Hydrodynamic stability analysis using Nektar + +

AIM-ED

23rd August 2011

The aim of this tutorial is to introduce the user to the spectral/hp element framework Nektar++ and
its use in hydrodynamic stability analysis. Information on how to install the libraries, solvers, and
utilities on your own computer is available on the webpage!. However, for this tutorial, the software
is preinstalled on the laboratory computers.

In the first section we will cover the stability analysis of a two-dimensional channel flow, through
both a splitting scheme and the Stokes algorithm. We will then study the transient growth of the
flow past a backward-facing step and the direct/adjoint stability analysis of a flow past a cylinder.

Task 0.1

A number of data files are provided for use in this tutorial. These are located in the read-only
folder /export/aim/nektutorial/. You should copy this directory, and all the files within, to
your home directory before continuing, using the following command:

cp -a /export/aim/nektutorial/ $HOME/

1 Two-dimensional Channel flow

Linear stability analysis is a technique that allows us to determine the asymptotic stability of a flow.
By decomposing the velocity and pressure in the Navier-Stokes equations as a summation of a base
flow (U, P) and perturbation (u’, v'), such that u = U +eu/, p = P + ¢p/, with € < 1, we derive the
linearised Navier-Stokes equations,

ou’ / / o / 1 2./ /
BT +U-Vu+u-VUf—Vp+§Vu+f, (1)

V-u =0. (2)

We will consider a parallel base flow through a 2-D channel (known as Poiseuille flow) at Reynolds
number Re = 7500 . The velocity has the following analytic form:

U=(y+1(—-yex (3)
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Figure 1: 48 quadrilaterals mesh
The domain is Q2 = [—m, 7| x [—1,1] and it is composed by 48 quadrilateral elements as shown in

figure 1. The problem has been made non-dimensional using the centreline velocity and the channel
half-height.

This mesh was created using the software Gmsh and the first step is to convert it into a suitable
input format so that it can be processed by the Nektar++ libraries.

In the tutorial folder Channel/Geometry you will find the following files:
e Channel.geo- Gmsh file containing the geometry of the problem
e Channel .msh- Gmsh generated mesh data listing mesh vertices and elements.

e Channel.xml - Nektar++ session file generated from Channel.msh using a Nektar++ utility.

Task 1.1
Convert the Gmsh geometry provided into the XML Nektar++ format

e Channel.msh can be generated using Gmsh by running the following command:

gmsh -2 Channel.geo

e Channel.xml can be generated using the MeshConvert pre-processing tool:

MeshConvert Channel.msh Channel.xml

Examine the Channel.xml file you have just created. Only the mesh and default expansions
are defined at present.

1.1 Computation of the base flow

We must first create an appropriate base flow. Since, in hydrodynamic stability theory, it is assumed
that the base flow is a incompressible, it can be computed by using the incompressible Navier-Stokes
solver (IncNavierStokesSolver).



The specified boundary conditions will be no-slip on the walls and periodic for the inflow/outflow.
In this case, since it is not a constant pressure gradient that drives the flow, it is necessary to use a
constant body-force in the streamwise direction. It can be shown that this should be equal to 2v.

In the folder Channel/Base you will find the file Channel-Base.xml which contains the geometry
described above along with the necessary parameters to solve the problem. The GEOMETRY section
defines the mesh of the problem and it is generated automatically as you have seen in the previous
task. The expansion type and order is specified in the EXPANSIONS section. An expansion basis
is applied to a geometry composite? specified in the GEOMETRY section. A default entry is always
included by the MeshConvert utility. In this case the composite C[0] refers to the set of all elements.
The FIELDS attribute specifies the fields for which this expansion should be used. The TYPE attribute
specifies the kind of the polynomial basis functions to use in the expansion. For example,

<EXPANSIONS>
<E COMPOSITE="C[O]" NUMMODES="8" FIELDS="u,v,p" TYPE="MODIFIED"/>
</EXPANSIONS>.

