Refactoring of StdRegions/LocalRegions for
generalised basis handling and coprocessor
platforms

September 4, 2015

1 Objective

The current code structure provides limited scope for supporting arbitrary types
and forms of elemental expansion bases. Modal bases are considered the default
since they are frequently used and support is, in general, good. Currently nodal
bases are bolted onto the modal-focused classes in a less efficient manner making
it difficult to extend our existing code to other non-modal bases.

More generally moving forward, we would like to improve the robustness of
the library classes and support other platforms such as GPUs and Phis.

The aim is to restructure the StdRegions and LocalRegions libraries to gener-
ically support both nodal and modal bases efficiently and incorporate scope
within the library architecture to include additional bases as they are developed
or desired. At the core of this plan is a separation of the data and algorithms
within the elemental regions, which are currently lumped together within the
same StdRegions and LocalRegions classes.

2 Proposed solution

Perform the following changes:

e Create a hierarchy of expansion bases, which encapsulate a (potentially
multi-dimensional) basis definition. As at present, these would couple to
a (potentially multi-dimensional) point distribution.

e Within StdRegions, create a library of operators (factory- instantiated)
which may be generic across basis types or potentially specialised to a
given basis or class of bases.

e Within StdRegions, create a library of platform-aware containers for ele-
mental reference shapes (factory-instantiated), primarily storing the coef-
ficients and physical solution.



e Within LocalRegions, create a library of operators which extend the StdRe-
gions operators to incorporate geometry.

e Within LocalRegions, create a library of containers for physical elements,
which extend the StdRegions counterparts by augmenting it with geome-
try information.

e Within Collections, leverage operator implementations within the StdRe-
gions library to remove duplication of operator implementation and enable
support for a wider range of bases (currently nodal is not properly sup-
ported).

3 Basis Definition

Basis components would be constructed as a class hierarchy and instantiated
through a factory, so as to remove the enum definition currently in place. This
will allow the addition of arbitrary bases without needing to modify the library.

Example derived classes, from the BasisComponent base class, might in-
clude:

e ModifiedA

e ModifiedB

e ModifiedC

e OrthoA

e OrthoB

e OrthoC

e Bernstein

e BernsteinTri

e BernsteinTet

e Lagrange

Construction parameters include

e a map of (key, double-precision value) parameters
e points distribution + optional index (if basis dim < points dim)
e OR two point distributions

e OR three point distributions

BasisComponents may themselves be 1D, 2D or 3D.



3.1 Main Basis class
The purpose of this class is to:

e Provide scope for storing a richer description of the basis and its capabil-
ities.

e Support tensor-product and multi-dimensional bases and point distribu-
tions within a single object entity.

e Remove the varying number of constructor parameters in elements to en-
able easier use of the factory pattern.

The class would be instantiated from one, two or three BasisComponent
classes which are treated in a tensor-product style. For example:

Basis (BasisComponentSharedPtr,
BasisComponentSharedPtr = O,
BasisComponentSharedPtr = 0)

Note that a single BasisComponent may be multidimensional, so this class must
ensure the total product does not exceed three dimensions. In addition, for bases
containing partial PointsKeys (i.e. a multi-dimensional points-key + index),
this class will verify that the complete PointsKey is defined across the specified
BasisComponents.

4 Element container classes

In StdRegions, these would take a suitable Basis as a constructor argument and
store the vectors of coefficients and the physical solution.

e They would also include the auxiliary functions such as GetFaceBasisKey,
GetEdgeNumPoints, FaceToElementMap, GetEdgePhysVals, etc as these
are related to the container storage.

e The functions such as GetNumVerts are geometry/shape-related and so
make more sense to be in the corresponding Geometry class in SpatialDo-
mains.

e For the LocalRegions counterparts, they would store in addition a Geom-
etry object and auxiliary data such as normals.

e Containers should be aware of their state (i.e. Coeff, Phys) and consistency
between Coeff and Phys representations.

e Containers can be designed to interoperate with different platforms/co-
processors (e.g. GPU/Phi) and manage data movement.

GPU and Phi support should be compile-time options. Therefore support
for such enabled containers should be confined to separate classes.



5 Operator classes

Only a single operator object is necessary to act on any element container of a
given type/basis.

Operators would be registered with a factory. Keys would specify the bases
for which the operator is valid. An operator may be registered for multiple
bases where the action is appropriately generic (e.g. a BwdTrans). Operators
would be synomymous with their matrix equivalents. An operator class should
therefore implement:

e a GetMatrix function, which implements (if appropriate) a matrix repre-
sentation of the operator. An operator class would manage the matrices
it generates.

e an Apply function, which implements a matrix-free approach for the op-
erator (or it can operate with the matrix if that is just as efficient).

e Operator implementations can be written for co-processor support.

Again, separate implementations of operators should be written for GPU/Phi
support to allow for simplified compile-time selection.



6 Example

typedef std::string TBasisParamKey;
typedef NekDouble TBasisParamValue;
typedef std::map<TBasisParamKey, TBasisParamValue> TBasisParamlList;

TBasisParamList p;
pl"Order"]1=4;

LibUtilities::Points<NekDouble> pts_gll

= factory.CreateInstance (GaussLobattoLegendre ,5);
LibUtilities::ModifiedA b_modA(p, pts_gll);
LibUtilities::Basis b0 (b_modA, b_modA);

LibUtilities::Basis bl (b_modA, b_modA, b_modA);

LibUtilities::Points<NekDouble> pts_fekete
= factory.CreateInstance (FeketeTri ,15);

LibUtilities::Lagrange2 b_lag (p, pts_fekete);
LibUtilities::Basis b2 (b_lag);

LibUtilities::Points<NekDouble> pts_gr

= factory.Createlnstance (GaussRadau ,4);
LibUtilities::ModifiedB b_modB(p, pts_gr);
LibUtilities::Basis b3 (b_modA, b_modB);

LibUtilities::Basis b3 (b_lag, b_modA);

std::vector<LocalRegions::ExpansionSharedPtr> explist;
for (i = 0; i < nel; ++1i)
{
SpatialDomains::GeometrySharedPtr g
= Factory.CreateInstance (eQuad, ...)
LocalRegions::ExpansionSharedPtr e
= Factory.CreateInstance (eQuad, bl, g);



explist.push_back(e)

Operators::0pKey opKey("BwdTrans", bl);
Operators::0pSharedPtr OpBwdTrans = Factory.CreateInstance (opKey);
for (i = 0; i < nel; ++1i)
{
OpBwdTrans ->Apply (expList [i], expList[i]);
}



