q
∂t

+ ∂f
∂x

+ ∂g
∂y

+ ∂h
∂z

= 0, (6.4)

where q is the vector of the conserved variables, f = f(q,∇(q)), g = g(q,∇(q)) and
h = h(q,∇(q)) are the vectors of the fluxes which can also be written as:

f = fi − fv,g = gi − gv,h = hi − hv, (6.5)

where fi, gi and hi are the inviscid fluxes of Eq. (6.2) and fv, gv and hv are the viscous
fluxes which take the following form:

fv =



0
τxx
τyx
τzx

uτxx + vτyx + wτzx + kTx


, gv =



0
τxy
τyy
τzy

uτxy + vτyy + wτzy + kTy


,

hv =



0
τxz
τyz
τzz

uτxz + vτyz + wτzz + kTz


,

(6.6)

where τxx, τxy, τxz, τyx, τyx, τyy, τyz, τzx, τzy and τzz are the components of the stress
tensor1

τxx = 2µ
(
ux − ux+vy+wz

3

)
, τyy = 2µ

(
vy − ux+vy+wz

3

)
,

τzz = 2µ
(
wz − ux+vy+wz

3

)
, τxy = τyx = µ(vx + uy),

τyz = τzy = µ(wy + vz), τzx = τxz = µ(uz + wx).

(6.7)

where µ is the dynamic viscosity calculated using the Sutherland’s law and k is the
thermal conductivity.

6.1.3 Numerical discretisation

In Nektar++ the spatial discretisation of the Euler and of the Navier-Stokes equations is
projected in the polynomial space via a discontinuous projection. Specifically we make
use either of the discontinuous Galerkin (DG) method or the Flux Reconstruction (FR)

1Note that we use Stokes hypothesis λ = −2/3.
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approach. In both the approaches the physical domain Ω is divided into a mesh of N non-
overlapping elements Ωe and the solution is allowed to be discontinuous at the boundary
between two adjacent elements. Since the Euler as well as the Navier-Stokes equations are
defined locally (on each element of the computational domain), it is necessary to define a
term to couple the elements of the spatial discretisation in order to allow information to
propagate across the domain. This term, called numerical interface flux, naturally arises
from the discontinuous Galerkin formulation as well as from the Flux Reconstruction
approach.

For the advection term it is common to solve a Riemann problem at each interface of the
computational domain through exact or approximated Riemann solvers. In Nektar++
there are different Riemann solvers, one exact and nine approximated. The exact Riemann
solver applies an iterative procedure to satisfy conservation of mass, momentum and
energy and the equation of state. The left and right states are connected either with
the unknown variables through the Rankine-Hugoniot relations, in the case of shock,
or the isentropic characteristic equations, in the case of rarefaction waves. Across the
contact surface, conditions of continuity of pressure and velocity are employed. Using
these equations the system can be reduced to a non-linear algebraic equation in one
unknown (the velocity in the intermediate state) that is solved iteratively using a Newton
method. Since the exact Riemann solver gives a solution with an order of accuracy that
is related to the residual in the Newton method, the accuracy of the method may come
at high computational cost. The approximated Riemann solvers are simplifications of
the exact solver.

Concerning the diffusion term, the coupling between the elements is achieved by using a
local discontinuous Galerkin (LDG) approach as well as five different FR diffusion terms.

The boundary conditions are also implemented by exploiting the numerical interface
fluxes just mentioned. For a more detailed description of the above the interested reader
can refer to [?] and [?].

6.2 Usage

CompressibleFlowSolver session.xml

6.3 Session file configuration

In the following we describe the session file configuration. Specifically we consider the
sections under the tag <CONDITIONS> in the session (.xml) file.

Parameters

Under this section it is possible to set the parameters of the simulation.
1 <PARAMETERS>
2 <P> TimeStep = 0.0000001 </P>
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3 <P> FinTime = 1.0 </P>
4 <P> NumSteps = FinTime/TimeStep </P>
5 <P> IO_CheckSteps = 5000 </P>
6 <P> IO_InfoSteps = 1 </P>
7 <P> Gamma = 1.4 </P>
8 <P> pInf = 101325 </P>
9 <P> rhoInf = 1.225 </P>

10 <P> TInf = pInf/(287.058*rhoInf) </P>
11 <P> Twall = pInf/(287.058*rhoInf)+15.0 </P>
12 <P> uInf = 147.4 </P>
13 <P> vInf = 0.0 </P>
14 <P> wInf = 0.0 </P>
15 <P> mu = 1e-5 </P>
16 <P> Pr = 0.72 </P>
17 <P> thermalConductivity = 0.02 </P>
18 </PARAMETERS>

• TimeStep is the time-step we want to use;

• FinTime is the final physical time at which we want our simulation to stop;

• NumSteps is the equivalent of FinTime but instead of specifying the physical final
time we specify the number of time-steps;

• IO_CheckSteps sets the number of steps between successive checkpoint files;

• IO_InfoSteps sets the number of steps between successive info stats are printed
to screen;

• Gamma ratio of the specific heats. Default value = 1.4;

• pInf farfield pressure (i.e. p∞). Default value = 101325 Pa;

• rhoInf farfield density (i.e. ρ∞). Default value = 1.225 Kg/m3;

• TInf farfield temperature (i.e. T∞). Default value = 288.15 K;

• Twall temperature at the wall when isothermal boundary conditions are employed
(i.e. Tw). Default value = 300.15K;

• uint farfield X-component of the velocity (i.e. u∞). Default value = 0.1 m/s;

• vInf farfield Y -component of the velocity (i.e. v∞). Default value = 0.0 m/s;

• wInf farfield Z-component of the velocity (i.e. w∞). Default value = 0.0 m/s;

• mu dynamic viscosity (i.e. µ∞). Default value = 1.78e-05 Pas;

• Pr Prandtl number. Default value = 0.72;

• thermalConductivity thermal conductivity (i.e. κ∞). Default value = 0.0257
W/(Km);
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Solver info

Under this section it is possible to set the solver information.
1 <SOLVERINFO>
2 <I PROPERTY="EQType" VALUE="NavierStokesCFE" />
3 <I PROPERTY="Projection" VALUE="DisContinuous" />
4 <I PROPERTY="AdvectionType" VALUE="WeakDG" />
5 <I PROPERTY="DiffusionType" VALUE="LDGNS" />
6 <I PROPERTY="TimeIntegrationMethod" VALUE="ClassicalRungeKutta4"/>
7 <I PROPERTY="UpwindType" VALUE="ExactToro" />
8 <I PROPERTY="ProblemType" VALUE="General" />
9 <I PROPERTY="ViscosityType" VALUE="Constant" />

10 </SOLVERINFO>

• EQType is the tag which specify the equations we want solve:

– NavierStokesCFE (Compressible Navier-Stokes equations);
– EulerCFE (Compressible Euler equations).

• Projection is the type of projection we want to use:

– DisContinuous .
Note that the Continuous projection is not supported in the Compressible
Flow Solver.

• AdvectionType is the advection operator we want to use:

– WeakDG (classical DG in weak form);
– FRDG (Flux-Reconstruction recovering nodal DG scheme);
– FRSD (Flux-Reconstruction recovering a spectral difference (SD) scheme);
– FRHU (Flux-Reconstruction recovering Huynh (G2) scheme);
– FRcmin (Flux-Reconstruction with c = cmin);
– FRcinf (Flux-Reconstruction with c =∞).

• DiffusionType is the diffusion operator we want to use:

– WeakDG (classical DG in weak form);
– FRDG (Flux-Reconstruction recovering nodal DG scheme);
– FRSD (Flux-Reconstruction recovering a spectral difference (SD) scheme);
– FRHU (Flux-Reconstruction recovering Huynh (G2) scheme);
– FRcmin (Flux-Reconstruction with c = cmin);
– FRcinf (Flux-Reconstruction with c =∞).

• TimeIntegrationMethod is the time-integration scheme we want to use. Note that
only an explicit discretisation is supported:
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– ForwardEuler ;
– RungeKutta2_ImprovedEuler ;

– ClassicalRungeKutta4 .

• UpwindType is the numerical interface flux (i.e. Riemann solver) we want to use
for the advection operator:

– AUSM0 ;
– AUSM1 ;
– AUSM2 ;
– AUSM3 ;
– Average ;

– ExactToro ;
– HLL ;
– HLLC ;
– LaxFriedrichs ;
– Roe .

• ProblemType is the problem type we want to solve. This tag is supported for
solving ad hoc problems such as the isentropic vortex or the Ringleb flow.

– General ;
– IsentropicVortex ;

– RinglebFlow ;

• ViscosityType is the viscosity type we want to use:

– Constant (Constant viscosity);
– Variable (Variable viscosity through the Sutherland’s law.);

Boundary conditions

In this section we can specify the boundary conditions for our problem. First we need to
define the variables under the section VARIABLES . For a 1D problem we have:

1 <VARIABLES>
2 <V ID="0"> rho </V>
3 <V ID="1"> rhou </V>
4 <V ID="4"> E </V>
5 </VARIABLES>

For a 2D problem we have



6.3 Session file configuration 49

1 <VARIABLES>
2 <V ID="0"> rho </V>
3 <V ID="1"> rhou </V>
4 <V ID="2"> rhov </V>
5 <V ID="4"> E </V>
6 </VARIABLES>

For a 3D problem we have:
1 <VARIABLES>
2 <V ID="0"> rho </V>
3 <V ID="1"> rhou </V>
4 <V ID="2"> rhov </V>
5 <V ID="3"> rhow </V>
6 <V ID="4"> E </V>
7 </VARIABLES>

After having defined the variables depending on the dimensions of the problem we want
to solve it is necessary to specify the boundary regions on which we want to define the
boundary conditions:

1 <BOUNDARYREGIONS>
2 <B ID="0"> C[100] </B>
3 </BOUNDARYREGIONS>

Finally we can specify the boundary conditions on the regions specified under BOUNDARYREGIONS .
In the following some examples for a 2D problem:

• Slip wall boundary conditions:
1 <BOUNDARYCONDITIONS>
2 <REGION REF="0">
3 <D VAR="rho" USERDEFINEDTYPE="Wall" VALUE="0" />
4 <D VAR="rhou" USERDEFINEDTYPE="Wall" VALUE="0" />
5 <D VAR="rhov" USERDEFINEDTYPE="Wall" VALUE="0" />
6 <D VAR="E" USERDEFINEDTYPE="Wall" VALUE="0" />
7 </REGION>
8 </BOUNDARYCONDITIONS>

• No-slip wall boundary conditions:
1 <BOUNDARYCONDITIONS>
2 <REGION REF="0">
3 <D VAR="rho" USERDEFINEDTYPE="WallViscous" VALUE="0" />
4 <D VAR="rhou" USERDEFINEDTYPE="WallViscous" VALUE="0" />
5 <D VAR="rhov" USERDEFINEDTYPE="WallViscous" VALUE="0" />
6 <D VAR="E" USERDEFINEDTYPE="WallViscous" VALUE="0" />
7 </REGION>
8 </BOUNDARYCONDITIONS>

• Farfield boundary conditions (including inviscid characteristic boundary conditions):



50 Chapter 6 Compressible Flow Solver

1 <BOUNDARYCONDITIONS>
2 <REGION REF="0">
3 <D VAR="rho" VALUE="rhoInf" />
4 <D VAR="rhou" VALUE="rhoInf*uInf" />
5 <D VAR="rhov" VALUE="rhoInf*vInf" />
6 <D VAR="E"
7 VALUE="pInf/(Gamma-1)+0.5*rhoInf*(uInf*uInf+vInf*vInf+wInf*wInf)"/>
8 </REGION>
9 </BOUNDARYCONDITIONS>

• Pressure outflow boundary conditions:
1 <BOUNDARYCONDITIONS>
2 <REGION REF="0">
3 <D VAR="rho" USERDEFINEDTYPE="PressureOutflow" VALUE="0" />
4 <D VAR="rhou" USERDEFINEDTYPE="PressureOutflow" VALUE="0" />
5 <D VAR="rhov" USERDEFINEDTYPE="PressureOutflow" VALUE="0" />
6 <D VAR="E" USERDEFINEDTYPE="PressureOutflow" VALUE="0" />
7 </REGION>
8 </BOUNDARYCONDITIONS>

Initial conditions and exact solution

Under the two following sections it is possible to define the initial conditions and the
exact solution (if existent).

1 <FUNCTION NAME="InitialConditions">
2 <E VAR="rho" VALUE="rhoInf"/>
3 <E VAR="rhou" VALUE="rhoInf*uInf" />
4 <E VAR="rhov" VALUE="rhoInf*vInf" />
5 <E VAR="E"
6 VALUE="pInf/(Gamma-1)+0.5*rhoInf*(uInf*uInf+vInf*vInf+wInf*wInf)"/>
7 </FUNCTION>
8
9 <FUNCTION NAME="ExactSolution">

10 <E VAR="rho" VALUE="rhoInf" />
11 <E VAR="rhou" VALUE="rhoInf*uInf" />
12 <E VAR="rhov" VALUE="rhoInf*vInf" />
13 <E VAR="E"
14 VALUE="pInf/(Gamma-1)+0.5*rhoInf*(uInf*uInf+vInf*vInf+wInf*wInf)"/>
15 </FUNCTION>

6.4 Examples

6.4.1 Shock capturing

Compressible flow is characterised by abrupt changes in density within the flow domain
often referred to as shocks. These discontinuities lead to numerical instabilities (Gibbs
phenomena). This problem is prevented by locally adding a diffusion term to the equations
to damp the numerical fluctuations. These fluctuations in an element are identified using
a sensor algorithm which quantifies the smoothness of the solution within an element.
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The value of the sensor in an element is defined as

Se = ||ρ
p
e − ρp−1

e ||L2

||ρpe||L2
(6.8)

An artificial diffusion term is introduced locally to the Euler equations to deal with flow
discontinuity and the consequential numerical oscillations. Two models are implemented,
a non-smooth and a smooth artificial viscosity model.

Non-smooth artificial viscosity model

For the non-smooth artificial viscosity model the added artificial viscosity is constant in
each element and discontinuous between the elements. The Euler system is augmented
by an added laplacian term on right hand side of equation 6.10. The diffusivity of the
system is controlled by a variable viscosity coefficient ε. The value of ε is dependent
on ε0, which is the maximum viscosity that is dependent on the polynomial order (p),
the mesh size (h) and the maximum wave speed and the local sensor value. Based on
pre-defined sensor threshold values, the variable viscosity is set accordingly

ε = ε0


0 if se < sκ − κ
0.5
(
1 + sin π(Se−sκ)

2κ

)
if sκ − κ < Se < sκ + κ

1 if se > sκ + κ

(6.9)
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Figure 6.1 (a) Steady state solution for M = 0.8 flow at α = 1.25◦ past a NACA 0012 profile,
(b) Artificial viscosity (ε) distribution
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Smooth artificial viscosity model

For the smooth artificial viscosity model an extra PDE for the artificial viscosity is
appended to the Euler system

∂ε

∂t
= ∇ · (∇ε) + 1

τ

(
h

p
λmaxSκ − ε

)
on Ω

∂ε

∂n
= 0 on Γ

(6.10)

where Sκ is a normalised sensor value and serves as a forcing term for the artificial
viscosity. A smooth artificial viscosity distribution is obtained.

To enable the smooth viscosity model, the following line has to be added to the
SOLVERINFO section:

1 <SOLVERINFO>
2 <I PROPERTY="ShockCaptureType" VALUE="Smooth" />
3 <SOLVERINFO>

Furthermore, the extra viscosity variable eps has to be added to the variable list:

1 <VARIABLES>
2 <V ID="0"> rho </V>
3 <V ID="1"> rhou </V>
4 <V ID="2"> rhov </V>
5 <V ID="4"> E </V>
6 <V ID="5"> eps </V>
7 </VARIABLES>

A similar addition has to be made for the boundary conditions and initial conditions.
The tests that have been run started with a uniform homogeneous boundary condition
and initial condition. The following parameters can be set in the xml session file:

1 <PARAMETERS>
2 <P> Skappa = -1.3 </P>
3 <P> Kappa = 0.2 </P>
4 <P> mu0 = 1.0 </P>
5 <P> FH = 3 </P>
6 <P> FL = 0.01*FH </P>
7 <P> C1 = 0.03 </P>
8 <P> C2 = 5/3*C1 </P>
9 </PARAMETERS>

where for now FH and FL are used to tune which range of the sensor is used as a forcing
term and C1 and C2 are fixed constants which can be played around with to make the
model more diffusive or not. However these constants are generally fixed.

6.4.2 Variable polynomial order

A sensor based p-adaptive algorithm is implemented to optimise the computational cost
and accuracy. The DG scheme allows one to use different polynomial orders since the



6.4 Examples 53

fluxes over the elements are determined using a Riemann solver and there is now further
coupling between the elements. Furthermore, the initial p-adaptive algorithm uses the
same sensor as the shock capturing algorithm to identify the smoothness of the local
solution so it rather straightforward to implement both algorithms at the same time.

The polynomial order in each element can be adjusted based on the sensor value that
is obtained. Initially, a converged solution is obtained after which the sensor in each
element is calculated. Based on the determined sensor value and the pre-defined sensor
thresholds, it is decided to increase, decrease or maintain the degree of the polynomial
approximation in each element and a new converged solution is obtained.

pe =


pe − 1 if se > sds
pe + 1 if ssm < se < sds
pe if sfl < se < ssm
pe − 1 if se < sfl

(6.11)

For now, the threshold values se, sds, ssm and sfl are determined empirically by looking
at the sensor distribution in the domain. Once these values are set, two .txt files are
outputted, one that has the composites called VariablePComposites.txt and one with the
expansions called VariablePExpansions.txt. These values have to copied into a new .xml
file to create the adapted mesh.



Chapter 7
Incompressible Navier-Stokes Solver

7.1 Synopsis

7.1.1 Velocity Correction Scheme

A useful tool implemented in Nektar++ is the incompressible Navier Stokes solver that
allows to solve the governing equation for viscid Newtonians fluid using two different
algorithms.

∂V
∂t

+ V · ∇V = −∇p+ ν∇2V + f (7.1a)

∇ ·V = 0 (7.1b)

where V is the velocity, p the pressure and ν the kinematic viscosity. The first approach
uses a splitting/projection method where the velocity matrix system and the pressure
are typically decoupled. Splitting schemes are typically favourite for their numerical
efficiency since for a Newtonian fluid the velocity and pressure are handled independently,
requiring the solution of three (in two dimensions) elliptic systems of rank N (opposed to
a single system of rank 3N solved in the Stokes problem). However, a drawback of this
approach is the splitting scheme error which is introduced when decoupling the pressure
and the velocity system, although this can be made consistent with the overall temporal
accuracy of the scheme by appropriate discretisation of the pressure boundary conditions.
When the incompressible Navier-Stokes equations are solved using the velocity correction
splitting scheme, a stiffly-stable time integration is applied (derived from the work of
Karniadakis, Israeli and Orszag). Briefly, the time integration scheme consists of the
following steps:

1. Calculate a first intermediate velocity field evaluating the advection term explicitly

54
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and combining it with the solution at previous time-steps:

Ṽ−
∑J−1
q=0

αq
γ0

Vn−q

∆t =
J−1∑
q=0

βq
γ0

[−(V · ∇)V]n−q + fn+1 (7.2)

2. Solve a Poisson equation to obtain the pressure solution at the new time level:

∆pn+1 =
( γ0

∆t
)
∇ · Ṽ (7.3)

with consistent boundary conditions:

∂p

∂n

n+1
= −

[∂V
∂t

n+1
+ ν

J−1∑
q=0

βq(∇×∇×V)n−q +
J−1∑
q=0

βq[(V · ∇)V]n−q
]
· n (7.4)

3. Calculate a second intermediate velocity field:

˜̃V = Ṽ−
(∆t
γ0

)
∇pn+1 (7.5)

4. Use the second intermediate velocity field as a forcing term in a Helmholtz problem
to obtain the velocity field at the new time level:

(
∆− γ0

∆tν
)
Vn+1 = −

( γ0
∆tν

) ˜̃V (7.6)

Here, J is the integration order and γ0, alphaq, βq are the stiffly stable time integration
coefficients given in the table below.