If we examine Channel-Base.xml, we can see how to define the conditions of the particular problem
to solve. These are all enclosed in a CONDITIONS section. This section contains a number of entries:

1. Solver information (SOLVERINFO) such as the equation, the projection type (Continuous
or Discontinuous Galerkin), the evolution operator (Nonlinear for non-linear Navier-Stokes,
Direct, Adjoint or TransientGrowth for linearised forms) and the analysis driver to use
(Standard, Arpack or ModifiedArnoldi), along with other properties. The solver properties
are specified as quoted attributes and have the form

<I PROPERTY="[STRING]" VALUE="[STRING]" />

Task 1.2
In the SOLVERINFO section of Channel-Base.xml:

e set EQTYPE to UnsteadyNavierStokes to select the unsteady incompressible Navier-
Stokes equations,

e set the EvolutionOperator to select the non-linear Navier-Stokes,
e set the Projection property to continuous Galerkin,

e set the Driver to perform standard time-integration.

2. The parameters are specified as name-value pairs:
<P> [KEY] = [VALUE] </P>

Parameters may be used within other expressions, such as function definitions, boundary con-
ditions or the definition of other subsequently defined parameters.

2by composite we mean a collection of mesh entities, but we specifically require a collection of mesh elements here



Task 1.3
Declare parameters Re and Kinvis which sets the Reynolds number to 7500 and the
kinematic viscosity, v, to 1/Re.

3. The declaration of the variable(s).

<VARIABLES>
<V ID="0"> u </V>
<V ID="1"> v </V>
<V ID="2"> p </V>
</VARIABLES>

4. The specification of boundary regions in terms of composites defined in the GEOMETRY section
and the conditions applied on those boundaries. Boundary regions have the form

<B ID="[INDEX]"> [COMPOSITE-ID] </B>

The boundary conditions enforced on a region take the following format and must define
the condition for each variable specified in the VARIABLES section to ensure the problem is
well-posed.

<REGION REF="[B-REGION-INDEX]">
<[TYPE] VAR="[VARIABLE_1]" VALUE="[EXPRESSION_1]"/>
<[TYPE] VAR="[VARIABLE_2]" VALUE="[EXPRESSION_2]"/>

</REGION>
The REF attribute for a boundary condition region should correspond to the ID of the desired
BOUNDARYREGION.

5. The definition of the (time- and) space-dependent functions, in terms of z, y, z and ¢, such as
initial conditions, forcing functions, and exact solutions.

<FUNCTION NAME="[NAME]">
<E VAR="[VARIABLE_1]" VALUE="[EXPRESSION]"/>
<E VAR="[VARIABLE_2]" VALUE="[EXPRESSION]"/>

</FUNCTION>
Alternatively, one can specify the function using an external Nektar++ field file.

<FUNCTION NAME="[NAME]">
<F FILE="[FILENAME]"/>
</FUNCTION>

Task 1.4
Define a body forcing function in the streamwise direction (called BodyForce): f = 2ve,.



Task 1.5
Define a function called ExactSolution. For the Poiseuille flow with a streamwise forcing

term the exact solution is:

Note: We have not specified an initial condition, since it will be zero by default.

This completes the specification of the problem.

Task 1.6
Compute the base flow using the Channel-Base.xml session file:

IncNavierStokesSolver Channel-Base.xml

At the end of the simulation, the fields will be written to a binary file Channel-Base.f1d and the
Ly error (using the given exact solution) and the L., error will be printed on the terminal for each
of the variables.

To visualise the flow fields, we will convert the .f1d file into VTK format and use Paraview.

Task 1.7
Convert the file:

F1dToVtk Channel-Base.xml Channel-Base.fld
Now run Paraview:
paraview
Use File ->Open, to select the VTK file, click the ’Apply’ button to render the geometry, and

select each field in turn from the left-most drop-down menu on the toolbar to visualise the
output.

