Introduction	Modeling	Test case	Intake case	References

Shock wave boundary layer interaction in intakes at incidence

Giacomo Castiglioni, Francesco Montomoli, Joaquim Peiró, Spencer J. Sherwin

Department of Aeronautics Imperial College London

g.castiglioni@imperial.ac.uk

June 10-12, 2019

Nektar++ Workshop

00 ·	000000000	000000000000	0000000000000000	000
Overview				

1 Introduction

2 Modeling

3 Test case

4 Intake case

5 References

Introduction	Modeling	Test case	Intake case	References
••				

Introduction

Introduction	Modeling	Test case	Intake case	References
00				

Motivation

Shock wave boundary layer interaction (SWBLI) is a phenomena encountered in many industrial devices (external aero, engine intakes, cascades, nozzles, etc.) and plays a critical role due to its importance for both efficiency and structural integrity, often being the limiting factor to the design envelope.

Goal

Simulate a simplified, but representative, intake geometry with a high-order, unstructured compressible solver (Nektar++).

Introduction	Modeling	Test case	Intake case	References
	000000000			

Modeling

Introduction	Modeling	Test case	Intake case	References
00	○●0000000	000000000000	000000000000000	000
Nektar++				

High fidelity, scale resolving simulations (DNS, uDNS)

Framework

- Spectral h/p element method
- Unstructured
- Compressible / Incompressible

Target

- High-Reynolds numbers
- Complex geometries
- Transient phenomena

www.nektar.info

Discontinuous Spectral Element Methods (DSEM)

- Geometrical flexibility
- Good dissipation/dispersion properties
- 'Natural' framework for iLES/uDNS
- Compact schemes

Compressible Navier-Stokes equations

$$\frac{\partial \mathbf{q}}{\partial t} + \nabla \cdot (\mathbf{f}(\mathbf{q}) - \mathbf{g}(\mathbf{q})) = 0, \qquad (1)$$

$$\mathbf{q} = \begin{bmatrix} \rho \\ \rho u_i \\ E \end{bmatrix}, \quad \mathbf{f}(\mathbf{q})_j = \begin{bmatrix} \rho u_j \\ \rho u_i u_j + p \delta_{ij} \\ (E + p) u_j \end{bmatrix}, \quad \mathbf{g}(\mathbf{q})_j = \begin{bmatrix} 0 \\ \tau_{ij} \\ u_i \tau_{ij} - o_j \end{bmatrix}, \quad (2)$$

$$p = \rho RT, \quad e = C_v T, \quad h = C_p T, \tag{3}$$

$$\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \lambda \frac{\partial u_i}{\partial x_i} \delta_{ij} \right) + \zeta \frac{\partial u_i}{\partial x_i} \delta_{ij}, \tag{4}$$

$$o_i = -\kappa \frac{\partial T}{\partial x_i}.$$
 (5)

(with $\lambda = \frac{2}{3}$, $\zeta = 0$, $k = \frac{C_{p\mu}}{Pr}$)

Laplacia	n viscosity			
	000000000			
Introduction	Modeling	Test case	Intake case	References

The RHS of the Navier-Stokes equations is augmented by

Laplacian viscosity [PP06]

$$abla \cdot (arepsilon
abla \mathbf{q})$$

for consistency $\varepsilon \sim h/p$, and from physical considerations $\varepsilon \sim \lambda_{max} = |u| + c$ [BD10]

$$\varepsilon = \varepsilon_0 \frac{h}{p} \lambda_{max} S, \tag{7}$$

 $\varepsilon_0 = O(1)$, S sensor.