1st order 2nd order 3rd order
γ0 1 3/2 11/6
α0 1 2 3
α1 0 −1/2 −3/2
α2 0 0 1/3
β0 1 2 3
β1 0 −1 −3
β2 0 0 1

(7.7)

This multi-step implicit-explicit splitting scheme decouples the velocity field mathbfV
from the pressure p, leading to an explicit treatment of the advection term and an implicit
treatment of the pressure and the diffusion term.
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7.1.2 Direct solver (coupled approach)

The second approach consists of directly solving the matrix problem arising from the
discretization of the Stokes problem. The direct solution of the Stokes system introduces
the problem of appropriate spaces for the velocity and the pressure systems to satisfy
the inf-sup condition and it requires the solution of the full velocity-pressure system.
However, if a discontinuous pressure space is used then all but the constant mode of the
pressure system can be decoupled from the velocity. Furthermore, when implementing
this approach with a spectral/hp element discretization, the remaining velocity system
may then be statically condensed to decouple the so called interior elemental degrees of
freedom, reducing the Stokes problem to a smaller system expressed on the elemental
boundaries. The direct solution of the Stokes problem provides a very natural setting
for the solution of the pressure system which is not easily dealt with in a splitting
scheme. Further, the solution of the full coupled velocity system allows the introduction
of a spatially varying viscosity, which arise for non-Newtonian flows, with only minor
modifications.

We consider the weak form of the Stokes problem for the velocity field boldsymbolu =
[u, v]T and the pressure field p:

(∇φ, ν∇u)− (∇ · φ, p) = (φ,f) (7.8a)

(q,∇ · u) = 0 (7.8b)

where the components of A,B and C are ∇φb, ν∇ub, ∇φb, ν∇ui and ∇φi, ν∇ui and the
components Db and Di are q,∇ub and q,∇ui. The indices b and i refer to the degrees of
freedom on the elemental boundary and interior respectively. In constructing the system
we have lumped the contributions form each component of the velocity field into matrices
A,B and C. However, we note that for a Newtonian fluid the contribution from each field
is decoupled. Since the interior degrees of freedom of the velocity field do not overlap,
the matrix C is block diagonal and to take advantage of this structure we can statically
condense out the C matrix to obtain the system:

 A−BC−1BT DT
b −BC−1Di 0

Db −DT
i C
−1BT −DT

i C
−1Di 0

BT Di C


 ub

p
ui

 =

 fb −BC−1fi

−DT
i C
−1fi

fi

 (7.9)

To extend the above Stokes solver to an unsteady Navier-Stokes solver we first introduce
the unsteady term, ∂u/∂t, into the Stokes problem. This has the principal effect
of modifying the weak Laplacian operator ∇φ, ν∇u] into a weak Helmholtz operator
∇φ, ν∇u) − λ(φ,u where λ depends on the time integration scheme. The second
modification requires the explicit discretisation of the non-linear terms in a similar
manner to the splitting scheme and this term is then introduced as the forcing term f .
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7.1.3 Linear Stability Analysis

Hydrodynamic stability is an important part of fluid-mechanics that has a relevant role
in understanding how an unstable flow can evolve into a turbulent state of motion with
chaotic three-dimensional vorticity fields and a broad spectrum of small temporal and
spatial scales. The essential problems of hydrodynamic stability were recognised and
formulated in 19th century, notably by Helmholtz, Kelvin, Rayleigh and Reynolds.

Conventional linear stability assumes a normal representation of the perturbation fields
that can be represented as independent wave packets, meaning that the system is self-
adjoint. The main aim of the global stability analysis is to evaluate the amplitude of the
eigenmodes as time grows and tends to infinity. However, in most industrial applications,
it is also interesting to study the behaviour at intermediate states that might affects
significantly the functionality and performance of a device. The study of the transient
evolution of the perturbations is seen to be strictly related to the non-normality of the
linearised Navier-Stokes equations, therefore the normality assumptiong of the system is
no longer assumed. The eigenmodes of a non-normal system do not evolve independently
and their interaction is responsible for a non-negligible transient growth of the energy.
Conventional stability analysis generally does not capture this behaviour, therefore other
techniques should be used.

A popular approach to study the hydrodynamic stability of flows consists in performing
a direct numerical simulation of the linearised Navier-Stokes equations using iterative
methods for computing the solution of the associated eigenproblem. However, since
linearly stable flows could show a transient increment of energy, it is necessary to extend
this analysis considering the combined effect of the direct and adjoint evolution operators.
This phenomenon has noteworthy importance in several engineering applications and it
is known as transient growth.

In Nektar++ it is then possible to use the following tools to perform stability analysis:

• direct stability analysis;

• adjoint stability analysis;

• transient growth analysis;

Direct stability analysis

The equations that describe the evolution of an infinitesimal disturbance in the flow
can be derived decomposing the solution into a basic state (U, p) and a perturbed state
U + εu′ with ε � 1 that both satisfy the Navier-Stokes equations. Substituting into
the Navier Stokes equations and considering that the quadratic terms u′ · ∇u′can be
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neglected, we obtain the linearised Navier-Stokes equations:

∂u′

∂t
+ U · ∇u′ + u′ · ∇U = −∇p+ ν∇2u′ + f (7.10a)

∇ · u′ (7.10b)

The linearised Navier-Stokes equations are identical in form to the non-linear equation,
except for the non-linear advection term. Therefore the numerical techniques used for
solving Navier-Stokes equations can still be applied as long as the non-linear term is
substituted with the linearised one. It is possible to define the linear operator that
evolved the perturbation forward in time:

u′(x, t) = A(U)u′(x, 0) (7.11)

Let us assume that the base flow U is steady, then the perturbations are autonomous
and we can assume that:

u′(x, t) = q′(x) exp(λt) whereλ = σ + iω (7.12)

Then we obtain the associated eigenproblem:

A(U)q′ = λq′ (7.13)

The dominant eigenvalue determines the behaviour of the flow. If it the real part is
positive there exists exponentially growing solutions, conversely if every single eigenvalues
has negative real part then the flow is linearly stable. If the real part of the eigenvalue is
zero, it is present a bifurcation point.

Adjoint Stability Analysis

The adjoint of a linear operator is one of the most important concept in functional
analysis and has an it has important role to tackle the transition to turbulence. Let us
write the linearised Navier-Stokes equation in a compact form:

Hq = 0 where H =
(
−∂t − (U · ∇) + (∇U) ·+ 1

Re∇
2 −∇

∇· 0

)
(7.14)

The adjoint operator (H∗ is defines as:



7.1 Synopsis 59

〈Hq,q〉 = 〈q,H∗q∗〉 (7.15)

Integrating by parts and employing the divergence theorem, it is possible to express the
adjoint equations:

− ∂u∗

∂t
+ (U · ∇)u∗ + (∇U)T · u∗ = −∇p∗ + 1

Re
∇2u (7.16a)

∇ · u∗ = 0 (7.16b)

The adjoint fields are in fact related to the concept of receptivity. The value of the
adjoint velocity at a point in the flow indicates the response that arises from an unsteady
momentum source at that point. The adjoint pressure and the adjoint stream function
play instead the same role for mass and vorticity sources respectively. Therefore, the
adjoint modes can be seen as a powerful tool to understand where to act in order to
ease/inhibit the transition.

Transient Growth Analysis

Transient growth is a phenomenon that occurs when a flow that is linearly stable, but
whose perturbations exhibit a non-negligible transient response due to regions of localised
convective instabilities. This situation is common in many engineering applications, for
example in open flows where the geometry is complex, producing a steep variation of the
base flow. Therefore, the main question to answer is if it exists a bounded solution that
exhibit large growth before inevitably decaying. Let us introduce a norm to quantify the
size of a perturbation. It is physically meaningful to use the total kinetic energy of a
perturbation on the domain Ω. This is convenient because it is directly associated with
the standard-L2 inner product:

A(τ)v = σu, ‖u‖ = 1 (7.17)

where σ = ‖u′(τ)‖. This is no other that the singular value decomposition of A(τ). The
phenomenology of the transient growth can be explained considering the non-normality of
the linearised Navier-Stokes evolution operator. This can be simply understood using the
simple geometric example showed in following figure . Let us assume a unit-length vector
f represented in a non-orthogonal basis .This vector is defined as the difference of the
nearly collinear vectors Φ1 and Φ2. With the time progression, the component of these
two vectors decrease respectively by 20% and 50%. The vector f increases substantially
in length before decaying to zero. Thus, the superposition of decaying non-orthogonal
eigenmode can produce in short term a growth in the norm of the perturbations.
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Figure 7.1 Geometric interpretation of the transient growth. Adapted from Schmid, 2007

7.2 Usage

IncNavierStokesSolver session.xml

7.3 Session file configuration

In the following the possible options are shown for the incompressible Navier-Stokes.
The Expansion section for an incompressible flow simulation can be set as for other
solvers regardless of the projection type. Here an example for a 3D simulation (for 2D
simulations the specified fields would be just u,v,p ).

1 <EXPANSIONS>
2 <E COMPOSITE="C[0]" NUMMODES="6" FIELDS="u,v,w,p" TYPE="MODIFIED" />
3 </EXPANSIONS>

In case of a simulation using the Direct Solver we need to set FIELDS=u,v as the pressure
expansion order will be automatically set to fulfil the inf-sup condition. Possible choices
for the expansion TYPE are:

Basis TYPE

Modal MODIFIED
Nodal GLL_LAGRANGE
Nodal SEM GLL_LAGRANGE_SEM

7.3.1 Solver Info

The following parameters can be specified in the SOLVERINFO section of the session file:
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• EqType : sets the kind of equations we want to solve on the domain as:

1 <I PROPERTY="EQTYPE" VALUE="UnsteadyNavierStokes"/>

Possible values are:

Equations EQTYPE Dim. Projections Alg.

Steady Stokes (SS) SteadyStokes All CG VCS
Steady Onseen (SO) SteadyOseen All CG DS
Unsteady Stokes (US) UnsteadyStokes All CG VCS
Steady Linearised NS (SLNS) SteadyLinearisedNS All CG DS
Unsteady Linearised NS (ULNS) UnsteadyLinearisedNS All CG DS
Unsteady NS (UNS) UnsteadyNavierStokes All CG,CG-DG VCS

• SolverType : sets the scheme we want to use to solve the set of equations as

1 <I PROPERTY="SolverType" VALUE="VelocityCorrectionScheme"/>

Possible values are:

Algorithm SolverType Dimensions Projections

Velocity Correction Scheme VelocityCorrectionScheme 2D, Quasi-3D, 3D CG, CG-DG
Direct solver CoupledLinearisedNS 2D, Quasi-3D, 3D CG

• Driver : this specifies the type of problem to be solved:

Driver Description Dimensions Projections

Standard Time integration of the equations All CG, DG
SteadyState Steady State (Selective Frequency Damping) All CG

• Projection : sets the Galerkin projection type as

1 <I PROPERTY="Projection" VALUE="Continuous"/>

Possible values are:

Galerkin Projection Projection Dimensions Equations Algorithms

Continuous (CG) Continuous All All All
Discontinuous (DG) DisContinuous All ... ...
Mixed CG and DG (CG-DG) MixedCGDG just 2D just UNS just VCS

• TimeIntegrationMethod : sets the time integration method as

1 <I PROPERTY="TimeIntegrationMethod" VALUE="IMEXOrder2"/>

Possible values are
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Time-Integration Method TimeIntegrationMethod Dimensions Equations Projections

IMEX Order 1 IMEXOrder1 all US, UNS CG
IMEX Order 2 IMEXOrder2 all US, UNS CG
IMEX Order 3 IMEXOrder3 all US, UNS CG
Backward Euler BackwardEuler all US, UNS CG-DG
BDF Order 1 BDFImplicitOrder1 all US, UNS CG-DG
BDF Order 2 BDFImplicitOrder2 all US, UNS CG-DG

• GlobalSysSoln : sets the approach we use to solve the the linear systems of the
type Ax = b appearing in the solution steps, such as the Poisson equation for the
pressure in the splitting-scheme. It can be set as

1 <I PROPERTY="GlobalSysSoln" VALUE="IterativeStaticCond"/>

Possible values are

System solution GlobalSysSoln Parallel

Direct Solver (DS) DirectFull just quasi-3D
DS with Static Condensation DirectStaticCond just Quasi-3D
DS with Multilevel Static Condensation DirectMultiLevelStaticCond just Quasi-3D
Iterative Solver (IS) IterativeFull just Quasi-3D
IS with Static Condensation IterativeStaticCond quasi-3D
IS with Multilevel Static Condensation IterativeMultiLevelStaticCond quasi-3D

Default values are DirectMultiLevelStaticCond in serial and IterativeStaticCond
in parallel.

• SmoothAdvection : activates a stabilization technique which smooths the advection
term using the pressure inverse mass matrix. It can be used just in combination
with nodal expansion basis for efficiency reasons.

1 <I PROPERTY="SmoothAdvection" VALUE="True"/>

• SpectralVanishingViscosity : activates a stabilization technique which increases
the viscosity on the highest Fourier frequencies of a Quasi-3D approach.

1 <I PROPERTY="SpectralVanishingViscosity" VALUE="True"/>

• DEALIASING : activates the 3/2 padding rule on the advection term of a Quasi-3D
simulation.

1 <I PROPERTY="DEALIASING" VALUE="ON"/>

• SubSteppingScheme : activates the sub-stepping routine which uses the mixed
CG-DG projection

1 <I PROPERTY="SubSteppingScheme" VALUE="True" />
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• SPECTRALHPDEALIASING : activates the spectral/hp dealiasing to stabilize the simu-
lation. This method is based on the work of Kirby and Sherwin [7].

1 <I PROPERTY="SPECTRALHPDEALIASING" VALUE="True" />

• ShowTimings : activates the blocks timing of the incompressible Navier-Stokes
solver. The CPU time spent in each part of the code will be printed at the end of
the simulation.

1 <I PROPERTY="ShowTimings" VALUE="True" />

7.3.2 Parameters

The following parameters can be specified in the PARAMETERS section of the session file:

• TimeStep : sets the time-step for the integration in time formula

• NumSteps : sets the number of time-steps

• Kinvis : sets the cinematic viscosity coefficient formula

• Noise : sets the white-noise amplitude we want to add on the velocity initial
conditions

• SubStepCFL : sets the CFL safety limit for the sub-stepping algorithm (default
value = 0.5)

• SVVCutoffRatio : sets the ratio of Fourier frequency not affected by the SVV
technique (default value = 0.75, i.e. the first 75

• SVVDiffCoeff : sets the SVV diffusion coefficient (default value = 0.1)

7.4 Stability analysis Session file configuration

The type of equation which is to be solved is specified through the EqType option in the
session file. This can be set to any of the following:

Equation to solve
∂u′

∂t
+ L(U,u′) = −∇p+ ν∇2u′

Equation Type Dimensions Projections Algorithms

UnsteadyNavierStokes 2D, Quasi-3D Continuous VCS,DS
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7.4.1 Solver Info

• Eqtype : sets the type of equation to solve, according to the table above.

• TimeIntegrationMethod : the following types of time integration methods have
been tested with each solver:

Explicit Diagonally Implicit IMEX Implicit

UnsteadyNavierStokes X X

• Projection : the Galerkin projection used may be either

– Continuous : for a C0-continuous Galerkin (CG) projection;
– Discontinuous : for a discontinous Galerkin (DG) projection.

• EvolutionOperator :

– Nonlinear (non-linear Navier-Stokes equations).
– Direct (linearised Navier-Stokes equations).
– Adjoint (adjoint Navier-Stokes equations).

– TransientGrowth ((transient growth evolution operator).

• Driver : specifies the type of problem to be solved:

– Standard (time integration of the equations)
– ModifiedArnoldi (computations of the leading eigenvalues and eigenmodes

using modified Arnoldi method)
– Arpack (computations of eigenvalues/eigenmodes using Implicitly Restarted

Arnoldi Method (ARPACK) ).

• ArpackProblemType : types of eigenvalues to be computed (for Driver Arpack only)

– LargestMag (eigenvalues with largest magnitude).

– SmallestMag (eigenvalues with smallest magnitude).

– LargestReal (eigenvalues with largest real part).

– SmallestReal (eigenvalues with smallest real part).
– LargestImag (eigenvalues with largest imaginary part).

– SmallestIma (eigenvalues with smallest imaginary part ).

• Homogeneous : specifies the Fourier expansion in a third direction (optional)

– 1D (Fourier spectral method in z-direction).
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• ModeType : this specifies the type of the quasi-3D problem to be solved.

– MultipleMode (stability analysis with multiple modes).

– SingleMode (BiGlobal Stability Analysis: full-complex mode).

– HalfMode (BiGlobal Stability Analysis: half-complex mode u.Re v.Re w.Im
p.Re).

7.4.2 Parameters

The following parameters can be specified in the PARAMETERS section of the session file:

• Re : sets the Reynolds number

• Kinvis : sets the kinematic viscosity ν.

• kdim : sets the dimension of the Krylov subspace κ. Can be used in: ModifiedArnoldi
and Arpack . Default value: 16.

• evtol : sets the tolerance of the eigenvalues. Can be used in: ModifiedArnoldi
and Arpack . Default value: 10−6.

• nits : sets the maximum number of iterations. Can be used in: ModifiedArnoldi
and Arpack . Default value: 500.

• LZ : sets the length in the spanswise direction Lz. Can be used in Homogeneous

set to 1D . Default value: 1.

• HomModesZ : sets the number of planes in the homogeneous directions. Can be used
in Homogeneous set to 1D and ModeType set to MultipleModes .

• N_slices : sets the number of temporal slices for Floquet stability analysis.

• period : sets the periodicity of the base flow.

7.4.3 Functions

• To be INserted

7.5 Examples

7.5.1 Kovasznay Flow 2D

This example demonstrates the use of the velocity correction o solve the 2D Kovasznay
flow at Reynolds number Re = 40. In the following we will numerically solve for the two
dimensional velocity and pressure fields with steady boundary conditions.
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Input file

The input for this example is given in the example file KovaFlow_m8.xml . The mesh
consists of 12 quadrilateral elements.

We will use a 7th-order polynomial expansions (N = 8 modes) using the modified
Legendre basis and therefore require the following expansion definition.

1 <EXPANSIONS>
2 <E COMPOSITE="C[0]" NUMMODES="6" FIELDS="u,v,p" TYPE="MODIFIED" />
3 </EXPANSIONS>

We next specify the solver information for our problem. In particular, we select the
velocity correction scheme formulation, using a continuous Galerkin projection. For this
scheme, an implicit-explicit ime-integration scheme must be used and we choose one of
second order.