1.2 Stability analysis

After computing the base flow it is now possible to calculate the eigenvalues and the eigenmodes of the
linearised Navier-Stokes equations. Two different algorithms can be used to solve the equations: the
splitting scheme (VelocityCorrectionScheme) and the Stokes algorithm (CoupledLinearisedNS).
We will consider both cases, highlighting the similarities and differences of these two methods. In
this tutorial we will use the Implicitly Restarted Arnoldi Method (IRAM), which is implemented in
the open-source ARPACK library. Alternatively, one can use the modified Arnoldi algorithm.3

3Int. J. Numer. Meth. Fluids, 2008; 57:1435-1458



First, we will compute the leading eigenvalues and eigenvectors using the splitting scheme method. In
the Channel/Stability folder there is a file called Channel VCS.xml. This is similar to Channel .xml,
but contains additional instructions to perform the direct stability analysis.

Note: The entire GEOMETRY section, and EXPANSIONS section must be identical to that used to
compute the base flow.

Task 1.8
Configure the following additional options and run the linear stability analysis for the channel:

1. EvolutionOperator must now be set to Direct to activate the forward linearised Navier-
Stokes system.

2. Driver must be set to Arpack to use Arpack eigenvalue analysis.

3. A restart file is provided to accelerate communications. Set the InitialConditions

function to be read from Channel .rst. The solution will then converge after 16 iterations.
4

Note: The restart file is a field file (same format as .£1d files) that contains the eigenmode
of the system.

4. The base flow file (Channel-Base.f1d), computed in the previous section, was copied into
the Channel/Stability folder and renamed Channel VCS.bse.
Now specify a function called BaseFlow which reads this file.

5. We can instruct ARPACK to converge onto specific eigenvalues through the solver property
ArpackProblemType: the ones with the largest magnitude (LargestMag), largest real part
(LargestReal) or largest imaginary part (LargestImag). In our case we are interested

in computing the eigenvalues with the largest magnitude that determinate the stability of
the flow.

6. Set the parameters for the IRAM algorithm:

e kdim=16: dimension of Krylov-space,
e nvec=2: number of requested eigenvalues,
e nits=500: number of maximum allowed iterations,

e evtol=1e-6: accepted tolerance on the eigenvalues and it determines the stopping
criterion of the method.

Run the solver to perform the analysis

IncNavierStokesSolver Channel_VCS.xml

The eigenvalues are computed in the exponential form Me® where M = |)| is the magnitude, while
0 = arctan(X;/\,) the phase.

Ao = 1.00224*024984 (7)
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Figure 2: u/-component of the eigenmode
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Figure 3: v’-component of the eigenmode

It is interesting to consider more general quantities that do not depend on the time length chosen
for each iteration T'. For this purpose we consider the growth rate o = In(M)/T and the frequency
w=20/T.

Figures 2 and 3 show the profile of the computed eigenmode. The eigenmodes associated with
the computed eigenvalues are stored in the files Channel VCS_eig 0 and Channel VCS_eig 1. It is
possible to convert this file into VTK format in the same way as previously done for the base flow
earlier.



Task 1.9
Verify that for the channel flow case :

o =1223711x 1073
w = +2.498413 x 107!

and that the eigenmodes match those given in figures 2 and 3.

This values are in accordance with the literature, in fact in Canuto et al., 1988 suggests 2.23497 x 1073
and 2.4989154 x 107! for growth and frequency, respectively.

1.2.1 Stokes Algorithm

It is possible to perform the same stability analysis using a different method based on the Stokes
algorithm. This method requires the solution of the full velocity-pressure system, meaning that the
velocity matrix system and the pressure system are coupled, in contrast to the splitting/projection
schemes. It is easy to extend this method to solve the unsteady Navier-Stokes equations introducing
into the Stokes problem an unsteady term u¢ that modifies the weak Laplacian operator into a weak
Helmoholtz operator. Furthermore, the non-linear terms are explicitly advanced in time and treated
as a forcing function to the Stokes solver.

Inside the folder Channel/Stability there is a file called Channel Coupled.xml that contains all
the necessary parameters that should be defined. As with the previous example, it is possible to
specify the base flow putting the Channel Coupled.bse in the working directory. However, it is also
possible to specify the base flow directly from session file if it has an analytical expression like in
our simple case. This second method will the be presented in this section. Even in this case, the
geometry, the type and number of modes are the the same of the previous simulations.