(6)

Based on a shock sensor artificial shear viscosity and thermal conductivity are added to the physical ones, i.e.

$$\mu = \mu_{ph} + \mu_{av}, \zeta = \zeta_{ph} + \zeta_{av}, \kappa = \kappa_{ph} + \kappa_{av}, \tag{8}$$

Minimal physical viscosity model $\mu_{av} = \mu_0 \rho \frac{h}{p} \lambda_{max} S,$ (9) $\kappa_{av} = \mu_{av} \frac{C_p}{P_r},$ (10) $\zeta_{av} = 0.$ (11)

 $\varepsilon_0 = O(1)$

Resolution based sensor

As Shock sensor, a modal resolution-based indicator can be used

$$s_e = \log_{10}\left(rac{\langle q - \tilde{q}, q - \tilde{q} \rangle}{\langle q, q \rangle}
ight),$$
 (12)

where $\langle\cdot,\cdot\rangle$ represents a L^2 inner product, q and \tilde{q} are the full and truncated expansions of a state variable

$$q(x) = \sum_{i=1}^{N(P)} \hat{q}_i \phi_i, \quad \tilde{q}(x) = \sum_{i=1}^{N(P-1)} \hat{q}_i \phi_i, \quad (13)$$

constant element-wise sensor

$$S_{\varepsilon} = \begin{cases} 0, & s_{e} \leq s_{k} - k, \\ \frac{1}{2} \left(1 + \sin \frac{\pi(s_{e} - s_{k})}{2k} \right), & |s_{e} - s_{k}| \leq k, \\ 1, & s_{e} \geq s_{k} + k, \end{cases}$$
(14)

 $s_k \sim \log_{10}(p^4)$ (from Fourier coefficients decaying as $1/p^2$).

Introduction	Modeling	Test case	Intake case	References	
00	○○○○○○●○○	000000000000	0000000000000000	000	
Vorticity sensor					

The aim is to avoid excessive dissipation in regions of high vorticity

 $\mathcal{S}_{\omega} = rac{(
abla \cdot \mathbf{u})^2}{(
abla \cdot \mathbf{u})^2 + |
abla imes \mathbf{u}|^2 + arepsilon},$

then the applied sensor becomes

Ducros' sensor

$$S = S_{\varepsilon} S_{\omega}, \tag{16}$$

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ヨ つ へ い 12/46

(15)

Introduction	Modeling	Test case	Intake case	References
00	○○○○○○○○○	000000000000	000000000000000	000
Smoothing	operators			

- \blacksquare Ducros' sensor should be 0 $\leq {\it S}_{\omega} \leq 1$
- AV should be strictly positive
- element-wise constant AV might induce oscillations

Strategy

- Average Ducros' sensor over an element
- Compute AV
- Approximate C0 projection of AV

 Introduction
 Modeling
 Test case
 Intake case
 References

 00
 000000000
 0000000000
 00000000000
 000

Soft max function

- Applied to pressure
- Allows for the Riemann solver to work through negative pressure oscillations

Introduction	Modeling	Test case	Intake case	References
		000000000000		

Test case

<ロト < 合ト < 差ト < 差ト 差) = のへで 15/46

Introduction	Modeling	Test case	Intake case	References
00	0000000000	○●00000000000	0000000000000000	
Test case				

SWBLI studied experimentally and numerically by *Degrez et al.* [DBW87].

<□ > < @ > < E > < E > E = 少へで 16/46

The inflow boundary is located at $x = 0.3x_{sh}$ where the analytical compressible boundary layer solution [WC06] is imposed. Rankine-Hugoniot relations are added to impose the shock.

• 120×40 elements

■ *p* = 4

<ロト < 母 ト < 喜 ト < 喜 ト 差 声 の へ で 18/46

Introduction	Modeling	Test case	Intake case	References
00	000000000	0000●00000000	0000000000000000	000
Cases co	onsidered			

- no AV
- AV
- AV + Ducros
- *AV* + *C*0
- AV + Ducros + C0

Pressure and skin friction distribution (no AV)

- Blue line DIRK-2;
- Red line SSP RK-2;
- Circles [DBW87]; triangles [BRCD06]; dotted line is empirical solution by [Eck55] for C_f or the Rankine-Hugoniot relations for p.