1 <SOLVERINFO>
2 <I PROPERTY="EQTYPE" VALUE="UnsteadyNavierStokes" />
3 <I PROPERTY="SolverType" VALUE="VelocityCorrectionScheme" />
4 <I PROPERTY="AdvectionForm" VALUE="Convective" />
5 <I PROPERTY="Projection" VALUE="Galerkin" />
6 <I PROPERTY="TimeIntegrationMethod" VALUE="IMEXOrder2" />
7 </SOLVERINFO>

The key parameters are listed below. Since the problem is unsteady we prescribe the
time step and the total number of time steps. We also know the required Reynolds
number, but we must prescribe the kinematic viscosity to the solver. We first define a
dummy parameter for the Reynolds number, and then define the kinematic viscosity as
the inverse of this. The value of λ is used when defining the boundary conditions and
exact solution. Note that PI is a pre-defined constant.

1 <PARAMETERS>
2 <P> TimeStep = 0.001 </P>
3 <P> NumSteps = 100 </P>
4 <P> Re = 40 </P>
5 <P> Kinvis = 1/Re </P>
6 <P> LAMBDA = 0.5*Re-sqrt(0.25*Re*Re+4*PI*PI)</P>
7 </PARAMETERS>

We choose to impose a mixture of boundary condition types as defined below.
1 <BOUNDARYCONDITIONS>
2 <REGION REF="0">
3 <D VAR="u" VALUE="1-exp(LAMBDA*x)*cos(2*PI*y)" />
4 <D VAR="v" VALUE="(LAMBDA/2/PI)*exp(LAMBDA*x)*sin(2*PI*y)" />
5 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
6 </REGION>
7 <REGION REF="1">
8 <D VAR="u" VALUE="1-exp(LAMBDA*x)*cos(2*PI*y)" />
9 <D VAR="v" VALUE="(LAMBDA/2/PI)*exp(LAMBDA*x)*sin(2*PI*y)" />

10 <D VAR="p" VALUE="0.5*(1-exp(2*LAMBDA*x))" />



7.5 Examples 67

11 </REGION>
12 <REGION REF="2">
13 <N VAR="u" VALUE="0" />
14 <D VAR="v" VALUE="0" />
15 <N VAR="p" VALUE="0" />
16 </REGION>
17 </BOUNDARYCONDITIONS>

Initial conditions are obtained from the file KovaFlow_m8.rst, which is a Nektar++ field
file. This is the output of an earlier simulation, renamed with the extension rst to
avoid being overwritten, and is used in this case to reduce the integration time necessary
to obtain the steady flow.

1 <FUNCTION NAME="InitialConditions">
2 <F FILE="KovaFlow_m8.rst" />
3 </FUNCTION>

Note the use of the F tag to indicate the use of a file. In contrast, the exact solution is
prescribed using analytic expressions which requires the use of the E tag.

1 <FUNCTION NAME="ExactSolution">
2 <E VAR="u" VALUE="1-exp(LAMBDA*x)*cos(2*PI*y)" />
3 <E VAR="v" VALUE="(LAMBDA/2/PI)*exp(LAMBDA*x)*sin(2*PI*y)" />
4 <E VAR="p" VALUE="0.5*(1-exp(2*LAMBDA*x))" />
5 </FUNCTION>

Running the simulation

Launch the simulation using the following command

IncNavierStokesSolver KovaFlow_m8.xml

After completing the prescribed 100 time-steps, the difference between the computed
solution and the exact solution will be displayed. The actual mantissas may vary slightly,
but the overall magnitude should be as shown.

L 2 error (variable u) : 3.75296e-07
L inf error (variable u) : 5.13518e-07
L 2 error (variable v) : 1.68897e-06
L inf error (variable v) : 2.23918e-06
L 2 error (variable p) : 1.46078e-05
L inf error (variable p) : 5.18682e-05

The output of the simulation is written to KovaFlow_m8.fld . This can be visualised
by converting it to a visualisation format. For example, to use ParaView, convert the
output into VTK format using the tility.

FieldConvert KovaFlow.xml KovaFlow.fld KovaFlow.vtu

s:utilities:fieldconvert#FieldConvert.u
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The result should look similar to that shown in Figure 7.2.

Figure 7.2 Velocity profiles for the Kovasznay Flow (2D).

7.5.2 Steady Kovasznay Oseen Flow using the direct solver

In this example, we instead compute the steadhy Kovasznay Oseen flow using the direct
solver. In contrast to the velocity correction scheme in which we time-step the solution
to the final time, the direct solver computes the solution with a single solve.

Input file

We can begin with the same input file as for the previous example, but with the
following modifications. For reference, the modified version is provided in the example
Oseen_m8.xml .

In the solver information, we must instead select the Steady-Oseen equation type and
choose to use the coupled linearised Navier-Stokes

1 <I PROPERTY="EQTYPE" VALUE="SteadyOseen" />
2 <I PROPERTY="SolverType" VALUE="CoupledLinearisedNS" />

Note
Since we are using a coupled system, we are not solving for the pressure.
We should therefore remove all references to the variable p in the ses-
sion. In particular, it should be removed from the EXPANSIONS , VARIABLES ,
BOUNDARYCONDITIONS and FUNCTIONS sections of the file.

Instead of loading an initial condition from file, we can simply prescribe a zero field.
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1 <FUNCTION NAME="InitialConditions">
2 <E VAR="u" VALUE="0" />
3 <E VAR="v" VALUE="0" />
4 </FUNCTION>

We must also provide an advection velocity.
1 <FUNCTION NAME="AdvectionVelocity">
2 <E VAR="u" VALUE="(1-exp(-LAMBDA*x)*cos(2*PI*y))" />
3 <E VAR="v" VALUE="(-LAMBDA/(2*PI))*exp(-LAMBDA*x)*sin(2*PI*y)" />
4 </FUNCTION>

Running the simulation

Run the simulation using

IncNavierStokesSolver Oseen_m8.xml

The resulting flow field should match the solution from the previous example.

7.5.3 Laminar Channel Flow 2D

In this example, we will simulate the flow through a channel at Reynolds number 1 with
fixed boundary conditions.

Input file

The input file for this example is given in ChanFlow_m3_SKS.xml . The geometry is a
square channel with height and length D = 1, discretised using four quadrilateral elements.
We use a quadratic expansion order, which is sufficient to capture the quadratic flow
profile. In this example, we choose to use the skew-symmetric form of the advection term.
This is chosen in the solver information section:

1 <I PROPERTY="EvolutionOperator" VALUE="SkewSymmetric" />

A first-order time integration scheme is used and we set the time-step and number of time
integration steps in the parameters section. We also prescribe the kinematic viscosity
ν = 1/Re = 1.

Boundary conditions are defined on the walls (region 0) and at the inflow (regions 1) as
Dirichlet for the velocity field and as high-order for the pressure. At the outflow the
velocity is left free using Neumann boundary conditions and the pressure is pinned to
zero.

1 <BOUNDARYCONDITIONS>
2 <REGION REF="0">
3 <D VAR="u" VALUE="0" />
4 <D VAR="v" VALUE="0" />
5 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
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6 </REGION>
7 <REGION REF="1">
8 <D VAR="u" VALUE="y*(1-y)" />
9 <D VAR="v" VALUE="0" />

10 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
11 </REGION>
12 <REGION REF="2">
13 <N VAR="u" VALUE="0" />
14 <N VAR="v" VALUE="0" />
15 <D VAR="p" VALUE="0" />
16 </REGION>
17 </BOUNDARYCONDITIONS>

Initial conditions are set to zero. The exact solution is a parabolic profile with a pressure
gradient dependent on the Reynolds number. This is defined to allow verification of the
calculation.

1 <FUNCTION NAME="ExactSolution">
2 <E VAR="u" VALUE="y*(1-y)" />
3 <E VAR="v" VALUE="0" />
4 <E VAR="p" VALUE="-2*Kinvis*(x-1)" />
5 </FUNCTION>

Running the solver

IncNaverStokesSolver ChanFlow_m3_SKS.xml

The error in the solution should be displayed and be close to machine precision

L 2 error (variable u) : 4.75179e-16
L inf error (variable u) : 3.30291e-15
L 2 error (variable v) : 1.12523e-16
L inf error (variable v) : 3.32197e-16
L 2 error (variable p) : 1.12766e-14
L inf error (variable p) : 7.77156e-14

The solution should look similar to that shown in Figure 7.3.

7.5.4 Laminar Channel Flow 3D

We now solve the incompressible Navier-Stokes equations on a three-dimensional domain.
In particular, we solver the three-dimensional equivalent of the previous example. We
will also solve the problem in parallel.

Note
In order to run the example, you must have a version of Nektar++ compiled
with MPI. This is the case for the packaged binary distributions.
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Figure 7.3 Pressure and velocity profiles for the laminar channel flow (2D).

Input file

The input file for this example is given in Tet_channel_m8_par.xml . In this example
we use tetrahedral elements, indicated by the A element tags in the geometry section.
All dimensions have length D = 1. We will use a 7th-order polynomial expansion. Since
we now have three dimensions, and therefore three velocity components, the expansions
section is now

1 <EXPANSIONS>
2 <E COMPOSITE="C[0]" NUMMODES="8" FIELDS="u,v,w,p" TYPE="MODIFIED" />
3 </EXPANSIONS>

The solver information and parameters are similar to the previous example. Boundary
conditions must now be defined on the six faces of the domain. Flow is prescribed in the
z-direction through imposing a Poiseulle profile on the inlet and side walls. The outlet is
zero-Neumann and top and bottom faces impose zero-Dirichlet conditions.

1 <BOUNDARYREGIONS>
2 <B ID="0"> C[1] </B> <!-- Inlet -->
3 <B ID="1"> C[6] </B> <!-- Outlet -->
4 <B ID="2"> C[2] </B> <!-- Wall -->
5 <B ID="3"> C[3] </B> <!-- Wall left -->
6 <B ID="4"> C[4] </B> <!-- Wall -->
7 <B ID="5"> C[5] </B> <!-- Wall right -->
8 </BOUNDARYREGIONS>
9

10 <BOUNDARYCONDITIONS>
11 <REGION REF="0">
12 <D VAR="u" VALUE="0" />
13 <D VAR="v" VALUE="0" />
14 <D VAR="w" VALUE="y*(1-y)" />
15 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
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16 </REGION>
17 <REGION REF="1">
18 <N VAR="u" VALUE="0" />
19 <N VAR="v" VALUE="0" />
20 <N VAR="w" VALUE="0" />
21 <D VAR="p" VALUE="0" />
22 </REGION>
23 <REGION REF="2">
24 <D VAR="u" VALUE="0" />
25 <D VAR="v" VALUE="0" />
26 <D VAR="w" VALUE="0" />
27 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
28 </REGION>
29 <REGION REF="3">
30 <D VAR="u" VALUE="0" />
31 <D VAR="v" VALUE="0" />
32 <D VAR="w" VALUE="y*(1-y)" />
33 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
34 </REGION>
35 <REGION REF="4">
36 <D VAR="u" VALUE="0" />
37 <D VAR="v" VALUE="0" />
38 <D VAR="w" VALUE="0" />
39 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
40 </REGION>
41 <REGION REF="5">
42 <D VAR="u" VALUE="0" />
43 <D VAR="v" VALUE="0" />
44 <D VAR="w" VALUE="y*(1-y)" />
45 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
46 </REGION>
47 </BOUNDARYCONDITIONS>

Initial conditions and exact solutions are also prescribed.

Running the solver

To run the solver in parallel, we use the mpirun command.

mpirun -np 2 IncNaverStokesSolver Tet_channel_m8_par.xml

The expected results are shown in Figure 7.4.

7.5.5 Laminar Channel Flow Quasi-3D

For domains where at least one direction is geometrically homogeneous, a more efficient
discretisation is to use a pure spectral discretisation, such as a Fourier expansion, in
these directions. We use this approach to solve the same problem as in the previous
example. We reuse the two-dimensional spectral/hp element mesh from the nd couple
this with a Fourier expansion in the third component.

s:incns:LaminarChannelFlow2D#2D laminar flow example.a
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Figure 7.4 Pressure and velocity profiles for the laminar channel flow (full 3D).

Input file

The input file for this example is ChanFlow_3DH1D_MVM.xml . We indicate that we
are coupling the spectral/hp element domain with a pure spectral expansion using the
following solver information

1 <I PROPERTY="HOMOGENEOUS" VALUE="1D"/>

We must also specify parameters to describe the particular spectral expansion
1 <P> HomModesZ = 20 </P>
2 <P> LZ = 1.0 </P>

The parameter HomModesZ specifies the number of Fourier modes to use in the homoge-
neous direction. The LZ parameter specifies the physical length of the domain in that
direction.

Note
This example uses an in-built Fourier transform routine. Alternatively, one
can use the FFTW library to perform Fourier transforms which typically offers
improved performance. This is enabled using the following solver information

1 <I PROPERTY="USEFFT" VALUE="FFTW"/>

As with the the spectral/hp element mesh consists of four quadrilateral elements with a
second-order polynomial expansion. Since our domain is three-dimensional we have to
now include the third velocity component

s:incns:LaminarChannelFlow2D#2D case.,
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1 <E COMPOSITE="C[0]" NUMMODES="3" FIELDS="u,v,w,p" TYPE="MODIFIED" />

The remaining parameters and solver information is similar to previous examples.

Boundary conditions are specified as for the two-dimensional case (except with the
addition of the third velocity component) since the side walls are now implicitly periodic.
The initial conditions and exact solution are prescribed as for the fully three-dimensional
case.

Running the solver

IncNaverStokesSolver ChanFlow_3DH1D_MVM.xml

The results can be post-processed and should match those of the fully three-dimensional
case as shown in Figure 7.4.

7.5.6 Turbulent Channel Flow

In this example we model turbulence in a three-dimensional square channel at a Reynolds
number of 2000.

Note
This example requires the FFTW Fast-Fourier transform library to be selected
when compiling Nektar++.

Input file

The input file for this example is TurbChFl_3DH1D.xml . The geometry makes used of
the homogeneous extension discussed in the previous example. The channel has height
D = 2 and length L = 4π and is discretised using quadratic quadrilateral elements in
the spectral/hp element plane and a Fourier basis in the third coordinate direction. The
elements are non-uniformly distributed so as to best capture the flow features with fewest
degrees of freedom and is shown in Figure 7.5.

Figure 7.5 Mesh used for the turbulent channel flow.

The spanwise length of the channel is set using the LZ parameter and discretised with
32 Fourier modes by setting the value of HomModesZ .
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1 <P> HomModesZ = 32 </P>
2 <P> LZ = 4*PI/3 </P>

A second-order IMEX scheme is used for time-integration scheme is used with a time-step
of 0.0001. The length of the simulation is 1 time-unit (10,000 steps).

Periodicity is naturally enforced in the spanwise direction, so boundary conditions need
only be provided for the upper and lower walls, inlet and outlet as denoted by the
following BOUNDARYREGIONS .

1 <BOUNDARYREGIONS>
2 <B ID="0"> C[1] </B> //walls
3 <B ID="1"> C[2] </B> //inflow
4 <B ID="2"> C[3] </B> //outflow
5 </BOUNDARYREGIONS>

In this example, we will use a body force to drive the flow and so, in addition to the
spanwise periodicity, enforce periodicity in the streamwise direction of the spectral/hp
element mesh. This is achieved by imposing the following boundary conditions

1 <REGION REF="1">
2 <P VAR="u" VALUE="[2]" />
3 <P VAR="v" VALUE="[2]" />
4 <P VAR="w" VALUE="[2]" />
5 <P VAR="p" VALUE="[2]" />
6 </REGION>
7 <REGION REF="2">
8 <P VAR="u" VALUE="[1]" />
9 <P VAR="v" VALUE="[1]" />

10 <P VAR="w" VALUE="[1]" />
11 <P VAR="p" VALUE="[1]" />
12 </REGION>

Here, we use P to denote the boundary type is periodic, and the value in square brackets
denotes the boundary region to which the given boundary is periodic with. In this case
regions 1 and 2 are denoted periodic with each other.

A streamwise plug-profile initial condition is prescribed such that u = 1 everywhere,
except the wall boundaries. The body force requires two components in the XML file.
The first specifies the type of forcing to apply and appears directly within the NEKTAR
tag.

1 <FORCING>
2 <FORCE TYPE="Body">
3 <BODYFORCE> BodyForce </BODYFORCE>
4 </FORCE>
5 </FORCING>

The second defines the BodyForce function which will be used and is located within the
CONDITIONS section,
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1 <FUNCTION NAME="BodyForce">
2 <E VAR="u" VALUE="2*Kinvis" />
3 <E VAR="v" VALUE="0" />
4 <E VAR="w" VALUE="0" />
5 </FUNCTION>

To improve numerical stability, we also enable dealising of the advection term. This uses
additional points to perform the quadrature and then truncates the higher-order terms
when projecting back onto the polynomial space, thereby removing spurious oscillations.
It is enabled by setting the solver information tag

1 <I PROPERTY="DEALIASING" VALUE="ON" />

This feature is only available when using the FFTW library is used, so we enable this
using

1 <I PROPERTY="USEFFT" VALUE="FFTW" />

Running the solver

To run the solver, we use the following command

IncNaverStokesSolver TurbChFl_3DH1D.xml

The result after transition has occurred is illustrated in Figure 7.6.

Figure 7.6 Velocity profile of the turbulent channel flow (quasi-3D).
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7.5.7 Turbulent Pipe Flow

In this example we simulate flow in a pipe at Reynolds number 3000 using a mixed
spectral/hp element and Fourier discretisation. The Fourier expansion is used in the
streamwise direction in this case and the spectral/hp elements are used to capture the
circular cross-section.

Input File

The circular pipe has diameter D = 1, the 2D mesh is composed of 64 quadrilateral ele-
ments and the streamwise direction is discretised with 128 Fourier modes. An illustrative
diagram of the discretisation is given in Figure 7.7.

Figure 7.7 Domain for the turbulent pipe flow problem.

The input file for this example is Pipe_turb.xml . We use 7th-order lagrange polynomials
through the Gauss-Lobatto-Legendre points for the quadrilateral expansions.

1 <E COMPOSITE="C[0]" NUMMODES="8" FIELDS="u,v,w,p" TYPE="GLL_LAGRANGE_SEM" />

We set the Fourier options, as in the previous example, except using 128 modes and a
length of 5 non-dimensional units. A small amplitude noise is also added to the initial
condition, which is a plug profile, to help stimulate transition. Since the streamwise
direction is the Fourier direction, we must necessarily use a body force to drive the flow.

Running the solver

In this example we will run the solver in parallel. Due to the large number of Fourier
modes and relatively few elements, it is more efficient to parallelise in the streamwise
direction. We can specify this by providing an additional flag to the solver, –npz . This
indicates the number of partitions in the z-coordinate. In this example, we will only run
two processes. We therefore would specify –npz 2 to ensure parallelisation only occurs
in the Fourier direction.
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To improve the efficiency of the solver further, we would prefer to solve the Helmholtz
problems within the spectral/hp element planes using a direct solver (since no paralleli-
sation is necessary). The default when running in parallel is to use an iterative solver, so
we explicitly specify the type of algorithm to use in the session file solver information:

1 <I PROPERTY="GlobalSysSoln" VALUE="DirectStaticCond" />

The solver can now be run as follows

mpirun -np 2 IncNavierStokesSolver --npz 2 Pipe_turb.xml

When the pipe transitions, the result should look similar to Figure 7.8.

Figure 7.8 Velocity profile of the turbulent pipe flow (quasi-3D).

7.5.8 Aortic Blood Flow

The following example demonstrates the application of the incompressible Navier-Stokes
solver using the Velocity Correction Scheme algorithm for modelling viscid Newtonian
blood flow in a region of a rabbit descending thoracic aorta with intercostal branch pairs.
Such studies are necessary to understand the effect local blood flow changes have on
cardiovascular diseases such as atherosclerosis.