Task 1.10
Edit the file Channel Coupled.xml:

e Set the SolverType property to CoupledLinearisedNS in order to solve the linearised
Navier-Stokes equations using Nektar + +’s coupled solver.

e the EQTYPE must be set to SteadyLinearisedNS and the Driver to Arpack.

e Set the InitialVector property to Random to initialise the IRAM with a random initial
vector. In this case the function InitialConditions will be ignored.

e To compute the eigenvalues with the largest magnitude, specify LargestMag in the prop-
erty ArpackProblemType.

It is important to note that the use of the coupled solver requires that only the velocity component
variables are specified, while the pressure can be directly computed through their values.



Task 1.11
Continue modifying Channel Coupled.xml:

e In this case it is a body force that provides the driving of the flow. This is done by the
setting the previously introduced function BodyForce to cos(y) for the u component and
sin(y) for the v component.

e Finally, it is necessary to set up the base flow. For the SteadyLinearisedNS coupled
solver, this is defined through a function called AdvectionVelocity. The u component
must be set up to 1 — y2, while the v-component to zero.

Now run the solver to compute the eigenvalues.

Using the Stokes algorithm, we are computing the leading eigenvalue of the inverse of the evolution
operator £~! . Therefore the eigenvalues of £ are the inverse of the computed values ®. However, it
is interesting to note that these values are different from those calculated with the Splitting Scheme
Method, producing an apparent inconsistency. However, this can be explained considering that the
largest eigenvalues associated to the operator L correspond the ones that are clustered near the
origin of the complex plane if we consider the spectrum of £71. Therefore, eigenvalues with a smaller
magnitude may be present but are not associated with the largest magnitude eigenvalue of operator
L. In order to verify this issue, let us search for the eigenvalue with a different criterion, for example,
the largest imaginary part.

Task 1.12
Set up the Solver Info tag ArpackProblemType to LargestImag and run the simulation again.

In this case, it is easy to to see that the eigenvalues of the evolution operator £ are the same ones
computed in the previous section with the time-stepping approach. It is interesting to note that this
method converges much quicker that the time-stepping algorithm. However, building the coupled
matrix that allows us to solve the problem can take a non-negligible computational time for more
complex cases.

2 Backward-facing step

In this section we will perform a transient growth analysis of the flow over a backward-facing step.
This is an important case which allows us to understand the effects of separation due to abrupt
changes of geometry in an open flow. The transient growth analysis consists of computing the
maximum energy growth, G(7), attainable over all possible initial conditions u’(0) for a specified
time horizon 7. It can be demonstrated that it is equivalent to calculating the largest eigenvalue of
A*(1)A(7), with A and A* being the direct and the adjoint operators, respectively. Also note that
the eigenvalue must necessarily be real since A*(7).A(7) is self-adjoint in this case.

The files for this section can be found in the backward-facing step directory.

5L is the evolution operator du/dt = Lu



Figure 4: Mesh used for the backward-facing step

e Folder Geometry

— bfs.geo - Gmsh file that contains the geometry of the problem

— bfs.msh - Gmsh generated mesh data listing mesh vertices and elements.
e Folder Base

— bfs-Base.xml - Nektar++ session file, generated with the MeshConvert utility, for com-
puting the base flow.

— bfs-Base.fld - Nektar++ field file that contains the base flow, generated using
bfs-Base.xml.

e Folder Stability

— bfs_tg.xml - Nektar++ session file, generated with MeshConvert, for performing the
transient growth analysis.

— bfs_tg.bse - Nektar++ field file that contains the base flow. It is the same as the .f1d
file present in the folder Base.

Figure 4 shows the mesh we will use for the computation, along with a detailed view of the step
edge in figure 5. The geometry is non-dimensionalised by the step height. The domain has an
inflow length of 10 upstream of the step edge and a downstream channel of length 50. The mesh
consist of N = 430 elements. Note that in this case the mesh is composed of both triangular and
quadrilateral elements. A refined triangular unstructured mesh is used near the step to capture
the separation effects, whereas the inflow /outflow channels have a structure similar to the previous
example. Therefore in the EXPANSION section of the bfs-Base.xml file, two composites (C[0] and
C[1]) are present. For this example, we will use the MODIFIED basis with 7th-order polynomials.