 Introduction
 Modeling
 Test case
 Intake case
 References

 Opensity at horizontal line (no AV)

- Blue line DIRK2; Red line SSP RK2;
- Simulation is stable
- Non-physical oscillations

Introduction	Modeling	Test case	Intake case	References
00	000000000	○00000000000	000000000000000	000

AV case

- Black line no AV SSP RK2;
 Blue line DIRK2; Red line SSP RK2
- Non-physical oscillations reduced
- Challenging to add dissipation only to the shock!

$$s_k = 0.25, \ k = 0.75$$

<ロト < @ ト < E ト < E ト 三 = のへで 22/46

The Ducros' sensor lowers the artificial viscosity in regions that have low resolution and high vorticity (small effect in laminar case)

Ducros case (AV+Ducros)

- Black line no AV SSP RK2
- Blue line DIRK2; Red line SSP RK2
- Non-physical oscillations are almost gone
- Still difficult to find stable AV parameters

$$s_k = 0.00, \ k = 0.75$$

<ロ > < 回 > < 回 > < 三 > < 三 > 三 = の Q @ 24/46

- Black line no AV SSP RK2
- Blue line DIRK2; Red line SSP RK2
- Non-physical oscillations are gone
- Shock tube param for AV
- Ducros' sensor has little effect (laminar flowfield)

Introduction	Modeling	Test case	Intake case	References
00	000000000	○○○○○○○○○○○	000000000000000	
Flat plate :	summary			

- Good quantitative agreement for 2D laminar SWBLI
- C0 smoothing increases robustness and decrease influence of AV parameters
- C0 smoothing allows for a 'sharper' AV
- Ducros' sensor helps less than C0 smoothing (laminar flowfield)

Introduction	Modeling	Test case	Intake case	References
			000000000000000000000000000000000000000	

Intake case

<ロト < 合ト < 言ト < 言ト 三目目 のへで 28/46

 Introduction
 Modeling
 Test case
 Intake case
 References

 00
 000000000
 0000000000
 0000000000
 000

Inviscid case, Mach number distribution

Mach = 0.435, α = 23.15.

Total pressure is imposed at the inlet, static pressure at the outlet.

A sponge is applied in the lower channel to simulate the blockage, at around 76% of the cord.

The sponge is applied only to the momentum equations and the reference solution is u = v = 0.

$$C_{sp} = -A\frac{1}{2}\left[tanh\left(\frac{x-x_1}{\frac{1}{4}\delta}\right) - tanh\left(\frac{x-x_2}{\frac{1}{4}\delta}\right) \right]$$
(18)

<ロト < 母 ト < 三 ト < 三 ト 三 三 の へ C 30/46

 $(\delta/L = 1/3, x_1/L = 5.69, \text{ and } x_2/L = 6.04).$

Inviscid (Case			
00	0000000000	000000000000	000000000000000000000000000000000000000	000
Introduction	Modeling	Test case	Intake case	References

Blue line: coarse mesh (T = 698, p = 4), nominal inlet conditions, no blockage, varying p_{out} ; Other lines: fine mesh (T = 4158, p = 3), varying blockage and p_{out} ; Dots: experimental results [CB18].

Black line: suction side; green line: pressure side; dots: experimental results [CB18]

Viscous case, mesh-v2 and Mach number distribution

Mesh-v2: Q = 5048, T = 13768, p = 4, dof = 245'984

 Introduction
 Modeling 0000000000
 Test case 0000000000
 Intake case 000000000000
 References 000

 Viscous case, pressure and skin friction

 $Re_L = 4.0 \times 10^5$, mesh-v2

Black line: suction side; green line: pressure side; dots: experimental results [CB18]

- Averaged in time for 0.6 (c/u_{∞})
- Simulation is more stable with 'Physical' viscosity

 $Re_L = 4.0 \times 10^5$, mesh-v2

Black line: suction side; green line: pressure side; red line: wall resolved LES limit.