In the following we will numerically solve for the three dimensional velocity and pressure
field for steady boundary conditions. The Reynolds number under consideration is 300,
which is physiologically relevant.

Geometry



7.5 Examples 79

The geometry under consideration is a segment of a rabbit descending aorta with two
pairs of intercostal arteries branching off. The inlet has a diameter D = 3.32mm.

Figure 7.9 Reduced region of rabbit descending thoracic aorta.

In order to capture the physics of the flow in the boundary layer, a thin layer consisting
of prismatic elements is created adjacent to the surface, and curved using spherigons.
The interior consist of tetrahedral elements.

Figure 7.10 Surface mesh indicating curved surface elements at a branch location.

Input parameters

Expansion:

In this example we will use a fourth order polynomial expansion. There are two composites
defined here since we have both prismatic and tetrahedral elements.

1 <EXPANSIONS>
2 <E COMPOSITE="C[0]" NUMMODES="5" TYPE="MODIFIED" FIELDS="u,v,w,p" />
3 <E COMPOSITE="C[1]" NUMMODES="5" TYPE="MODIFIED" FIELDS="u,v,w,p" />
4 </EXPANSIONS>

Solver information:
1 <SOLVERINFO>
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2 <I PROPERTY="SolverType" VALUE="VelocityCorrectionScheme" />
3 <I PROPERTY="EQTYPE" VALUE="UnsteadyNavierStokes" />
4 <I PROPERTY="AdvectionForm" VALUE="Convective" />
5 <I PROPERTY="Projection" VALUE="Galerkin" />
6 <I PROPERTY="TimeIntegrationMethod" VALUE="IMEXOrder1" />
7 </SOLVERINFO>

Parameters:

Since we are prescribing a Reynolds number of 300, and to simplify the problem definition,
we set the mean inlet velocity to 1, this allows us to define the kinematic viscosity as
ν = UD

Re = 3.32
300 = 1/90.36.

1 <PARAMETERS>
2 <P> TimeStep = 0.0005 </P>
3 <P> NumSteps = 1600 </P>
4 <P> IO_CheckSteps = 200 </P>
5 <P> IO_InfoSteps = 50 </P>
6 <P> Kinvis = 1.0/90.36 </P>
7 </PARAMETERS>

Boundary conditions:

For the purpose of this example a blunted inlet velocity profile has been prescribed.
Ideally to obtain more significant results, the velocity profile at the inlet would be
obtained from previous simulations on the complete rabbit aorta (including aortic root,
aortic arch, and descending aorta with all 5 pairs of intercostal arteries), where a blunted
profile at the aortic root is a better representation of reality.

Dirichlet boundary conditions are imposed for the velocity at the inlet, as well as on the
wall to account for the no-slip condition. Neumann boundary conditions are imposed for
the velocity field at the outlets where fully developed flow is imposed.

1 <BOUNDARYREGIONS>
2 <B ID="0"> C[2] </B> <!-- Inlet -->
3 <B ID="1"> C[3,4,5,6] </B> <!-- intercostal outlets -->
4 <B ID="2"> C[7] </B> <!-- outlet -->
5 <B ID="3"> C[8] </B> <!-- wall -->
6 </BOUNDARYREGIONS>
7
8 <BOUNDARYCONDITIONS>
9 <REGION REF="0">

10 <D VAR="u" VALUE="0.024" />
11 <D VAR="v" VALUE="-0.064" />
12 <D VAR="w" VALUE="-0.998" />
13 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
14 </REGION>
15 <REGION REF="1">
16 <N VAR="u" VALUE="0" />
17 <N VAR="v" VALUE="0" />
18 <N VAR="w" VALUE="0" />
19 <D VAR="p" VALUE="0" />
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20 </REGION>
21 <REGION REF="2">
22 <N VAR="u" VALUE="0" />
23 <N VAR="v" VALUE="0" />
24 <N VAR="w" VALUE="0" />
25 <D VAR="p" VALUE="0" />
26 </REGION>
27 <REGION REF="3">
28 <D VAR="u" VALUE="0" />
29 <D VAR="v" VALUE="0" />
30 <D VAR="w" VALUE="0" />
31 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
32 </REGION>
33 </BOUNDARYCONDITIONS>

Functions:
1 <FUNCTION NAME="InitialConditions">
2 <E VAR="u" VALUE="0" />
3 <E VAR="v" VALUE="0" />
4 <E VAR="w" VALUE="0" />
5 <E VAR="p" VALUE="0" />
6 </FUNCTION>

Results

We can visualise the internal velocity field by applying a volume render filter in ParaView.

Figure 7.11 The solved-for velocity field.

It is possible to visualise the wall shear stress distribution by running the FldAddWSS
utility.

7.5.9 2D direct stability analysis of the channel flow

In this example, it will be illustrated how to perform a direct stability analysis using
Nektar++. Let us consider a canonical stability problem, the flow in a channel which
is confined in the wall-normal direction between two infinite plates (Poiseuille flow) at
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Figure 7.12 Non-dimensional wall shear stress distribution.

Reynolds number 7500. This problem is a particular case of the stability solver for the
IncNavierStokesSolver.

Background

We consider the linearised Incompressible Navier-Stokes equations:

∂u′

∂t
+ U · ∇u′ + u′ · ∇U = −∇p+ ν∇2u′ + f (7.18a)

∇ · u′ = 0 (7.18b)

We are interested to compute the leading eigenvalue of the system using the Arnoldi
method.

Geometry

The geometry under consideration is a 2D channel.

Mesh Definition

In the GEOMETRY section, the dimensions of the problem are defined. Then, the coordinates
(XSCALE, YSCALE, ZSCALE) of each vertices of each element are specified. As this input
file defines a two-dimensional problem: ZSCALE = 0.

1 <GEOMETRY DIM="2" SPACE="2">
2 <VERTEX>
3 <V ID="0">3.142e+00 1.000e+00 0.000e+00</V>
4 ...
5 <V ID="62">-3.142e+00 -1.000e+00 0.000e+00</V>
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6 </VERTEX>

Edges can now be defined by two vertices.
1 <EDGE>
2 <E ID="0"> 0 1 </E>
3 ...
4 <E ID="109"> 62 55 </E>
5 </EDGE>

In the ELEMENT section, the tag T and Q define respectively triangular and quadrilateral
element. Triangular elements are defined by a sequence of three edges and quadrilateral
elements by a sequence of four edges.

1 <ELEMENT>
2 <Q ID="0"> 0 1 2 3 </Q>
3 ...
4 <Q ID="47"> 107 108 109 95 </Q>
5 </ELEMENT>
6

Finally, collections of elements are listed in the COMPOSITE section and the DOMAIN section
specifies that the mesh is composed by all the triangular and quadrilateral elements. The
other composites will be used to enforce boundary conditions.

1 <COMPOSITE>
2 <C ID="0"> Q[0-47] </C>
3 <C ID="1"> E[17,31,44,57,70,83,96,109,0,19,32,45,58,71,84,97] </C> //wall
4 <C ID="2"> E[3,6,9,12,15,18] </C>//inflow
5 <C ID="3"> E[98,100,102,104,106,108] </C> //outflow
6 </COMPOSITE>
7 <DOMAIN> C[0] </DOMAIN>
8 </GEOMETRY>
9

Expansion

This section defines the polynomial expansions used on each composites. For this example
we will use a 10th order polynomial, i.e. P = 11.

1 <EXPANSIONS>
2 <E COMPOSITE="C[0]" NUMMODES="11" FIELDS="u,v,p" TYPE="MODIFIED" />
3 </EXPANSIONS>
4

Solver Info

In this example the EvolutionOperator must be Direct to consider the linearised
Navier-Stokes equations and the Driver was set up to ModifiedArnoldi for the solution
of the eigenproblem.



84 Chapter 7 Incompressible Navier-Stokes Solver

1 <SOLVERINFO>
2 <I PROPERTY="SolverType" VALUE="VelocityCorrectionScheme"/>
3 <I PROPERTY="EQTYPE" VALUE="UnsteadyNavierStokes"/>
4 <I PROPERTY="EvolutionOperator" VALUE="Direct"/>
5 <I PROPERTY="Projection" VALUE="Galerkin"/>
6 <I PROPERTY="Driver" VALUE= "ModifiedArnoldi" />
7 <I PROPERTY="TimeIntegrationMethod" VALUE="IMEXOrder1" />
8 </SOLVERINFO>
9

Parameters

All the stability parameters are specified in this section.
1 <PARAMETERS>
2 <P> TimeStep = 0.002 </P>
3 <P> NumSteps = 500 </P>
4 <P> IO_CheckSteps = 1000 </P>
5 <P> IO_InfoSteps = 10 </P>
6 <P> Re = 7500 </P>
7 <P> Kinvis =1./Re </P>
8 <P> kdim =16 </P>
9 <P> nvec =2 </P>

10 <P> evtol =1e-5</P>
11 <P> nits =5000 </P>
12 </PARAMETERS>
13

Boundary Conditions
1 <BOUNDARYREGIONS>
2 <B ID="0"> C[1] </B>
3 <B ID="1"> C[2] </B>
4 <B ID="2"> C[3] </B>
5 </BOUNDARYREGIONS>
6
7 <BOUNDARYCONDITIONS>
8 <REGION REF="0">
9 <D VAR="u" VALUE="0" />

10 <D VAR="v" VALUE="0" />
11 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
12 </REGION>
13 <REGION REF="1">
14 <P VAR="u" VALUE="[2]" />
15 <P VAR="v" VALUE="[2]" />
16 <P VAR="p" VALUE="[2]" />
17 </REGION>
18 <REGION REF="2">
19 <P VAR="u" VALUE="[1]" />
20 <P VAR="v" VALUE="[1]" />
21 <P VAR="p" VALUE="[1]" />
22 </REGION>
23 </BOUNDARYCONDITIONS>
24
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Function

We need to set up the base flow that can be specified as a function BaseFlow. In case
the base flow is not analytical, it can be generated by means of the Nonlinear evolution
operator using the same mesh and polynomial expansion. The initial guess is specified in
the InitialConditions functions and can be both analytical or a file. In this example
it is read from a file.

1 <FUNCTION NAME="BaseFlow">
2 <F VAR="u,v,p" FILE="ChanStability.bse" />
3 </FUNCTION>
4
5 <FUNCTION NAME="InitialConditions">
6 <F VAR="u,v,p" FILE="ChanStability.rst" />
7 </FUNCTION>
8

Usage

IncNavierStokesSolver ChanStability.xml

Results

The stability simulation takes about 250 iterations to converge and the dominant eigen-
values (together with the respective eigenvectors) will be printed. In this case it was
found λ1,2 = 1.000224× e±0.24984i. Therefore, since the magnitude of the eigenvalue is
larger than 1, the flow is absolutely unstable. It is possible to visualise the eigenvectors
using the post-processing utilities. The figure shows the profile of the two eigenmode
component, which shows the typical Tollmien - Schlichting waves that arise in viscous
boundary layers.

Figure 7.13
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Figure 7.14

7.5.10 2D adjoint stability analysis of the channel flow

In this example, it will be illustrated how to perform an adjoint stability analysis using
Nektar++. Let us consider a canonical stability problem, the flow in a channel which
is confined in the wall-normal direction between two infinite plates (Poiseuille flow) at
Reynolds number 7500

Background

We consider the equations:

− ∂u∗

∂t
+ (U · ∇)u∗ + (∇U)T · u∗ = −∇p∗ + 1

Re
∇2u (7.19a)

∇ · u∗ = 0 (7.19b)

We are interested in computing the leading eigenvalue of the system using the Arnoldi
method.

Geometry & Mesh

The geometry and mesh are the same ones used for the direct stability analysis in the
previous example.

Solver Info

This sections defines the problem solved. In this example the EvolutionOperator must
be Adjoint to consider the adjoint Navier-Stokes equations and the Driver was set up
to ModifiedArnoldi for the solution of the eigenproblem.
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1 <SOLVERINFO>
2 <I PROPERTY="SolverType" VALUE="VelocityCorrectionScheme"/>
3 <I PROPERTY="EQTYPE" VALUE="UnsteadyNavierStokes"/>
4 <I PROPERTY="EvolutionOperator" VALUE="Adjoint"/>
5 <I PROPERTY="Projection" VALUE="Galerkin"/>
6 <I PROPERTY="Driver" VALUE= "ModifiedArnoldi" />
7 <I PROPERTY="TimeIntegrationMethod" VALUE="IMEXOrder1" />
8 </SOLVERINFO>
9 \end{subequations}

10
11 \textbf{Parameters}
12
13 \begin{lstlisting}[style=XMLStyle]
14 <PARAMETERS>
15 <P> TimeStep = 0.002 </P>
16 <P> NumSteps = 500 </P>
17 <P> IO_CheckSteps = 1000 </P>
18 <P> IO_InfoSteps = 10 </P>
19 <P> Re = 7500 </P>
20 <P> Kinvis =1./Re </P>
21 <P> kdim =16 </P>
22 <P> nvec =2 </P>
23 <P> evtol =1e-5</P>
24 <P> nits =5000 </P>
25 </PARAMETERS>
26

Boundary Conditions
1 <BOUNDARYREGIONS>
2 <B ID="0"> C[1] </B>
3 <B ID="1"> C[2] </B>
4 <B ID="2"> C[3] </B>
5 </BOUNDARYREGIONS>
6
7 <BOUNDARYCONDITIONS>
8 <REGION REF="0">
9 <D VAR="u" VALUE="0" />

10 <D VAR="v" VALUE="0" />
11 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
12 </REGION>
13 <REGION REF="1">
14 <P VAR="u" VALUE="[2]" />
15 <P VAR="v" VALUE="[2]" />
16 <P VAR="p" VALUE="[2]" />
17 </REGION>
18 <REGION REF="2">
19 <P VAR="u" VALUE="[1]" />
20 <P VAR="v" VALUE="[1]" />
21 <P VAR="p" VALUE="[1]" />
22 </REGION>
23 </BOUNDARYCONDITIONS>
24
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Functions

We need to set up the base flow that can be specified as a function BaseFlow. In case
the base flow is not analytical, it can be generated by means of the Nonlinear evolution
operator using the same mesh and polynomial expansion.

1 <FUNCTION NAME="BaseFlow">
2 <F VAR="u,v,p" FILE="ChanStability.bse" />
3 </FUNCTION>
4

The initial guess is specified in the InitialConditions functions and can be both
analytical or a file. In this example it is read from a file.

1 <FUNCTION NAME="InitialConditions">
2 <F VAR="u,v,p" FILE="ChanStability.rst" />
3 </FUNCTION>
4

Usage

IncNavierStokesSolver ChanStability_adj.xml

Results

The equations will then be evolved backwards in time (consistently with the negative
sign in front of the time derivative) and the leading eigenvalues will be computed after
about 300 iterations. It is interesting to note that their value is the same one computed
for the direct problem, but the eigenmodes present a different shape.

Figure 7.15

7.5.11 2D Transient Growth analysis of a flow past a backward-facing step

In this section it will be described how to perform a transient growth stability analysis
using Nektar++. Let us consider a flow past a backward-facing step (figure 7.17). This
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Figure 7.16

is an important case because it allows us to understand the effects of separation caused
by abrupt changes in the geometry and it is a common geometry in several studies of
flow control and turbulence of separated flow.

Figure 7.17

Background

Transient growth analysis allows us to study the presence of convective instabilities that
can arise in stable flows. Despite the fact that these instabilities will decay for a long time
(due to the stability of the flow), they can produce significant increases in the energy of
perturbations. The phenomenon of transient growth is associated with the non-normality
of the linearised Navier-Stokes equations and it consists in computing the perturbation
that leads to the highest energy growth for a fixed time horizon.

Input Parameters

In the GEOMETRY section, the dimensions of the problem are defined. Then, the coordinates
(XSCALE, YSCALE, ZSCALE) of each vertices are specified. As this input file defines a two-
dimensional problem: ZSCALE = 0.

1 <GEOMETRY DIM="2" SPACE="2">
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2 <VERTEX>
3 <V ID="0">3.000e+00 -1.000e+00 0.000e+00</V>
4 ...
5 <V ID="399">-1.000e+01 0.000e+00 0.000e+00</V>
6 </VERTEX>
7

Edges can now be defined by two vertices.
1 <EDGE>
2 <E ID="0"> 0 1 </E>
3 ...
4 <E ID="828"> 399 394 </E>
5 </EDGE>
6

In the ELEMENT section, the tag T and Q define respectively triangular and quadrilateral
element. Triangular elements are defined by a sequence of three edges and quadrilateral
elements by a sequence of four edges.

1 <ELEMENT>
2 <T ID="0"> 0 1 2 </T>
3 ...
4 <T ID="209"> 333 314 332 </T>
5 <Q ID="210"> 334 335 336 0 </Q>
6 ...
7 <Q ID="429"> 826 827 828 818 </Q>
8 </ELEMENT>
9

Finally, collections of elements are listed in the COMPOSITE section and the DOMAIN section
specifies that the mesh is composed by all the triangular and quadrilateral elements. The
other composites will be used to enforce boundary conditions.

1 <COMPOSITE>
2 <C ID="0"> T[0-209] </C>
3 <C ID="1"> Q[210-429] </C>
4 <C ID="2"> E[2-3,7,10,16,21,2,...,828] </C>
5 <C ID="3"> E[821,823,825,827] </C>
6 <C ID="4"> E[722,724,726,728] </C>
7 </COMPOSITE>
8
9 <DOMAIN> C[0,1] </DOMAIN>

10 </GEOMETRY>
11

Expansion

For this example we will use a 6th order polynomial, i.e. P = 7:
1 <EXPANSIONS>
2 <E COMPOSITE="C[0]" NUMMODES="7" FIELDS="u,v,p" TYPE="MODIFIED" />
3 <E COMPOSITE="C[1]" NUMMODES="7" FIELDS="u,v,p" TYPE="MODIFIED" />
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4 </EXPANSIONS>
5

Solver Information

This sections defines the problem solved. In this example the EvolutionOperator must
be TransientGrowth and the Driver was set up to Arpack for the solution of the
eigenproblem.

1 <SOLVERINFO>
2 <I PROPERTY="EQTYPE" VALUE="UnsteadyNavierStokes" />
3 <I PROPERTY="EvolutionOperator" VALUE="TransientGrowth" />
4 <I PROPERTY="Projection" VALUE="Galerkin" />
5 <I PROPERTY="TimeIntegrationMethod" VALUE="IMEXOrder2" />
6 <I PROPERTY="SOLVERTYPE" VALUE="VelocityCorrectionScheme"/>
7 <I PROPERTY="Driver" VALUE="Arpack" />
8 <I PROPERTY="ArpackProblemType" VALUE="LargestMag" />
9 </SOLVERINFO>

10

Parameters
1 <PARAMETERS>
2 <P> FinalTime = 0.1 </P>
3 <P> TimeStep = 0.005 </P>
4 <P> NumSteps = FinalTime/TimeStep </P>
5 <P> IO_CheckSteps = 1/TimeStep </P>
6 <P> IO_InfoSteps = 1 </P>
7 <P> Re = 500 </P>
8 <P> Kinvis = 1.0/Re </P>
9 <P> kdim = 4 </P>

10 <P> nvec = 1 </P>
11 <P> evtol = 1e-4 </P>
12 </PARAMETERS>
13

Boundary Conditions
1 <BOUNDARYREGIONS>
2 <B ID="0"> C[2] </B> <!-- Wall -->
3 <B ID="1"> C[3] </B> <!-- Inlet -->
4 <B ID="2"> C[4] </B> <!-- Outlet -->
5 </BOUNDARYREGIONS>
6
7 <BOUNDARYCONDITIONS>
8 <REGION REF="0">
9 <D VAR="u" VALUE="0" />

10 <D VAR="v" VALUE="0" />
11 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
12 </REGION>
13 <REGION REF="1">
14 <D VAR="u" VALUE="0" />
15 <D VAR="v" VALUE="0" />
16 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
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17 </REGION>
18 <REGION REF="2">
19 <D VAR="u" VALUE="0" />
20 <D VAR="v" VALUE="0" />
21 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
22 </REGION>
23 </BOUNDARYCONDITIONS>
24

Functions

We need to set up the base flow that can be specified as a function BaseFlow. In case
the base flow is not analytical, it can be generated by means of the Nonlinear evolution
operator using the same mesh and polynomial expansion.