We will perform simulations at Re = 500, since it is well-known that for this value the flow presents
a strong convective instability.

The file bfs.bse is the output of the base-flow computation that should be run for a non-dimensional
time of ¢ > 300 to ensure that the solution is steady.

Task 2.1
Convert the base flow field file bfs.bse into VTK format to look at the profile of the base flow.
Note the separation at the step-edge and the reattachment downstream.

10



05k

L

o v b b b b b1

-0.5 D 0.5 1 1.5 2 2.5 3
X

Figure 5: Detail of the mesh used for the backward-facing step nearby the step

We will now perform transient growth analysis with a Krylov subspace of kdim=4. The parameters
and properties needed for this are present in the file bfs_tg.xml in backward-facing step/Stability.
In this case the Arpack library was used to compute the largest eigenvalue of the system and the
corresponding eigenmode. We will compute the maximum growth for a time horizon of 7 = 1, usually
denoted G(1).

Task 2.2
Configure the bfs_tg.xml session for performing transient growth analysis:

e Set the EvolutionOperator to TransientGrowth.
e Define a parameter FinalTime that is equal to 1 (this is the time horizon).

e Set the number of steps (NumSteps) to be the ratio between the final time and the time
step.

e Since the simulations take several iterations to converge, use the restart file bfs_tg.rst
for the initial condition. This file contains an eigenmode of the system.

Now run the simulation

IncNavierStokesSolver bfs_tg.xml

Initially, the solution will be evolved forward in time using the operator A , then backward in time
through the adjoint operator A*. It will converge quickly after 4 iterations and the leading eigenvalue
should be A = 3.236204. This corresponds to the largest possible transient growth at the time horizon
7 = 1. The leading eigenmode is shown in figures 6 and 7. This is the optimal initial condition which
will lead to the greatest growth when evolved under the linearised Navier-Stokes equations.

We can visualise graphically the optimal growth, recalling that the energy of the perturbation field
any given time t is defined by means of the inner product:

11
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Figure 6: u/-component of the eigenmode
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Figure 7: v'-component of the eigenmode
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Figure 8: Envelope of two-dimensional optima at Re = 500 together with curves of linear energy
evolution starting from the three optimal initial conditions for specific values of 7 20, 60 and 100.
Figure reproduced from J. Fluid. Mech. (2008), vol 603, pp. 271-304.

E(r) = 5(u'(1),0'(2)) (8)
=3 /Q u’ - u'dv (9)

The solver can output the evolution of the energy of the perturbation in time by setting the param-
eter I0_EnergySteps. This will write a .mld file containing the energy every specified number of
steps. Repeating these simulations for different 7 with the optimal initial perturbation as the initial
condition, it is possible to create curves like those shown in figure 8. Each curve necessarily meets the
optimal growth envelope (denoted by the circles) at its corresponding value of 7, and never exceeds
it.

Task 2.3

(Optional) Try generating a curve for the initial condition computed in the previous task.
Hint: You will need to switch back to using the Standard driver and use the Direct evolution
operator for this task.

3 Flow past a cylinder

As a final example we will compute the direct and adjoint modes of a two-dimensional flow past
a cylinder. We will investigate a case in the subcritical regime (Re = 42), below the on-set of
the Bernard-von Karman vortex shedding that is observed when the Reynolds number is above the
critical value Re. ~ 47; this analysis is important because it allows us to study the sensitivity of
the flow, much like that reported by Giannetti and Luchini ( J. Fluid Mech., 2007; 592:177-194).
Due to the complex nature of the flow and the demanding computational time that is required, only

13



some basic information will be presented in this section, mainly to show the potential of the code for
stability analysis.