- Averaged in time for 0.6 (c/u_{∞})
- Simulation is more stable with 'Physical' viscosity

□ ▶ < @ ▶ < \ = ▶ < \ = ▷ < \ = ♡ < ♡
 35/46

 $Re_L = 1.6 \times 10^5$, mesh-v2

 $\begin{array}{c|c} \mbox{Introduction} & \mbox{Modeling} & \mbox{Test case} & \mbox{Intake case} & \mbox{References} \\ \hline \mbox{occose} & \mbox{occose} &$

< - > < - > < = > < = > < = > < = < 37/46

 $Re_L = 4.0 \times 10^5$, mesh-v2

Viscous case, mesh-v2a detail

Mesh-v2a: $H = 5048 \times 6$, $R = 13768 \times 6$, p = 4, dof = 5'903'616. Spanwise domain: $L_z/L = 2.1\%$ or $L_z/c = 0.26\%$

 $\blacksquare Re_L = 4 \times 10^5$

ž x

• starting from 2D averaged field + pertubation for ρw • 0.5 (c/u_{∞}) Introduction

Modeling 000000000 Test case

Intake case

Viscous case, flow field

- for viz, domain ×3
- turbulence is self sustained
- separated shear layer is stable
- no large scale separation
- 2D structures are still persistent due to small spanwise width

Introduction
coModeling
occocococoTest case
cocococococoIntake case
cococococococococococoReferences
cocoViscous case, flow field, mesh stretched in z direction × 2

- turbulence is self sustained
- separated shear layer is stable
- no large scale separation
- 2D structures are much weaker

Introduction 00	Modeling 000000000	Test case 0000000000000	Intake case	References
Next step	S			

<ロト < @ ト < 三ト < 三ト 三三 のへで 43/46

- Thorough validation of canonical SWBLI case
 - h/p convergence
 - sensitivity to AV parameters
- Testing other shock sensors
- Coupling AV with implicit solver

Introduction	Modeling	Test case	Intake case	References
				•00

References

・ロト ・ 日 ト ・ モ ト ・ モ ト モ ー シ へ い ・ 44/46

Introduction	Modeling	Test case	Intake case	References
00	0000000000	000000000000	0000000000000000	0●●
References	;]			

- G. E. Barter and D. L. Darmofal, *Shock capturing with pde-based artificial viscosity for dgfem: Part i. formulation*, J. Comp. Phys. **229** (2010), no. 5, 1810–1827.
- J.-P. Boin, J. C. Robinet, C. Corre, and H. Deniau, *3D steady* and unsteady bifurcations in a shock-wave/laminar boundary layer interaction: a numerical study, Theor. Comput. Fluid Dyn. **20** (2006), no. 3, 163–180.
- A. Coschignano and H. Babinsky, Normal shock wave-turbulent boundary layer interactions in transonic intakes at incidence, 2018 AIAA Aerospace Sciences Meeting, 2018, p. 1513.
- G. Degrez, C.H. Boccadoro, and J.F. Wendt, *The interaction of an oblique shock wave with a laminar boundary layer revisited. An experimental and numerical study*, J. Fluid Mech. **177** (1987), 247–263.

Introduction	Modeling	Test case	Intake case	References
00	000000000	000000000000	000000000000000	○●●
References	II			

- E.R.G. Eckert, Engineering relations for friction and heat transfer to surfaces in high velocity flow, Journal of the Aeronautical Sciences 22 (1955), no. 8, 585–587.
- H. S. Kalsi and P. G. Tucker, *Numerical modelling of shock wave boundary layer interactions in aero-engine intakes at incidence*, ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, American Society of Mechanical Engineers, 2018, pp. V001T01A019–V001T01A019.
- P.-O. Persson and J. Peraire, Sub-cell shock capturing for Discontinuous Galerkin methods, 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006, p. 112.
- F. M. White and I. Corfield, *Viscous fluid flow*, vol. 3, McGraw-Hill New York, 2006.

Cost to run 2.5 time units (x_{sh}/u_{inf})

	AV			
	RK2		DIRK2	
riangle t	6.64e-5	1.13e-3	5.56e-3	1.13e-2
CFL	0.05	1	5	10
CPUh	10.7	12.4	4.14	3.19
speed-up		0.86	2.58	3.35