1 <FUNCTION NAME="BaseFlow">
2 <F VAR="u,v,p" FILE="bfs_tg-AR.bse" />
3 </FUNCTION>
4

The initial guess is specified in the InitialConditions functions and in this case is read
from a file.

1 <FUNCTION NAME="InitialConditions">
2 <F VAR="u,v,p" FILE="bfs_tg-AR.rst" />
3 </FUNCTION>
4

Usage

IncNavierStokesSolver bfs_tg-AR.xml

Results

The solution will be evolved forward in time using the operator A, then backward in
time through the adjoint operator A∗. The leading eigenvalue is λ = 3.236204). This
corresponds to the largest possible transient growth at the time horizon τ = 1. The
leading eigenmode is shown below. This is the optimal initial condition which will lead
to the greatest growth when evolved under the linearised Navier-Stokes equations.

It is possible to visualise the transient growth plotting the energy evolution over time
if the system is initially perturbed with the leading eigenvector. This analysis was
performed for a time horizon τ = 60. It can be seen that the energy grows in time
reaching its maximum value at x = 24 and then decays, almost disappearing after 100
temporal units.

7.5.12 BiGlobal Floquet analysis of a of flow past a cylinder

In this example it will be described how to run a BiGlobal stability analysis for a time-
periodic base flow using Nektar++. Let us consider a flow past a circular cylinder at
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Figure 7.18

Figure 7.19
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Figure 7.20

Re = 220 has a 2D time-periodic wake that is unstable to a 3D synchronous "mode A"
instability.

Figure 7.21
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Background

The numerical solution of the fully three- dimensional linear eigenvalue problem is often
computationally demanding and may not have significant advantages over performing
a direct numerical simulation. Therefore, some simplifications are required; the most
radical consist in considering that the base flow depends only on one spatial coordinate,
assuming that the other two spatial coordinates are homogenous. While this method
offers a good prediction for the instability of boundary layers, it is not able to predict
the instability of Hagen-Poiseuille flow in a pipe at all Reynolds numbers. Between
a flow that depends upon one and three-spatial directions, it is possible to consider a
steady or time-periodic base flow depending upon two spatial directions and impose three-
dimensional disturbances that are periodic in the the third homogeneous spatial direction.
This approach is known as BiGlobal stability analysis and it represents the extension
of the classic linear stability theory; let us consider a base flow U that is function of
only two spatial coordinates: mathbfU(x, y, t). The perturbation velocity can u′ can be
expressed in a similar form, but with the dependence on the third homogeneous direction
incorporated through the Fourier mode: u′ = û′(x, y, t)eiβz, where β = 2π/L)and L is
the length in the homogeneous direction.

Input parameters

In this example we use a mesh of 500 quadrilateral elements with a 6th order polynomial
expansion. The base flow has been computed using the Nonlinear evolution operator
with appropriate boundary conditions. From its profile, it was possible to determine the
periodicity of the flow sampling the velocity profile over time. In order to reconstruct the
temporal behaviour of the flow, 32 time slices were considered over one period. Using
these data it is possible to set up the stability simulation for a specified β, for example
β = 1.7. Let us note that while the base flow is 2D, the stability simulation that we are
performing is 3D.

Expansion

In this example we will use a 6th order polynomial expansion, i.e. P = 7.
1 <EXPANSIONS>
2 <E COMPOSITE="C[0]" NUMMODES="7" TYPE="GLL_LAGRANGE_SEM" FIELDS="u,v,w,p" />
3 </EXPANSIONS>
4

Parameters
1 <SOLVERINFO>
2 <I PROPERTY="SolverType" VALUE="VelocityCorrectionScheme"/>
3 <I PROPERTY="EQTYPE" VALUE="UnsteadyNavierStokes"/>
4 <I PROPERTY="EvolutionOperator" VALUE="Direct"/>
5 <I PROPERTY="Projection" VALUE="Galerkin"/>
6 <I PROPERTY="ModeType" VALUE="HalfMode"/>
7 <I PROPERTY="Driver" VALUE= "ModifiedArnoldi" />
8 <I PROPERTY="HOMOGENEOUS" VALUE="1D"/>
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9 <I PROPERTY="TimeIntegrationMethod" VALUE="IMEXOrder2" />
10 </SOLVERINFO>
11

Functions
1 <FUNCTION NAME="BaseFlow">
2 <F VAR="u,v,p" FILE="cyinder_floq" />
3 </FUNCTION>
4

Usage

IncNavierStokesSolver session.xml

Results

The stability simulation takes about 20 cycles to converge and the leading eigenvalue is
λ = 1.2670 with a growth rate σ = 4.7694e− 02. The figure below shows the profile of
the magnitude of the eigenmode at z = 2.

Figure 7.22



Chapter 8
Pulse Wave Solver

8.1 Synopsis

1D modelling of the vasculature (arterial network) represents and insightful and efficient
tool for tackling problems encountered in arterial biomechanics as well as other engineering
problems. In particular, 3D modelling of the vasculature is relatively expensive. 1D
modelling provides an alternative in which the modelling assumptions provide a good
balance between physiological accuracy and computational efficiency.To describe the flow
and pressure in this network we consider the conservation of mass and momentum applied
to an impermeable, deformable tube filled with an incompressible fluid, the nonlinear
system of partial differential equations presented in non-conservative form is given by

∂U
∂t

+ H∂U
∂x

= S (8.1)

U =
[
U
A

]
, H =

[
U A

ρ ∂p∂A U

]
, S =

[
0

1
ρ

(
f
A − s

)]

in which A is the Area (related to pressure), x is the axial coordinate along the vessel,
U(x, t) the axial velocity, P (x, t) is the pressure in the tube, ρ is the density and finally f
the frictional force per unit length. The unknowns in equation 8.1 are u,A and p; hence
we must provide an explicit algebraic relationship to close this system. Typically, closure
is provided by an algebraic relationship between A and p. For a thin elastic tube this is
given by

p = p0 + β
(√

A−
√
A0
)
, β =

√
πhE

(1− ν2)A0
(8.2)
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where p0 is the external pressure, A0 is the initial cross-sectional area, E is the Young’s
modulus, h is the vessel wall thickness and ν is the Poisson’s ratio. Other more elaborate
pressure - area relationships are currently being implemented into the framework. Appli-
cation of Riemann’s method of characteristics to equations 8.1 and 8.2 indicates that
velocity and area are propagated through the system by forward and backward travelling
waves. These waves are reflected and within the network by appropriate treatment of
interfaces and boundaries. In the following, we will explain the usage of the blood flow
solver on the basis of a single-artery problem and also on an arterial network consisting
of 55 arteries.

8.2 Usage

PulseWaveSolver session.xml

8.3 Session file configuration

8.3.1 Pulse Wave Sovler mesh connectivity

Typically 1D arterial networks are made up of a connection of different base units:
segments, bifurcations and merging junctions. The input format in the PulseWaveSolver
means these connections are handle naturally from the mesh topology; hence care must
be taken when designing the 1D domain. The figure below outlines the structure of a
bifurcation, which is a common reoccurring structure in the vasculature.

Figure 8.1 Model of bifurcating artery. The bifurcation is made of three domains and 15 vertices.
Vertex V[0] is the inlet and vertices V[10] and V[15] the outlets.

To represent this topology in the xml file we specify the following vertices under the
section VERTEX (the extents are: −100 ≥ x ≤ 100 and −100 ≥ y ≤ 100 )

1 <VERTEX>
2 <V ID="0">-1.000e+02 0.000e+00 0.000e+00</V>
3 <V ID="1">-8.000e+01 0.000e+00 0.000e+00</V>
4 <V ID="2">-6.000e+01 0.000e+00 0.000e+00</V>
5 <V ID="3">-4.000e+01 0.000e+00 0.000e+00</V>
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6 <V ID="4">-2.000e+01 0.000e+00 0.000e+00</V>
7 <V ID="5"> 0.000e+00 0.000e+00 0.000e+00</V>
8
9 <V ID="6"> 2.000e+01 2.000e+01 0.000e+00</V>

10 <V ID="7"> 4.000e+01 4.000e+01 0.000e+00</V>
11 <V ID="8"> 6.000e+01 6.000e+01 0.000e+00</V>
12 <V ID="9"> 8.000e+01 8.000e+01 0.000e+00</V>
13 <V ID="10"> 1.000e+02 1.000e+02 0.000e+00</V>
14
15 <V ID="11"> 2.000e+01 -2.000e+01 0.000e+00</V>
16 <V ID="12"> 4.000e+01 -4.000e+01 0.000e+00</V>
17 <V ID="13"> 6.000e+01 -6.000e+01 0.000e+00</V>
18 <V ID="14"> 8.000e+01 -8.000e+01 0.000e+00</V>
19 <V ID="15"> 1.000e+02 -1.000e+02 0.000e+00</V>
20 </VERTEX>

The elements from these vertices are then constructed under the section ELEMENT by
defining

1 <ELEMENT>
2 <!-- Parent artery -->
3 <S ID="0"> 0 1 </S>
4 <S ID="1"> 1 2 </S>
5 <S ID="2"> 2 3 </S>
6 <S ID="3"> 3 4 </S>
7 <S ID="4"> 4 5 </S>
8 <!-- Daughter artery 1 -->
9 <S ID="5"> 5 6 </S>

10 <S ID="6"> 6 7 </S>
11 <S ID="7"> 7 8 </S>
12 <S ID="8"> 8 9 </S>
13 <S ID="9"> 9 10 </S>
14 <!-- Daughter artery 2 -->
15 <S ID="11"> 5 11 </S>
16 <S ID="12"> 11 12 </S>
17 <S ID="13"> 12 13 </S>
18 <S ID="14"> 13 14 </S>
19 <S ID="15"> 14 15 </S>
20 </ELEMENT>

The composites, which represent groups of elements and boundary regions are defined
under the section COMPOSITE by

1 <COMPOSITE>
2 <C ID="0"> S[0-4] </C> <!-- Parent artery -->
3 <C ID="1"> V[0] </C> <!-- Inlet to domain -->
4
5 <C ID="3"> S[5-9] </C> <!-- Daughter artery 1 -->
6 <C ID="4"> V[10] </C> <!-- Outlet of daughter artery 1 -->
7
8 <C ID="6"> S[11-15] </C> <!-- Daughter artery 2 -->
9 <C ID="8"> V[15] </C> <!-- Outlet of daughter artery 2 -->

10 </COMPOSITE>
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Each of the segments can be then represented under the section DOMAIN by
1 <DOMAIN>
2 <D ID="0"> C[0] </D> <!-- Parent artery -->
3 <D ID="1"> C[3] </D> <!-- Daughter artery 1 -->
4 <D ID="2"> C[6] </D> <!-- Daughter artery 2 -->
5 </DOMAIN>

We will use the different domains later to define variable material properties and cross-
sectional areas.

8.3.2 Session Info

The PulseWaveSolver is sqpecified through the EquationType option in the session file.
This can be set as follows:

• Projection : Only a discontinuous projection can be specified using the following
option:

– Discontinuous for a discontinous Galerkin (DG) projection.

• TimeIntegrationMethod

• UpwindTypePulse :

– UpwindPulse

8.3.3 Parameters

The following parameters can be specified in the PARAMETERS section of the session file.

• TimeStep is the time-step size;

• FinTime is the final physical time at which the simulation will stop;

• NumSteps is the equivalent of FinTime but instead of specifying the physical final
time the number of time-steps is defined;

• IO_CheckSteps sets the number of steps between successive checkpoint files;

• IO_InfoSteps sets the number of steps between successive info stats are printed
to screen;

• rho density of the fluid. Default value = 1.0;

• nue Poisson’s ratio. Default value = 0.5 ;

• pest external pressure. Default value = 0;

• h0 wall thickness Default value = 1.0;
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8.3.4 Boundary conditions

In this section we can specify the boundary conditions for our problem. First we need to
define the variables under the section VARIABLES .

1 <VARIABLES>
2 <V ID="0"> A </V>
3 <V ID="1"> u </V>
4 </VARIABLES>

The composites that we want to apply out boundary conditions then need to be defined
in the BOUNDARYREIONS , for example if we had three composites (C[1], C[4] and C[8])
that correspond to three vertices of the computational mesh we would define:

1 <BOUNDARYREGIONS>
2 <B ID="0"> C[1] </B>
3 <B ID="1"> C[4] </B>
4 <B ID="2"> C[8] </B>
5 </BOUNDARYREGIONS>

Finally we can specify the boundary conditions on the regions specified under BOUNDARYREGIONS .

The Pulse Wave Solver comes with a number of boundary conditions that are unique to
this solver. Boundary conditions must be provided for both the area and velocity at the
inlets and outlets of the domain. Examples of the different boundary conditions will be
provided in the following.

Inlet boundary condition: Typically at the inlet of the domain a flow profile ( Q-inflow )
is specified through a USERDEFINEDTYPE boundary conditioning . An example inlet con-
dition for the parent artery of the previously bifurcation example is

1 <REGION REF="0">
2 <D VAR="A" USERDEFINEDTYPE="Q-inflow" VALUE="(7.112e-4)*(sin(7.854*t)
3 -0.562)*(1/(1+exp(-400*(sin(7.854*t)-0.562))))" />
4 <D VAR="u" USERDEFINEDTYPE="Q-inflow" VALUE="1.0" />
5 </REGION>

Terminal boundary conditions: At the outlets of the domain there are four possible
boundary conditions: reflection ( Terminal ), terminal resistance R-terminal , Two ele-
ment windkessel (CR) CR-terminal , and three element windkessel (RCR) RCR-terminal .
An example of the outflow boundary condition of the RCR terminal is given below

1 <REGION REF="1">
2 <D VAR="A" USERDEFINEDTYPE="RCR-terminal" VALUE="RT" />
3 <D VAR="u" USERDEFINEDTYPE="RCR-terminal" VALUE="C" />
4 </REGION>

Where RT is the total peripheral resistance used in the the R-terminal , CR-terminal
and RCR-terminal models
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8.3.5 Functions

The following functions can be specified inside the CONDITIONS section of the session file:

• MaterialProperties : specifies the material properties for each domain.

• A_0 : Initial area of each domain.

• AdvectionVelocity : specifies the advection velocity v.

• InitialConditions : specifies the initial condition for unsteady problems.

• Forcing : specifies the forcing function f

As an example to specify the material properties for each domain in the previous
bifurcation example we would enter:

1 <FUNCTION NAME="MaterialProperties">
2 <E VAR="beta" DOMAIN="0" VALUE="97" />
3 <E VAR="beta" DOMAIN="1" VALUE="87" />
4 <E VAR="beta" DOMAIN="2" VALUE="233" />
5 </FUNCTION>

The values of beta are used in the pressure-area relationship (equation 8.2).

8.4 Examples

8.4.1 Human Vascular Network

The Pulse Wave Solver is also capable of handling more complex networks, such as a
complete human arterial tree proposed by Westerhof et al. [?]. In this example, we will
use the refined data from [?] and set up the network shown in the figure in the right. We
will explain how bifurcations are set correctly and how each arterial segment gets its
correct physiological data.

First, we will set up the mesh where each arterial segment is represented by one element
and two vertices respectively. Then, we will subdivide the mesh into different subdomains
by using the <COMPOSITE> section. Here, each arterial segment is described by the
contained elements and its first and last vertex.

The mesh connectivity is specified during the creation of elements by indicating the
starting vertex and ending vertex of each individual artery segment. Shared vertices are
used to describe bifurcations, junctions and mergers between different artery segments in
the network.

The composites are then used to specify the two adjoining segments of an artery, where
the first segment merely allows for description of the connectivity.
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1 <GEOMETRY DIM="1" SPACE="1">
2 <VERTEX>
3 <V ID="0"> 0.000e+00 0.000e+00 0.000e+00</V> <!-- 1 -->
4 <V ID="1"> 4.000e+00 0.000e+00 0.000e+00</V>
5
6 <V ID="2"> 4.000e+00 0.000e+00 0.000e+00</V> <!-- 2 -->
7 <V ID="3"> 6.000e+00 0.000e+00 0.000e+00</V>
8
9 <V ID="4"> 4.000e+00 0.000e+00 0.000e+00</V> <!-- 3 -->

10 <V ID="5"> 7.400e+00 0.000e+00 0.000e+00</V>
11 .
12 .
13 .
14 <V ID="108"> 109.100e+00 -45.000e+00 0.000e+00</V> <!-- 55 -->
15 <V ID="109"> 143.500e+00 -45.000e+00 0.000e+00</V>
16 </VERTEX>
17 <ELEMENT>
18 <S ID="0"> 0 1 </S>
19 <S ID="1"> 1 2 </S>
20 <S ID="2"> 1 4 </S>
21 <S ID="3"> 2 3 </S>
22 <S ID="4"> 4 5 </S>
23 <S ID="5"> 5 6 </S>
24 <S ID="6"> 5 8 </S>
25 <S ID="7"> 6 7 </S>
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26 <S ID="8"> 8 9 </S>
27 .
28 .
29 .
30 <S ID="106"> 103 108 </S>
31 <S ID="107"> 108 109 </S>
32 <S ID="108"> 85 98 </S>
33 <ELEMENT>
34 <COMPOSITE>
35 <C ID="0"> S[0] </C> <!-- 1 -->
36 <C ID="1"> V[0] </C>
37 <C ID="2"> V[1] </C>
38
39 <C ID="3"> S[1,3] </C> <!-- 2 -->
40 <C ID="4"> V[2] </C>
41 <C ID="5"> V[3] </C>
42
43 <C ID="6"> S[2,4] </C> <!-- 3 -->
44 <C ID="7"> V[4] </C>
45 <C ID="8"> V[5] </C>
46 .
47 .
48 .
49 <C ID="162"> S[106,107] </C> <!-- 55 -->
50 <C ID="163"> V[108] </C>
51 <C ID="164"> V[109] </C>
52 </COMPOSITE>
53 </GEOMETRY>

Then the choice of polynomial order, solver information, area of the arteries and other
parameters are specified.

1 <EXPANSIONS>
2 <E COMPOSITE="C[0]" NUMMODES="5" FIELDS="A,u" TYPE="MODIFIED" />
3 <E COMPOSITE="C[3]" NUMMODES="5" FIELDS="A,u" TYPE="MODIFIED" />
4 ...
5
6 <E COMPOSITE="C[162]" NUMMODES="5" FIELDS="A,u" TYPE="MODIFIED" />
7 </EXPANSIONS>
8
9 <CONDITIONS>

10
11 <PARAMETERS>
12
13 <P> TimeStep = 1e-4 </P>
14 <P> FinTime = 1.0 </P>
15 <P> NumSteps = FinTime/TimeStep </P>
16 <P> IO_CheckSteps = NumSteps/50 </P>
17 ...
18 <P> A53 = 0.126 </P>
19 <P> A54 = 0.110 </P>
20 <P> A55 = 0.060 </P>
21 </PARAMETERS>
22
23 <SOLVERINFO>
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24 <I PROPERTY="EQTYPE" VALUE="PulseWavePropagation" />
25 <I PROPERTY="Projection" VALUE="DisContinuous" />
26 <I PROPERTY="TimeIntegrationMethod" VALUE="RungeKutta2_ImprovedEuler" />
27 <I PROPERTY="UpwindTypePulse" VALUE="UpwindPulse"/>
28 </SOLVERINFO>
29
30 <VARIABLES>
31 <V ID="0"> A </V>
32 <V ID="1"> u </V>
33 </VARIABLES>

The vertices where the network terminates are specified as boundary regions based on
their subsequent composite ids.