In the folder Cylinder/Geometry there are the Gmsh files (Cylinder.geo and Cylinder.msh) used
to create a suitable mesh for the direct and adjoint stability analysis. The mesh is shown in figure
9 and a detailed view around the cylinder is shown in figure 10. This mesh is made up of 780
quadrilateral elements.

Note: It is important to note that stability and transient growth calculations, in particular, have
a strong dependence on the domain size as reported by Cantwell and Barkley (Physical Review E,
2010; 82); moreover, poor mesh design can lead to incorrect results. Specifically, the mesh must
be sufficiently refined around the cylinder in order to capture the separation of the flow and abrupt
variations in the size of the elements should be avoided.

Cylinder-Base.xml can be found inside the Cylinder/Base folder. This is the Nektar++ file
generated using MeshConvert and augmented with all the configuration settings that are required.
In this case, CFL conditions can be particularly restrictive and the time step must be set around

8 x 107*. We will be using Reynolds number Re = 42 for this study.

o0 =
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X

Figure 9: Mesh used for the direct stability analysis

The supplied file Cylinder-Base.bse is the converged base flow required for the analysis and is the
result of running Cylinder-Base.xml. To have a steady solution it was necessary to evolve the fields
for a non-dimensional time 7 > 300 and it is very important to be sure that the solution is steady.
This can be verified by putting several history points on the centre line of the flow and monitoring
their variation.

Task 3.1
Convert the base flow into VTK format and visualise the profile of the flow past a cylinder in
Paraview.

14



Figure 10: Detail of the mesh around the cylinder

In the folder Cylinder/Stability/Direct there are the files that are required for the direct stability
analysis. Since, the computation would normally take several hours to converge, we will use a restart
file and a Krylov-space of just K = 4. Therefore, it will be possible to obtain the eigenvalue and the
corresponding eigenmode after 4 iterations.

Task 3.2

Define a Kyrlov space of 4 and compute the eigenvalues and the eigenvectors of the problem
using the restart file Cylinder Direct.rst. Plot the leading eigenvector in Paraview. This
should look like the solution shown in figures 11 and 12.

The leading eigenvalues show a growth rate of ¢ = —2.101955x 1072 and a frequency w = £7.265859 x
1071,
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Figure 11: u/-component of the eigenmode

After the direct stability analysis, it is now interesting to compute the eigenvalues and eigenvectors
of the adjoint operator A* that allows us to evaluate the effects of generic initial conditions and

15
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Figure 12: v'-component of the eigenmode

forcing terms on the asymptotic behaviour of the solution of the linearised equations. In the folder
Cylinder/Stability/Adjoint there is the file Cylinder Adjoint.xml that is used for the adjoint
analysis.

Task 3.3
Set the EvolutionOperator to Adjoint, the Krylov space to 4 and compute the leading eigen-
value and eigenmode of the adjoint operator, using the restart file Cylinder Adjoint.rst

Plot the leading eigenmode in Paraview.

The solution should converge after 4 iterations, giving the eigenvalues of the system as Ao =
0.980495 x 0727502 with a growth rate equal to 0 = —1.969727 x 1072 and a frequency w =
+7.275024 x 107!, However, the most interesting thing to observe is the shape of the eigenmode.
In particular, in spatially developing flows the eigenmodes of the direct stability operator tend to
be located downstream while the eigenmodes of the adjoint operator tend to be located upstream,
as can be seen in figures 13 and 14. From the profiles of the eigemodes, it can be deducted that
the regions with the maximum receptivity for the momentum forcing and mass injection are near
the wake of the cylinder, close to the upper and lower sides of the body surface, in accordance with
results reported in the literature.

This completes the tutorial.

4 Installing Nektar+-+ on your computer.

If you are interested in pursuing this sort of work further, you can install Nektar++ on your own
laptop by downloading and compiling the source code from the website: www.nektar.info. Detailed
installation instructions are provided on the website and you are welcome to ask for help if you get
stuck!
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Figure 13: Close-up of the u*-component of the adjoint eigenmode.
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Figure 14: The v*-component of the adjoint eigenmode extends far upstream of the cylinder