1 <BOUNDARYREGIONS>
2 <B ID="0"> C[1] </B> <B ID="1"> C[17] </B> <B ID="2"> C[23] </B>
3 ...
4 <B ID="28"> C[164] </B>
5 </BOUNDARYREGIONS>

In the boundary conditions section the inflow and outflow conditions are set up. Here we
use an inflow boundary condition for the area at the beginning of the ascending aorta
taken from [?] and plotted on the right. Potential choices for inflow boundary conditions
include Q-Inflow and Time-Dependent inflow. The outflow conditions for the terminal
regions of the network could be specified by different models including eTerminal, R, CR,
RCR and Time-Dependant outflow.

1 <BOUNDARYCONDITIONS>
2 <REGION REF="0"> <!-- Inflow -->
3 <D VAR="A" USERDEFINEDTYPE="TimeDependent"
4 VALUE="5.983*(1+0.597*(sin(6.28*t + 0.628) - 0.588)*
5 (1./(1+exp(-2*200*(sin(6.28*t + 0.628) - 0.588)))))" />
6 <D VAR="u" USERDEFINEDTYPE="TimeDependent" VALUE="0.0" />
7 </REGION>
8 <REGION REF="1">
9 <D VAR="A" USERDEFINEDTYPE="TimeDependent" VALUE="A6" />

10 <D VAR="u" USERDEFINEDTYPE="TimeDependent" VALUE="0.0" />
11 </REGION>
12 <REGION REF="2">
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13 <D VAR="A" USERDEFINEDTYPE="TimeDependent" VALUE="A8" />
14 <D VAR="u" USERDEFINEDTYPE="TimeDependent" VALUE="0.0" />
15 </REGION>
16 <REGION REF="3">
17 <D VAR="A" USERDEFINEDTYPE="TimeDependent" VALUE="A10" />
18 <D VAR="u" USERDEFINEDTYPE="TimeDependent" VALUE="0.0" />
19 </REGION>
20 ....
21 <REGION REF="28">
22 <D VAR="A" USERDEFINEDTYPE="TimeDependent" VALUE="A55" />
23 <D VAR="u" USERDEFINEDTYPE="TimeDependent" VALUE="0.0" />
24 </REGION>
25 </BOUNDARYCONDITIONS>

Again, for the initial conditions we start our simulation from static equilibrium conditions
A = A0 and for u being initially at rest. The following lines show how we specify A0 and
β for different arterial segments.

1 <FUNCTION NAME="InitialConditions">
2 <E VAR="A" DOMAIN="0" VALUE="5.983" />
3 <E VAR="u" DOMAIN="0" VALUE="0.0" />
4 </FUNCTION>
5 ...
6 <FUNCTION NAME="InitialConditions">
7 <E VAR="A" DOMAIN="54" VALUE="A55" />
8 <E VAR="u" DOMAIN="54" VALUE="0.0" />
9 </FUNCTION>

10
11 <FUNCTION NAME="A_0">
12 <E VAR="A_0" DOMAIN="0" VALUE="A1" />
13 ...
14 <E VAR="A_0" DOMAIN="54" VALUE="A55" />
15 </FUNCTION>
16
17 <FUNCTION NAME="MaterialProperties">
18 <E VAR="beta" DOMAIN="0" VALUE="97" />
19 ...
20 <E VAR="beta" DOMAIN="54" VALUE="9243" />
21 </FUNCTION>

Our simulation is started as described before and the results show the time history for
the conservative variables A and u, as well as for the characteristic variables W1 and W2
at the beginning of the ascending aorta (Artery 1). We can see that physically correct the
shape of the inflow boundary condition appears in the forward traveling characteristic
W1. As we do not have a terminal resistance at the outflow, one would normally expect
W2 to be constant. However this is not the case, as bifurcations cause reflections if the
radii of parent and daughter vessels are not well matching, leading to changes in W2.
The shapes of A and u result from this facts and show the values for the physiological
variables during one cardiac cycle. We may annotate that this values slightly differ from
in vivo measurements due to the missing terminal resistance, which will be added in
future.
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These short examples should give an insight to the functionality of our PulseWaveSolver
and show that results such as luminal area and pressure within the artery can be simulated.
These results can contribute to understanding the physiology of the human vascular
system and they can be used for patient-specific planning of medical interventions.

8.4.2 Stented Artery

8.4.3 Stented Artery

In the following we will explain the usage of the Pulse Wave solver to model the flow and
pressure variation through a stented artery - a cardiovascular procedure in which a small
mesh tube is inserted into an artery to restore blood flow through a constricted region.
Due to the implantation of the stent this region will have different material properties
compared to the the surrounding unstented tissue; hence will influence the propagation
of waves through this system. The stent scenario to be modelled is a straight arterial
segment with a stent situated between x = a1 and x = a2 as shown below.

Figure 8.2 Model of straight artery with a stent in the middle.
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Geometry: In the following we describe the geometry setup for modelling 1D flow in a
stent. This is done by defining vertices, elements and composites. The vertices of the
domain are shown below, consisting of 30 elements (Ω) and 31 vertices (V[n]).

Figure 8.3 1D arterial domain consisting of 30 elements and 31 vertices.

To represent the above in the xml file, we define 31 vertices as follows:
1 <VERTEX>
2 <V ID="0"> 0.000e+00 0.000e+00 0.000e+00</V>
3 .
4 .
5 .
6 <V ID="30">30.000e+00 0.000e+00 0.000e+00</V>
7 </VERTEX>

and the connectivity of these vertices to make up the 30 elements:
1 <ELEMENT>
2 <S ID="0"> 0 1 </S>
3 .
4 .
5 .
6 <S ID="29"> 29 30 </S>
7 </ELEMENT>

These elements are combined to three different composites (shown below): composite 0
represents all the elements; composite 1 the inflow boundary and composite 2 the outflow
boundary.

Figure 8.4 Three composites (C[0], C[1] and C[2]) for the stunted artery.

The above composites are specified as follows:
1 <COMPOSITE>
2 <C ID="0"> S[0-29] </C>
3 <C ID="1"> V[0] </C>
4 <C ID="2"> V[30] </C>
5 </COMPOSITE>

Finally the domain is specified by the first composite by
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1 <DOMAIN>
2 <D ID="0"> C[0] </D>
3 </DOMAIN>

Expansion: For the expansions we use 4th-order polynomials which define our two
variables A and u on the domain.

1 <EXPANSIONS>
2 <E COMPOSITE="C[0]" NUMMODES="5" FIELDS="A,u" TYPE="MODIFIED" />
3 </EXPANSIONS>

Solver Information: The Discontinuous Galerkin Method is used as projection scheme
and the time-integration is performed by a simple Forward Euler scheme. A full list of
possible time integration scheme is given in the parameter section of the Pulse Wave
Solver

1 <SOLVERINFO>
2 <I PROPERTY="EQTYPE" VALUE="PulseWavePropagation" />
3 <I PROPERTY="Projection" VALUE="DisContinuous" />
4 <I PROPERTY="TimeIntegrationMethod" VALUE="ForwardEuler" />
5 <I PROPERTY="UpwindTypePulse" VALUE="UpwindPulse"/>
6 </SOLVERINFO>

Parameters: Parameters used for the simulation are taken from [?]
1 <PARAMETERS>
2 <P> TimeStep = 2e-6 </P>
3 <P> FinTime = 0.25 </P>
4 <P> NumSteps = FinTime/TimeStep </P>
5 <P> IO_CheckSteps = NumSteps/50 </P>
6 <P> IO_InfoSteps = 100 </P>
7 <P> T = 0.33 </P>
8 <P> h0 = 1.0 </P>
9 <P> rho = 1.0 </P>

10 <P> nue = 0.5 </P>
11 <P> pext = 0.0 </P>
12 <P> a1 = 10.0 </P>
13 <P> a2 = 20.0 </P>
14 <P> kappa = 100.0 </P>
15 <P> Y0 = 1.9099e+5 </P>
16 <P> k = 2 </P>
17 <P> k1 = 200 </P>
18 </PARAMETERS>

Boundary conditions: At the inflow we apply a pressure boundary condition as shown
in the figure below. This condition models the pressure variation during one heartbeat.
A simple absorbing outflow boundary condition is applied the right end of the tube.

These are defined in the xml file as follows,
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Figure 8.5 Pressure profile applied at the inlet of the artery

1 <BOUNDARYREGIONS>
2 <B ID="0"> C[1] </B>
3 <B ID="1"> C[2] </B>
4 </BOUNDARYREGIONS>
5
6 <BOUNDARYCONDITIONS>
7 <REGION REF="0">
8 <D VAR="A" USERDEFINEDTYPE="TimeDependent" VALUE=
9 "(2000*sin(2*PI*t/T)*1./(1+exp(-2*k1*(T/2-t))-pext)/451352+1)^2" />

10 <D VAR="u" USERDEFINEDTYPE="TimeDependent" VALUE="1.0" />
11 </REGION>
12 <REGION REF="1">
13 <D VAR="A" VALUE="1.0" />
14 <D VAR="u" VALUE="1.0" />
15 </REGION>
16 </BOUNDARYCONDITIONS>

The simulation starts from the static equilibrium of the vessel with normalised area and
velocity.

1 <FUNCTION NAME="InitialConditions">
2 <E VAR="A" DOMAIN="0" VALUE="1.0" />
3 <E VAR="u" DOMAIN="0" VALUE="1.0" />
4 </FUNCTION>
5
6 <FUNCTION NAME="A_0">
7 <E VAR="A" DOMAIN="0" VALUE="1.0" />
8 </FUNCTION>

Functions: The stent is introduced by applying a variable material properties function
(β - see equation 8.2) along the vessel in the x direction, shown graphically below and
defined in the xml file by

1 <FUNCTION NAME="MaterialProperties">
2 <E VAR="E0" DOMAIN="0" VALUE=
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Figure 8.6 material property variation along the artery. The stiff region in the middle represents
the stent.

3 "Y0*(1.0-kappa/(1+exp(-2*k*(a1-x)))+kappa/(1+exp(-2*k*(a2-x))))" />
4 </FUNCTION>

Simulation

The simulation is started by running

PulseWaveSolver Test_1.xml

It will take about 60 seconds on a 2.4GHz Intel Core 2 Duo processor and therefore is
computationally realisable at every clinical site.

Results

As a result we get a 3-dimensional interpretation of the aortic cross-sectional area varying
in axial direction both for the stented and non-stented vessel. In case of the stent, the
rigid metal mesh will restrict the deformation of the area in that specific part of the
artery compared to the normal vessel (Fig. 8.7).

Also, if we look at the pressure at three points within the artery (P, M, D) we will
recognize that there are major differences between the stented and normal vessel. While
in the normal vessel (left) the pressure wave applied at the inflow is propagated without
any losses, this does not hold for the stented artery (right). Here, the stiffening at the
stent causes reflections and thus there are losses for total pressure at the medial (M) and
distal (D) point.

8.5 Further Information

The PulseWaveSolver has beqen developed with contributions by various students and
researchers at the Department of Aeronautics, Imperial College London. Further in-
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Figure 8.7

formation on the solver and its underlying mathematical framework can be found in
[?, ?].

8.6 Future Development

The PulseWaveSolver is a useful tool for computational modelling of one-dimensional
blood flow in the human body. However, there are several ideas for future development
which include:

1. Inclusion of a pre-processor and post-processor.

2. Profiling the code to improve performance.

3. Cleaning up the input file to make the input format more user-friendly.

4. Modelling of valves and alternative pressure-area laws for models of venous flow.

5. Incorporating a model of the heart.



Chapter 9
Shallow Water Solver

9.1 Synopsis

The ShallowWaterSolver is a solver for depth-integrated wave equations of shallow water
type. Presently the following equations are supported:

Value Description
LinearSWE Linearized SWE solver in primitive variables

(constant still water depth)
NonlinearSWE Nonlinear SWE solver in conservative variables

(constant still water depth)

9.1.1 The Shallow Water Equations

The shallow water equations (SWE) is a two-dimensional system of nonlinear partial
differential equations of hyperbolic type that are fundamental in hydraulic, coastal and
environmental engineering. In deriving the SWE the vertical velocity is considered
negligible and the horizontal velocities are assumed uniform with depth. The SWE are
hence valid when the water depth can be considered small compared to the characteristic
length scale of the problem, as typical for flows in rivers and shallow coastal areas. Despite
the limiting restrictions the SWE can be used to describe many important phenomena,
for example storm surges, tsunamis and river flooding.

The two-dimensional SWE is stated in conservation form as

∂U
∂t

+∇ · F(U) = S(U)

where F(U) = [E(U) ,G(U)] is the flux vector and the vector of conserved variables read
U = [H ,Hu ,Hv]T. Here H(x, t) = ζ(x, t) + d(x) is the total water depth, ζ(x, t) is the
free surface elevation and d(x) is the still water depth. The depth-averaged velocity is
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denoted by u(x, t) = [u, v]T, where u and v are the velocities in the x- and y-directions,
respectively. The content of the flux vector is

E(U) =

 Hu
Hu2 + gH2/2

Huv

 , G(U) =

 Hv
Hvu

Hv2 + gH2/2

 ,

in which g is the acceleration due to gravity. The source term S(U) accounts for, e.g.,
forcing due to bed friction, bed slope, Coriolis force and higher-order dispersive effects
(Boussinesq terms). In the distributed version of the ShallowWaterSolver only the Coriolis
force is included.

9.2 Usage

ShallowWaterSolver session.xml

9.3 Session file configuration

9.3.1 Solver Info

• Eqtype : Specifies the equation to solve. This should be set to NonlinearSWE .

• UpwindType

• Projection

• TimeIntegrationScheme

9.3.2 Parameters

• Gravity

9.3.3 Functions

• Coriolis : Specifies the Coriolis force (variable name: ‘f‘)

• WaterDepth : Specifies the water depth (variable name: ‘d‘)

9.4 Examples

9.4.1 Rossby modon case

This example, provided in RossbyModon_Nonlinear_DG.xml is of a discontinuous Galerkin
simulation of the westward propagation of an equatorial Rossby modon.
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Input Options

For what concern the ShallowWaterSolver the <SOLVERINFO> section allows us to specify
the solver, the type of projection (continuous or discontinuous), the explicit time inte-
gration scheme to use and (in the case the discontinuous Galerkin method is used) the
choice of numerical flux. A typical example would be:

1 <SOLVERINFO>
2 <I PROPERTY="EqType" VALUE="NonlinearSWE">
3 <I PROPERTY="Projection" VALUE="DisContinuous">
4 <I PROPERTY="TimeIntegrationMethod" VALUE="ClassicalRungeKutta4">
5 <I PROPERTY="UpwindType" VALUE="HLLC">
6 </SOLVERINFO>

In the <PARAMETERS> section we, in addition to the normal setting of time step etc., also
define the acceleration of gravity by setting the parameter "Gravity":

1 <PARAMETERS>
2 <P> TimeStep = 0.04 </P>
3 <P> NumSteps = 1000 </P>
4 <P> IO_CheckSteps = 100 </P>
5 <P> IO_InfoSteps = 100 </P>
6 <P> Gravity = 1.0 </P>
7 </PARAMETERS>

We specify f which is the Coriolis parameter and d denoting the still water depth as
analytic functions:

1 <FUNCTION NAME="Coriolis">
2 <E VAR="f" VALUE="0+1*y" />
3 </FUNCTION>
4
5 <FUNCTION NAME="WaterDepth">
6 <E VAR="d" VALUE="1" />
7 </FUNCTION>

Initial values and boundary conditions are given in terms of primitive variables (please note
that also the output files are given in terms of primitive variables). For the discontinuous
Galerkin we typically enforce any slip wall boundaries weakly using symmetry technique.
This is given by the USERDEFINEDTYPE="Wall" choice in the <BOUNDARYCONDITIONS>
section:

1 <BOUNDARYCONDITIONS>
2 <REGION REF="0">
3 <D VAR="eta" USERDEFINEDTYPE="Wall" VALUE="0" />
4 <D VAR="u" USERDEFINEDTYPE="Wall" VALUE="0" />
5 <D VAR="v" USERDEFINEDTYPE="Wall" VALUE="0" />
6 </REGION>
7 </BOUNDARYCONDITIONS>
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Running the code

After the input file has been copied to the build directory of the ShallowWaterSolver
the code can be executed by:

./ShallowWaterSolver Rossby_Nonlinear_DG.xml

Post-proceesing

After the final time step the solver will write an output file RossbyModon_Nonlinear_DG.fld .
We can convert it to tecplot format by using the FldToTecplot utility. Thus we execute
the following command:

FldToTecplot RossbyModon_Nonlinear_DG.xml RossbyModon_Nonlinear_DG.fld

This will generate a file called RossbyModon_Nonlinear_DG.dat that can be loaded directly
into tecplot:
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Utilities for Pre- and

Post-Processing

10.1 MeshConvert

MeshConvert is a utility bundled with Nektar++ which primarily allows foreign mesh
file formats to be converted into the XML file format used by the solvers and other
utilities. However, there is also some limited support for other output formats - consult
the MeshConvert reference page for more information on which formats are supported.

We will run through a basic example to show how a mesh can be converted from the
widely-used mesh-generator Gmsh to the XML file format.

10.1.1 Exporting a mesh from Gmsh

To demonstrate how MeshConvert works, we will define a simple channel-like 3D geometry.
First, we must define the Gmsh geometry to be used. The Gmsh definition is given below,
and is visualised on the right.

1 Point(1) = {-1, 0, 0, 1.0};
2 Point(2) = {-0.3, 0, 0, 1.0};
3 Line(3) = {1, 2};
4 s[] = Extrude {0, 0, 7} {
5 Line{3}; Layers{5}; Recombine;
6 };
7 v[] = Extrude {{0, 0, 1}, {0, 0, 0}, Pi} {
8 Surface{s[1]}; Layers{10}; Recombine;
9 };

Whilst a full tutorial on Gmsh is far beyond the scope of this document, note the
use of the Recombine argument. This allows us to generate a structured hexahedral
mesh; remove the first Recombine to generate a prismatic mesh and both to generate
a tetrahedral mesh. Increasing the ‘Layers’ numbers refines the mesh in the radial and
azimuthal direction respectively.
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10.1.2 Defining physical surfaces and volumes

In order for us to use the mesh, we need to define the physical surfaces which correspond
to the inflow, outflow and walls so that we can set appropriate boundary conditions.
The numbering resulting from the extrusions in this case is not straightforward. In the
graphical interface, select Geometry > Physical Groups > Add > Surface, and then hover
over each of the surfaces which are shown by the dashed gray lines. The numbering will
be revealed in the toolbar underneath the geometry as a ruled surface. In this case:

1. Walls: surfaces 7, 8, 28, 29.

2. Inflow: surface 16.

3. Outflow: surface 24.

We also need to define the physical volumes, which can be done in a similar fashion. For
this example, there is only one volume having ID 1. Adding these groups to the end of
the ‘.geo’ file is very straightforward:

1 Physical Volume(0) = {1};
2 Physical Surface(1)= {7,8,28,29};
3 Physical Surface(2) = {16};
4 Physical Surface(3) = {24};

Either choose the option File->Save Mesh or, assuming this is saved in a file named
‘test.geo’, run the command

gmsh -3 test.geo

which will produce the resulting MSH file ‘test.msh’. One can generate a high-order mesh
by specifying the order on the command line, for example

gmsh -3 -order 6 test.geo

will generate a sixth-order mesh. Note that you will need to use a current version of
Gmsh in order to do this, most likely from subversion.

10.1.3 Converting the MSH to Nektar++ format

Assuming that you have compiled Nektar++ according to the compilation instructions,
run the command

MeshConvert test.msh test.xml

to generate the XML file.
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Note
This file contains only the geometry definition (and a default EXPANSIONS
definition). In order to use this mesh, a CONDITIONS section must be supplied
detailing the solver and parameters to use.

To validate the mesh visually, we can use a utility such as Paraview or ?VisIt. To do
this, run the command

XmlToVtk test.xml

which generates an unstructured VTK file test.vtu

10.1.4 MeshConvert modules

Detecting elements with negative Jocabians

To detect elements with negative Jacobians use :

MeshConvert -m jac Mesh.xml

and to extract the elements (in order to visualize them for example) use :

MeshConvert -m jac:extract Mesh.xml MeshWithNegativeElements.xml

Periodic boundary conditions

Gmsh and Nektar++ use different edge ordering and surface orientation. To use periodic
boundary conditions the faces must be aligned properly. To make sure faces (or edges for
a 2D mesh) are aligned correctly use the following command :

MeshConvert -m peralign:surf1=11:surf2=12:dir=y \
-m peralign:surf1=13:surf2=14:dir=z Mesh.xml Mesh_aligned.xml

where the surfaces "11" and "12" will be aligned normal to "y" and the surfaces "13" and
"14" will be aligned normal to "z". Mind the double use of the "-m"! Mesh.xml is the
initial mesh by Gmsh and Mesh_aligned.xml is the new mesh output by this command
with aligned surfaces (or edges).

Spherigon Patches

To use spherigon patches on two contiguous surfaces "11" and "12" use the following
command :

MeshConvert -m spherigon:surf=11,12 \
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MeshWithStraighEdges.xml MeshWithSpherigons.xml

If the two surfaces "11" and "12" are not contiguous use :

MeshConvert -m spherigon:surf=11 -m spherigon:surf=12 \
MeshWithStraighEdges.xml MeshWithSpherigons.xml

If you have a high-resolution mesh of the surfaces "11" and "12" in ".ply " format it can
be used to improve the normal definition of the spherigons. Run :

MeshConvert -m spherigon:surf=11,12:usenormalfile=Surf_11-12_Mesh.ply \
MeshWithStraighEdges.xml MeshWithSpherigons.xml

This can be useful, for example, when meshing the Leading edge of an airfoil. Starting
from a "linear" mesh (Fig.1) the spherigon patches curve the surface elements producing
leading edge closer to the underlying geometry :

Figure 10.1 (a) LE without Spherigons, (b) LE with Spherigons

Prism splitting

To split a prism boundary layer on surface "11" into 3 layers with a growth rate of 2 and
7 integration points per element use the following command :

MeshConvert -m bl:surf=11:layers=3:r=2:nq=7 MeshWithOnePrismLayer.xml \
MeshWith3PrismsLayers.xml
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Figure 10.2 (a) LE with Spherigons but only one prism layer for resolving the boundary layer,
(b) LE with Spherigons with 3 growing layers of prisms for better resolving the boundary layer.

High-order cylinder generation

Generating accurate high-order curved geometries in Gmsh is quite challenging. This
module processes an existing linear cylindrical mesh, with axis aligned with the z-
coordinate axis, to generate accurate high-order curvature information along the edges.

MeshConvert -m cyl:surf=2:r=1.0:N=5 LinearCylinder.xml HighOrderCylinder.xml

The module parameters are:

• surf : Surface on which to apply curvature. This should be the outer surface of
the cylinder.

• r : Radius of the cylinder.

• N : Number of high-order points along each element edge.

Note
The module could also be used to apply curvature along the interior of a hollow
cylinder. However, there are no checks to ensure the resulting elements are not
self-intersecting.
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10.2 Field Convert

In this section, the capabilities of the field convert utility are explained. This utility
allows the user to convert and add extra output data to the already existing output
data (.fld or .chk file) given by running a solver in Nektar++. The new output data is
converted into a format that is compatible with the available external visualizers like
Tecplot or Paraview. For now, this utility has the following functionality:

• Convert a .fld file to a .vtu or .dat file

• Calculate vorticity

• Extract a boundary region

• Specify a sub-range of the domain

Converting an output file that has been obtained using Nektar++ into a .dat file goes
then as follows:

FieldConvert test.xml test.fld test.dat

10.2.1 Calculating vorticity

To perform the vorticity calculation and obtain an output data containing the vorticity
solution, the executable FieldConvert has to be run. This executable can be found in:

FieldConvert -m vorticity test.xml test.fld test-vort.fld

where the file test-vort.fld can be processed in a similar way as described above to
visualise the solution.

10.2.2 Sub-range of the domain

One can also select a region in the computational domain and process only the data for
that part of the domain. For example for processing the data of a 2D plane defined by
−2 ≤ x ≤ 3, −1 ≤ y ≤ 2, the following command can be run:

FieldConvert -r -2,3,-1,2 test.xml test.fld test.dat

where -r defines the range option of the field convert utility, the two first numbers define
the range in x direction and the the third and forth number specify the y range. The
a 3D part of the domain, a third set of numbers has to be provided to define the z
range. For calculating the vorticity in a specified part of the computational domain, the
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following command line can be run:

FieldConvert -r -2,3,-1,2 -m vorticity test.xml test.fld test-vort.fld

10.2.3 Extracting a boundary region

The boundary region of a domain be extracted from the output data using the following
command line

FieldConvert -m extract:bnd=2:fldtoboundary=1 test.xml test.fld \
test-boundary.fld

The option bnd specifies which boundary region to extract. Note this is different to
MeshConvert where the parameter surf is specified and corresponds to composites
rather boundaries. If bnd is to provided all boundaries are extracted to different field.
The fldtoboundary is an optional command argument which copies the expansion of
test.fld into the boundary region before outputting the .fld file. This option is on by
default. If it turned off using fldtoboundary=0 the extraction will only evaluate the
boundary condition from the xml file. The output will be placed in test-boundary-b2.fld.
If more than one boundary region is specified the extension -b0.fld, -b1.fld etc will be
outputted. To process this file you will need an xml file of the same region. This can be
generated using the command:

MeshConvert -m extract:surf=5 test.xml test-b0.xml

The surface to be extracted in this command is the composite number and so needs to
correspond to the boundary region of interest. Finally to process the surface file one can
use

MeshConvert -m extract:surf=5 test.xml test-b0.xml

This will obviously generate a tecplot output using a .dat file is specified in the last
argument. A .vtu extension will produce a vtk output.

To run the utility, if you have compiled Nektar++ with MPI support, you may run in
parallel

FieldConvert test.xml test.fld test.dat

replacing <nprocs> with the number of processors. This will produce multiple .dat files
of the form test-P0.dat, test-P1.dat, test-P2.dat etc. Similarly the VTK files can be
processed in this manner as can the vorticity option. In the case of the vorticity option a
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directory called test-vort.fld (or the specified output name) will be produced with the
standard parallel field files placed within the directory.

10.2.4 Interpolating one filed to another

You can interpolate one field to another using the following command:

FieldConvert -m interpfield:fromxml=file1.xml:fromfld=file1.fld \
file2.xml file2.fld

This command will interpolate the field defined by file1.xml and file1.fld to the
new mesh defined in file2.xml and output it to file2.fld . The fromxml and
fromfld must be specified in this module. In addition there are two optional arguments
clamptolowervalue and clamptouppervalue which clamp the interpolation between
these two values. Their default values are -10,000,000 and 10,000,000.

Tip
This module can run in parallel where the speed is increased not only due to
using more cores but also, since the mesh is split into smaller sub-domains, the
search method currently adopted performs faster.

10.2.5 Interpolating a field to a series of points

You can interpolate one field to a series of point given in using the following command:

FieldConvert -m interppoints:fromxml=from.xml:file1.xml=file1.fld \
file2.pts file2.dat

This command will interpolate the field defined by file1.xml and file1.fld to the
points defined in file2.xml and output it to file2.dat . The fromxml and fromfld
must be specified in this module. The format of the file file2.pts is of the form

1 <?xml version="1.0" encoding="utf-8" ?>
2 <NEKTAR>
3 <POINTS DIM="2">
4 0.0 0.0 0.5 0.0 1.0 0.0
5 </POINTS>
6 </NEKTAR>

There are three optional arguments clamptolowervalue , clamptouppervalue and defaultvalue
the first two clamp the interpolation between these two values and the third defines the
default value to be used if the point is outside the domain. Their default values are
-10,000,000, 10,000,000 and 0.
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In addition instead of specifying the file file2.pts a module list of the form
-m interppoints:fromxml=file1.xml:fromfld=file1.fld:line=npts,x0,y0,x1,y1
can be specified where npts is the number of equispaced points between (x0, y0) to
(x1, y1) which can also be used in 3D by specifying (x0, y0, z0) to (x1, y1, z1).

There is also an extraction of a plane of point which is specified by
-m interppoints:fromxml=file1.xml:fromfld=file1.fld:plane=npt1,npts2,x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3

where npts1,npts2 is the number of equispaced points in each direction and (x0, y0, z0),
(x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) define the plane of points specified in a clockwise
or anticlockwise direction.

Note
This module does not run in parallel.

10.2.6 Running in parallel

To run the utility, if you have compiled Nektar++ with MPI support, you may run in
parallel. For example,

mpirun -np <nprocs> FieldConvert test.xml test.fld test.dat

replacing <nprocs> with the number of processors. This will produce multiple .dat

files of the form test_P0.dat , test_P1.dat , test_P2.dat . Similarly the VTK files
can be processed in this manner as can the vorticity option. In the case of the vorticity
option a directory called test_vort.fld (or the specified output name) will be produced
with the standard parallel field files placed within the directory

10.2.7 Processing large files

When processing large files it is not always convenient to run in parallel but process each
parallel partition in serial, for example when interpolating one field to another. To do
this we can use the –nprocs and –procid options. For example the following option
will interpolate partition 2 of a decomposition into 10 partitions of fiile2.xml from
file1.fld

FieldConvert --nprocs 10 --procid 2 \
-m interpfield:fromxml=file1.xml:fromfld=file1.fld \
file2.xml file2.fld

This call will only provide part of the overall partition and so to create the full interpolated
field you need to call a loop of such commands. For example in a bash shell you can run
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for n in ‘seq 0 1 9‘
do

FieldConvert --nprocs 10 --procid $n \
-m interpfield:fromxml=file1.xml:fromfld=file1.fld \
file2.xml file2.fld

done

This will create a directory called file2.fld and put the different parallel partitions
into files with names P0000000.fld, P0000001.fld, ?., P0000009.fld . This is nearly
a complete parallel field file but the Info.xml file which contains the information about
which elements are in each partitioned file P000000X.fld . So to generate this Info.xml
file you need to call

FieldConvert --nprocs 10 file2.xml file2.fld/Info.xml:info

Note the final :info extension on the last argument is necessary to tell FieldConvert
that you wish to generate an info file but the extension to this file is .xml. This syntax
allows the routine not to get confused with the input/output xml files.
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Chapter 11
XML Input File Reference

The Nektar++ native file format is compliant with XML version 1.0. The root element
is NEKTAR and has the overall structure as follows

1 <NEKTAR>
2 <GEOMETRY>
3 ...
4 </GEOMETRY>
5 <EXPANSIONS>
6 ...
7 </EXPANSIONS>
8 <CONDITIONS>
9 ...

10 </CONDITIONS>
11 <FILTERS>
12 ...
13 </FILTERS>
14 <GLOBALOPTIMIZATIONPARAMETERS>
15 ...
16 </GLOBALOPTIMIZATIONPARAMETERS>
17 </NEKTAR>

11.1 Geometry

This section defines the mesh. It specifies a list of vertices, edges (in two or three
dimensions) and faces (in three dimensions) and how they connect to create the elemental
decomposition of the domain. It also defines a list of composites which are used in the
Expansions and Conditions sections of the file to describe the polynomial expansions and
impose boundary conditions.

The GEOMETRY section is structured as
1 <GEOMETRY DIM="2" SPACE="2">
2 <VERTEX> ...
3 </VERTEX> <EDGE> ...
4 </EDGE> <FACE> ...
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5 </FACE> <ELEMENT> ...
6 </ELEMENT> <CURVED> ...
7 </CURVED> <COMPOSITE> ...
8 </COMPOSITE> <DOMAIN> ... </DOMAIN>
9 </GEOMETRY>

It has two attributes:

• DIM specifies the dimension of the expansion elements.

• SPACE specifies the dimension of the space in which the elements exist.

These attributes allow, for example, a two-dimensional surface to be embedded in a
three-dimensional space. The FACES section is only present when DIM =3. The CURVED
section is only present if curved edges or faces are present in the mesh.

11.1.1 Vertices

Vertices have three coordinates. Each has a unique vertex ID. They are defined in the
file within VERTEX subsection as follows:

1 <V ID="0"> 0.0 0.0 0.0 </V> ...
2 </VERTEX>

VERTEX subsection has three optional attributes: XSCALE , YSCALE and ZSCALE . They
specify scaling factors to corresponding vertex coordinates. For example, the following
snippet

1 <VERTEX XSCALE="5">
2 <V ID="0"> 0.0 0.0 0.0 </V> <V ID="1"> 1.0 2.0 0.0 </V>
3 </VERTEX>

defines two vertices with coordinates (0.0, 0.0, 0.0), (5.0, 2.0, 0.0). Values of XSCALE ,
YSCALE and ZSCALE attributes can be arbitrary analytic expressions depending on
pre-defined constants, parameters defined earlier in the XML file and mathematical
operations/functions of the latter. If omitted, default scaling factors 1.0 are assumed.

11.1.2 Edges

Edges are defined by two vertices. Each edge has a unique edge ID. They are defined in
the file with a line of the form

1 <E ID="0"> 0 1 </E>

11.1.3 Faces

Faces are defined by three or more edges. Each face has a unique face ID. They are
defined in the file with a line of the form
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1 <T ID="0"> 0 1 2 </T>
2 <Q ID="1"> 3 4 5 6 </Q>

The choice of tag specified (T or Q), and thus the number of edges specified depends on
the geometry of the face (triangle or quadrilateral).

11.1.4 Element

Elements define the top-level geometric entities in the mesh. Their definition depends
upon the dimension of the expansion. For two-dimensional expansions, an element is
defined by a sequence of three or four edges. For three-dimensional expansions, the
element is defined by a list of faces. Elements are defined in the file with a line of the
form

1 <T ID="0"> 0 1 2 </T>
2 <H ID="1"> 3 4 5 6 7 8 </H>

Again, the choice of tag specified depends upon the geometry of the element. The element
tags are:

• S Segment

• T Triangle

• Q Quadrilateral

• A Tetrahedron

• P Pyramid

• R Prism

• H Hexahedron

11.1.5 Curved Edges and Faces

For mesh elements with curved edges and/or curved faces, a separate entry is used
to describe the control points for the curve. Each curve has a unique curve ID and
is associated with a predefined edge or face. The total number of points in the curve
(including end points) and their distribution is also included as attributes. The control
points are listed in order, each specified by three coordinates. Curved edges are defined
in the file with a line of the form

1 <E ID="3" EDGEID="7" TYPE="PolyEvenlySpaced" NUMPOINTS="3">
2 0.0 0.0 0.0 0.5 0.5 0.0 1.0 0.0 0.0
3 </E>
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11.1.6 Composites

Composites define collections of elements, faces or edges. Each has a unique composite ID
associated with it. All components of a composite entry must be of the same type. The
syntax allows components to be listed individually or using ranges. Examples include

1 <C ID="0"> T[0-862] </C>
2 <C ID="1"> E[68,69,70,71] </C>

11.1.7 Domain

This tag specifies composites which describe the entire problem domain. It has the form
of

1 <DOMAIN> C[0] </DOMAIN>

11.2 Expansions

This section defines the polynomial expansions used on each of the defined geometric
composites. Expansion entries specify the number of modes, the basis type and have the
form

1 <E COMPOSITE="C[0]" NUMMODES="5" FIELDS="u" TYPE="MODIFIED" />

or, if we have more then one variable
1 <E COMPOSITE="C[0]" NUMMODES="5" FIELDS="u,v,p" TYPE="MODIFIED" />

The expansion basis can also be specified by parts, and thus the user is able to increase
the quadrature order. For tet elements this takes the form:

1 <E COMPOSITE="C[0]"
2 BASISTYPE="Modified_A,Modified_B,Modified_C"
3 NUMMODES="3,3,3"
4 POINTSTYPE="GaussLobattoLegendre,GaussRadauMAlpha1Beta0,GaussRadauMAlpha2Beta0"
5 NUMPOINTS="4,3,3"
6 FIELDS="u" />

and for prism elements:
1 <E COMPOSITE="C[1]"
2 BASISTYPE="Modified_A,Modified_A,Modified_B"
3 NUMMODES="3,3,3"
4 POINTSTYPE="GaussLobattoLegendre,GaussLobattoLegendre,GaussRadauMAlpha1Beta0"
5 NUMPOINTS="4,4,3"
6 FIELDS="u" />

11.3 Conditions

The final section of the file defines parameters and boundary conditions which define the
nature of the problem to be solved. These are enclosed in the CONDITIONS tag.
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11.3.1 Parameters

Parameters may be required by a particular solver (for instance time-integration parame-
ters or solver-specific parameters), or arbitrary and only used within the context of the
session file (e.g. parameters in the definition of an initial condition). All parameters are
enclosed in the PARAMETERS XML element.

1 <PARAMETERS>
2 ...
3 </PARAMETERS>

A parameter may be of integer or real type and may reference other parameters defined
previous to it. It is expressed in the file as

1 <P> [PARAMETER NAME] = [PARAMETER VALUE] </P>

For example,
1 <P> NumSteps = 1000 </P>
2 <P> TimeStep = 0.01 </P>
3 <P> FinTime = NumSteps*TimeStep </P>

11.3.2 Solver Information

These specify properties to define the actions specific to solvers, typically including
the equation to solve, the projection type and the method of time integration. The
property/value pairs are specified as XML attributes. For example,

1 <SOLVERINFO>
2 <I PROPERTY="EQTYPE" VALUE="UnsteadyAdvection" />
3 <I PROPERTY="Projection" VALUE="Continuous" />
4 <I PROPERTY="TimeIntegrationMethod" VALUE="ClassicalRungeKutta4" />
5 </SOLVERINFO>

The list of available solvers in Nektar++ can be found in Chapter ??.

11.3.3 Variables

These define the number (and name) of solution variables. Each variable is prescribed
a unique ID. For example a two-dimensional flow simulation may define the velocity
variables using

1 <VARIABLES>
2 <V ID="0"> u </V>
3 <V ID="1"> v </V>
4 </VARIABLES>

11.3.4 Global System Solution Information

This section allows you to specify the global system solution parameters which is particu-
larly useful when using an iterative solver. An example of this section is as follows:
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1 <GLOBALSYSSOLNINFO>
2 <V VAR="u,v,w">
3 <I PROPERTY="GlobalSysSoln" VALUE="IterativeStaticCond" />
4 <I PROPERTY="Preconditioner" VALUE="LowEnergyBlock"/>
5 <I PROPERTY="IterativeSolverTolerance" VALUE="1e-8"/>
6 </V>
7 <V VAR="p">
8 <I PROPERTY="GlobalSysSoln" VALUE="IterativeStaticCond" />
9 <I PROPERTY="Preconditioner" VALUE="FullLinearSpaceWithLowEnergyBlock"/>

10 <I PROPERTY="IterativeSolverTolerance" VALUE="1e-6"/>
11 </V>
12 </GLOBALSYSSOLNINFO>

The above section specifies that the global solution system for the variables "u,v,w"
should use the iIerativeStaticCond approach with the LowEnergyBlock preconditioned
and an iterative tolerance of 1e-6. Where as the variable "p" which also is solved with
the IterativeStaticCond approach should use the FullLinearSpaceWithLowEnergyBlock
and an iterative tolerance of 1e-8.

Other parameters which can be specified include SuccessiveRHS.

The parameters in this section override those specified in the Parameters section.

11.3.5 Boundary Regions and Conditions

Boundary conditions are defined by two XML elements. The first defines the various
boundary regions in the domain in terms of composite entities from the GEOMETRY section
of the file. Each boundary region has a unique ID and are defined as, for example,

1 <BOUNDARYREGIONS>
2 <B ID="0"> C[2] </B>
3 <B ID="1"> C[3] </B>
4 </BOUNDARYREGIONS>

The second defines the actual boundary condition to impose on that composite region
for each of the defined solution variables, and has the form,

1 <BOUNDARYCONDITIONS>
2 <REGION REF="0">
3 <D VAR="u" VALUE="sin(PI*x)*cos(PI*y)" /> <D VAR="v"
4 VALUE="sin(PI*x)*cos(PI*y)" />
5 </REGION>
6 </BOUNDARYCONDITIONS>

Boundary condition specifications may refer to any parameters defined in the session file.
The REF attribute corresponds to a defined boundary region. The tag used for each
variable specifies the type of boundary condition to enforce. These can be either

• D Dirichlet
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• N Neumann

• R Robin

• P Periodic

Time-dependent boundary conditions may be specified through setting the USERDEFINEDTYPE
attribute. For example,

1 <D VAR="u" USERDEFINEDTYPE="TimeDependent" VALUE="sin(PI*(x-t))" />

Periodic boundary conditions reference the corresponding boundary region with which to
enforce periodicity.

The following example provides an example of three boundary conditions for a two-
dimensional flow,

1 <BOUNDARYCONDITIONS>
2 <REGION REF="0">
3 <D VAR="u" USERDEFINEDTYPE="TimeDependent"
4 VALUE="-cos(x)*sin(y)*exp(-2*t*Kinvis)" />
5 <D VAR="v" USERDEFINEDTYPE="TimeDependent"
6 VALUE="sin(x)*cos(y)*exp(-2*t*Kinvis)" />
7 <P VAR="p" VALUE=[2]/>
8 </REGION>
9 <REGION REF="1">

10 <D VAR="u" USERDEFINEDTYPE="TimeDependent"
11 VALUE="-cos(x)*sin(y)*exp(-2*t*Kinvis)" />
12 <D VAR="v" USERDEFINEDTYPE="TimeDependent"
13 VALUE="sin(x)*cos(y)*exp(-2*t*Kinvis)" />
14 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0.0"/>
15 </REGION>
16 <REGION REF="2">
17 <D VAR="u" USERDEFINEDTYPE="TimeDependent"
18 VALUE="-cos(x)*sin(y)*exp(-2*t*Kinvis)" />
19 <D VAR="v" USERDEFINEDTYPE="TimeDependent"
20 VALUE="sin(x)*cos(y)*exp(-2*t*Kinvis)" />
21 <P VAR="p" VALUE=[0]/>
22 </REGION>
23 <REGION REF="3">
24 <D VAR="u" USERDEFINEDTYPE="TimeDependent"
25 VALUE="-cos(x)*sin(y)*exp(-2*t*Kinvis)" />
26 <D VAR="v" USERDEFINEDTYPE="TimeDependent"
27 VALUE="sin(x)*cos(y)*exp(-2*t*Kinvis)" />
28 <D VAR="p" USERDEFINEDTYPE="TimeDependent"
29 VALUE="-0.25*(cos(2*x)+cos(2*y))*exp(-4*t*Kinvis)"/>
30 </REGION>
31 </BOUNDARYCONDITIONS>

where the boundary regions which are periodic are linked via their region identifier
(Region 0 and Region 2).
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Boundary conditions can also be loaded from file, here an example from the Incompressible
Navier-Stokes cases,

1 <REGION REF="1">
2 <D VAR="u" FILE="Test_ChanFlow2D_bcsfromfiles_u_1.bc" />
3 <D VAR="v" VALUE="0" />
4 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
5 </REGION>

11.3.6 Functions

Finally, multi-variable functions such as initial conditions and analytic solutions may
be specified for use in, or comparison with, simulations. These may be specified using
expressions ( <E> ) or imported from a file ( <F> ) using the Nektar++ FLD file format

1 <FUNCTION NAME="ExactSolution">
2 <E VAR="u" VALUE="sin(PI*x-advx*t))*cos(PI*(y-advy*t))" />
3 </FUNCTION>
4 <FUNCTION NAME="InitialConditions">
5 <F VAR="u" FILE="session.rst" />
6 </FUNCTION>

A restart file is a solution file (in other words an .fld renamed as .rst) where the field
data is specified. The expansion order used to generate the .rst file must be the same as
that for the simulation. The filename must be specified relative to the location of the
.xml file.

Other examples of this input features can be the insertion of a forcing term,
1 <FUNCTION NAME="BodyForce">
2 <E VAR="u" VALUE="0" />
3 <E VAR="v" VALUE="0" />
4 </FUNCTION>
5 <FUNCTION NAME="Forcing">
6 <E VAR="u" VALUE="-(Lambda + 2*PI*PI)*sin(PI*x)*sin(PI*y)" />
7 </FUNCTION>

or of a linear advection term
1 <FUNCTION NAME="AdvectionVelocity">
2 <E VAR="Vx" VALUE="1.0" />
3 <E VAR="Vy" VALUE="1.0" />
4 <E VAR="Vz" VALUE="1.0" />
5 </FUNCTION>

[wiki:Reference/AnalyticExpressions This page] provides the list of acceptable mathe-
matical functions and other related technical details.

11.3.7 Quasi-3D approach

To generate a Quasi-3D appraoch with Nektar++ we only need to create a 2D or a 1D
mesh, as reported above, and then specify the parameters to extend the problem to a
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3D case. For a 2D spectral/hp element problem, we have a 2D mesh and along with the
parameters we need to define the problem (i.e. equation type, boundary conditions, etc.).
The only thing we need to do, to extend it to a Quasi-3D approach, is to specify some
additional parameters which characterise the harmonic expansion in the third direction.
First we need to specify in the solver information section that that the problem will be
extended to have one homogeneouns dimension; here an example

1 <SOLVERINFO>
2 <I PROPERTY="SolverType" VALUE="VelocityCorrectionScheme"/>
3 <I PROPERTY="EQTYPE" VALUE="UnsteadyNavierStokes"/>
4 <I PROPERTY="AdvectionForm" VALUE="Convective"/>
5 <I PROPERTY="Projection" VALUE="Galerkin"/>
6 <I PROPERTY="TimeIntegrationMethod" VALUE="IMEXOrder2"/>
7 <I PROPERTY="HOMOGENEOUS" VALUE="1D"/>
8 </SOLVERINFO>

then we need to specify the parameters which define the 1D harmonic expanson along the
z-axis, namely the homogeneous length (LZ) and the number of modes in the homogeneous
direction (HomModesZ). HomModesZ corresponds also to the number of quadrature
points in the homogenous direction, hence on the number of 2D planes discretized with a
specral/hp element method.

1 <PARAMETERS>
2 <P> TimeStep = 0.001 </P>
3 <P> NumSteps = 1000 </P>
4 <P> IO_CheckSteps = 100 </P>
5 <P> IO_InfoSteps = 10 </P>
6 <P> Kinvis = 0.025 </P>
7 <P> HomModesZ = 4 </P>
8 <P> LZ = 1.0 </P>
9 </PARAMETERS>

In case we want to create a Quasi-3D approach starting form a 1D spectral/hp element
mesh, the procedure is the same, but we need to specify the parameters for two harmonic
directions (in Y and Z direction). For Example,

1 <SOLVERINFO>
2 <I PROPERTY="EQTYPE" VALUE="UnsteadyAdvectionDiffusion" />
3 <I PROPERTY="Projection" VALUE="Continuous"/>
4 <I PROPERTY="HOMOGENEOUS" VALUE="2D"/>
5 <I PROPERTY="DiffusionAdvancement" VALUE="Implicit"/>
6 <I PROPERTY="AdvectionAdvancement" VALUE="Explicit"/>
7 <I PROPERTY="TimeIntegrationMethod" VALUE="IMEXOrder2"/>
8 </SOLVERINFO>
9 <PARAMETERS>

10 <P> TimeStep = 0.001 </P>
11 <P> NumSteps = 200 </P>
12 <P> IO_CheckSteps = 200 </P>
13 <P> IO_InfoSteps = 10 </P>
14 <P> wavefreq = PI </P>
15 <P> epsilon = 1.0 </P>
16 <P> Lambda = 1.0 </P>
17 <P> HomModesY = 10 </P>
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18 <P> LY = 6.5 </P>
19 <P> HomModesZ = 6 </P>
20 <P> LZ = 2.0 </P>
21 </PARAMETERS>

By default the opeartions associated with the harmonic expansions are performed with the
Matix-Vector-Multiplication (MVM) defined inside the code. The Fast Fourier Transofrm
(FFT) can be used to speed up the operations (if the FFTW library has been compiled
in ThirdParty, see the compilation instructions). To use the FFT routines we need just
to insert a flag in the solver information as below:

1 <SOLVERINFO>
2 <I PROPERTY="EQTYPE" VALUE="UnsteadyAdvectionDiffusion" />
3 <I PROPERTY="Projection" VALUE="Continuous"/>
4 <I PROPERTY="HOMOGENEOUS" VALUE="2D"/>
5 <I PROPERTY="DiffusionAdvancement" VALUE="Implicit"/>
6 <I PROPERTY="AdvectionAdvancement" VALUE="Explicit"/>
7 <I PROPERTY="TimeIntegrationMethod" VALUE="IMEXOrder2"/>
8 <I PROPERTY="USEFFT" VALUE="FFTW"/>
9 </SOLVERINFO>

The number of homogenenous modes has to be even. The Quasi-3D apporach can be
created starting from a 2D mesh and adding one homogenous expansion or starting form
a 1D mesh and adding two homogeneous expansions. Not other options available. In
case of a 1D homogeneous extension, the homogeneous direction will be the z-axis. In
case of a 2D homogeneous extension, the homogeneous directions will be the y-axis and
the z-axis.
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Optimisation

One of the most frequently asked questions when performing almost any scientific
computation is: how do I make my simulation faster? Or, equivalently, why is my
simulation running so slowly?

The spectral element method is no exception to this rule. The purpose of this chapter
is to highlight some of the easiest parameters that can be tuned to attain optimum
performance for a given simulation.

Details are kept as untechnical as possible, but some background information on the
underlying numerical methods is necessary in order to understand the various options
available and the implications that they can have on your simulation.

12.1 Operator evaluation strategies

When discretising a PDE using most variants of the spectral element method, the resulting
problem is usually expressed as a matrix equation. In traditional linear finite element
codes, the matrix is usually represented as a large sparse global matrix, which represents
the action of a particular operator such as the Laplacian matrix across the whole domain.

However, when we consider spectral element methods, in which the polynomial order
representing the expansion can be far higher, this method becomes far less optimal. We
can instead consider the action of an operator locally on each element, and then perform
an assembly operation. This is mathematically equivalent to the global matrix approach
and gives exactly the same answer, but at high polynomial orders it is far more efficient
on modern CPU architectures.

Furthermore, this local approach can be represented in one of two ways: either as a dense
matrix for each element, which is typically more efficient at intermediate polynomial
orders, or in the hp element case as a tensor product of smaller dense matrices via
an approach deemed sum-factorisation, which is used at very high polynomial orders.
Figure ?? gives an overview of these three different operator strategies.

138



12.1 Operator evaluation strategies 139

A goal of Nektar++ is to support not only high order expansions, but all orders from low
(where element size h is the dominant factor) to high (where p dominates); a procedure
we have dubbed “from h to p efficiently”.

12.1.1 Selecting an operator strategy

An obvious question is: “which strategy should I select?” The most important factors in
this decision are:

1. what the operator is;

2. polynomial order p;

3. element type and dimension of the problem;

4. underlying hardware architecture;

5. the number of operator calls in the solver;

6. BLAS implementation speed.

Generally you can use results from three publications [?, ?, ?] which outline results for
two- and three-dimensional elements.

In general, the best approach is to perform some preliminary timings by changing the
appropriate variables in the session file, which is outlined below. As a very rough guide,
for 1 ≤ p ≤ 2 you should use the global approach; for 3 ≤ p ≤ 7 use the local approach;
and for p ≥ 8 use sum-factorisation. However, these guidelines will vary due to the
parameters noted above. In future releases of Nektar++ we hope to tune these variables
automatically to make this decision easier to make.

12.1.2 XML syntax

Operator evaluation strategies can be configured in the GLOBALOPTIMISATIONPARAMETERS
tag, which lies inside the root NEKTAR tag:

1 <NEKTAR>
2 <GLOBALOPTIMIZATIONPARAMETERS>
3 <BwdTrans>
4 <DO_GLOBAL_MAT_OP VALUE="0" />
5 <DO_BLOCK_MAT_OP TRI="1" QUAD="1" TET="1"
6 PYR="1" PRISM="1" HEX="1" />
7 </BwdTrans>
8 <IProductWRTBase>
9 <DO_GLOBAL_MAT_OP VALUE="0" />

10 <DO_BLOCK_MAT_OP TRI="1" QUAD="1" TET="1"
11 PYR="1" PRISM="1" HEX="1" />
12 </IProductWRTBase>
13 <HelmholtzMatrixOp>
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14 <DO_GLOBAL_MAT_OP VALUE="0" />
15 <DO_BLOCK_MAT_OP TRI="1" QUAD="1" TET="1"
16 PYR="1" PRISM="1" HEX="1" />
17 </HelmholtzMatrixOp>
18 <MassMatrixOp>
19 <DO_GLOBAL_MAT_OP VALUE="0" />
20 <DO_BLOCK_MAT_OP TRI="1" QUAD="1" TET="1"
21 PYR="1" PRISM="1" HEX="1" />
22 </MassMatrixOp>
23 </GLOBALOPTIMIZATIONPARAMETERS>
24 </NEKTAR>

12.1.3 Selecting different operator strategies

Operator evaluation is supported for four operators: backward transform, inner product,
Helmholtz and mass operators. It is possible to specify the following optimisation flags
for different operators:

1. DO_GLOBAL_MAT_OP : If VALUE is 1 , the globally assembled system matrix will
be used to evaluate the operator. If VALUE is 0 , the operator will be evaluated
elementally.

2. DO_BLOCK_MAT_OP : If VALUE is 1 , the elemental evaluation will be done using
the elemental/local matrices (which are all concatenated in a block matrix, hence
the name). If VALUE is 0 , the elemental evaluation will be done using the sum-
factorisation technique.
Each element type (triangle, quadrilateral, etc) has its own VALUE, since break-even
points for sum-factorisation and the local matrix approach will differ depending on
element type. Note that due to a small shortcoming in the code, all element types
must be defined; so three-dimensional elements must still be defined even if the
simulation is two-dimensional.

Note that global takes precendence over block, so if VALUE is set to 1 for both then the
operator will be global.

For very complex operators – in particular HelmholtzMatrixOp – always set DO_BLOCK_MAT_OP

to 1 as sum-factorisation for these operator types can be costly.
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--verbose
Displays extra info.

--help
Displays help information about the available command-line options for the
executable.

--parameter [key]=[value]
Override a parameter (or define a new one) specified in the XML file.

--solverinfo [key]=[value]
Override a solverinfo (or define a new one) specified in the XML file.

--shared-filesystem
By default when running in parallel the complete mesh is loaded by all processes,
although partitioning is done uniquely on the root process only and communi-
cated to the other processes. Each process then writes out its own partition to
the local working directory. This is the most robust approach in accounting for
systems where the distributed nodes do not share a common filesystem. In the
case that there is a common filesystem, this option forces only the root process
to load the complete mesh, perform partitioning and write out the session files
for all partitions. This avoids potential memory issues when multiple processes
attempt to load the complete mesh on a single node.

--npx [int]
When using a fully-Fourier expansion, specifies the number of processes to use
in the x-coordinate direction.

--npy [int]
When using a fully-Fourier expansion or 3D expansion with two Fourier direc-
tions, specifies the number of processes to use in the y-coordinate direction.
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--npz [int]
When using Fourier expansions, specifies the number of processes to use in the
z-coordinate direction.
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Frequently Asked Questions

14.1 Compilation and Testing

Q. I compile Nektar++ successfully but, when I run ctest, all the tests fail.
What might be wrong?

On Linux or Mac, if you compile the ThirdParty version of Boost, rather than using
version supplied with your operating system (or MacPorts on a Mac), the libraries will
be installed in the ThirdParty/dist/lib subdirectory of your Nektar++ directory.
When Nektar++ executables are run, the Boost libraries will not be found as this path
is not searched by default. To allow the Boost libraries to be found set the following
environmental variable, substituting $NEKTAR_HOME with the absolute path of your
Nektar++ directory:

• On Linux (sh, bash, etc)

export LD_LIBRARY_PATH=${NEKTAR_HOME}/ThirdParty/dist/lib

or (csh, etc)

setenv LD_LIBRARY_PATH ${NEKTAR_HOME}/ThirdParty/dist/lib

• On Mac

export DYLD_LIBRARY_PATH=${NEKTAR_HOME}/ThirdParty/dist/lib

Q. How to I compile Nektar++ to run in parallel?

Parallel execution of all Nektar++ solvers is available using MPI. To compile using MPI,
enable the NEKTAR_USE_MPI option in the CMake configuration. On recent versions of
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MPI, the solvers can still be run in serial when compiled with MPI. More information on
Nektar++ compilation options is available in Section 1.3.5.

Q. When running any Nektar++ executable on Windows, I receive an error
that zlib.dll cannot be found. How do I fix this?

Windows searches for DLL files in directories specified in the PATH environmental
variable. You should add the location of the ThirdParty files to your path. To fix this
(example for Windows XP):

• As an administrator, open ”System Properties” in control panel, select the ”Ad-
vanced” tab, and select ”Environment Variables”.

• Edit the system variable ‘path‘ and append
C:\path\to\nektar++\ThirdParty\dist\bin

to the end, replacing path\to\nektar++ appropriately.

14.2 Usage

Q. How do I run a solver in parallel?

In a desktop environment, simply prefix the solver executable with the mpirun helper.
For example, to run the Incompressible Navier-Stokes solver on a 4-core desktop computer,
you would run

mpirun -np 4 IncNavierStokesSolver Cyl.xml

In a cluster environment, using PBS for example, the mpiexec command should be used.

Q. How can I generate a mesh for use with Nektar++?

Nektar++ supports a number of mesh input formats. These are converted to the
Nektar++ native XML format (see Section 11) using the MeshConvert utility (see
Section 10.1. Supported formats include:

• Gmsh (.msh)

• Polygon (.ply)

• Nektar (.rea)

• Semtex (.sem)
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