Under-resolved DNS of non-trivial turbulent boundary layers via spectral/hp continuous Galerkin methods

Rodrigo C. Moura, Joaquim Peiró and Spencer Sherwin

Nektar++ Workshop
Exeter, UK - June 10 / 2019
(U)RANS is less reliable for “non-standard” flows

Wall-modeled LES still unreliable for certain flows [*]

Wall-resolved LES too expensive at high Reynolds

Wall-resolved implicit LES / under-resolved DNS via spectral/hp methods are promising strategies (CG, DG, etc)

They seem to offer reliable results for highly complex flows at a reduced cost (being affordable at moderate Reynolds)
Introduction & motivation

- (U)RANS is less reliable for “non-standard” flows
- Wall-modeled LES still unreliable for certain flows [*]
- Wall-resolved LES too expensive at high Reynolds
- Wall-resolved implicit LES / under-resolved DNS via spectral/hp methods are promising strategies (CG, DG, etc)
- They seem to offer reliable results for highly complex flows at a reduced cost (being affordable at moderate Reynolds)
Introduction & motivation

- (U)RANS is less reliable for “non-standard” flows
- Wall-modeled LES still unreliable for certain flows [*]
- Wall-resolved LES too expensive at high Reynolds
- Wall-resolved implicit LES / under-resolved DNS via spectral/hp methods are promising strategies (CG, DG, etc)
- They seem to offer reliable results for highly complex flows at a reduced cost (being affordable at moderate Reynolds)
Presentation outline

• What are spectral element methods (SEM)?

• What is the SEM-based iLES / uDNS approach?

• How to understand its properties and capabilities?

• For DG, dispersion-diffusion eigenanalysis has proved insightful

• Ongoing eigenanalysis of CG with stabilisation based on SVV (and others)
Presentation outline

- What are spectral element methods (SEM)?
- What is the SEM-based iLES / uDNS approach?
- How to understand its properties and capabilities?
- For DG, dispersion-diffusion eigenanalysis has proved insightful
- Ongoing eigenanalysis of CG with stabilisation based on SVV (and others)
- **Current work focuses on CG’s performance for a specific test case (non-trivial turbulent BL case)**
Spectral element methods

Extensions of FE / FV via polynomial basis

Kind of spectral method within the element

Natural high-order with geometrical flexibility

Strong / weak inter-element continuity (CG / DG)
Stabilisation for iLES / uDNS

Stabilization via SVV or upwind (Riemann) fluxes

Hyperviscous-like dissipation at higher orders

Improved resolution power per DOF employed

Rationale for implicit LES / under-resolved DNS

\[
\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = \mu \frac{\partial}{\partial x} \left(Q \star \frac{\partial u}{\partial x} \right) \approx
\]

\[
\approx -\mu \sum_k k^2 \hat{Q}_k \hat{u}_k \exp(ikx)
\]
Eigenanalysis for DG – linear advection in 1D
Tests with Burgers turbulence (1D)

\[
\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u^2}{\partial x} = \frac{A_F}{\sqrt{\Delta t}} \sum_{N \in \mathbb{N}_F} \frac{\sigma_N(t)}{\sqrt{|N|}} \exp \left(i \frac{2\pi N}{L} x \right)
\]

\[
p = 1, \ n_{el} = 2048 \quad \text{and} \quad p = 7, \ n_{el} = 512
\]
Tests with Burgers turbulence (1D)

\[
\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u^2}{\partial x} = \frac{A_F}{\sqrt{\Delta t}} \sum_{N \in \mathbb{N}_F} \frac{\sigma_N(t)}{\sqrt{|N|}} \exp \left(i \frac{2\pi N}{L} x \right)
\]

\[p = 7, n_{el} = 512\]
Tests with Burgers turbulence (1D)

\[\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u^2}{\partial x} = \frac{A_F}{\sqrt{\Delta t}} \sum_{N \in \mathbb{N}_F} \frac{\sigma_N(t)}{\sqrt{|N|}} \exp \left(i \frac{2\pi N}{L} x \right) \]

\[p = 7, n_{el} = 512 \]
Tests with the inviscid TGV flow
3D energy spectra – adapted 1% rule (3D version)
3D energy spectra – adapted 1% rule (3D version)
Eigenanalysis for CG — linear advection plus SVV

Numerical Dispersion (CG)

Numerical Diffusion (CG)

P=2 to P=8
Eigenanalysis for CG – linear advection plus SVV

Numerical Dispersion (CG)

- Real \((k^* h) / P \)
- k h / P
- P=2 to P=8

Numerical Diffusion (CG)

- Imag \((k^* h) / P \)
- k h / P
- P=2 to P=8
Presentation outline

• What are spectral element methods (SEM)?

• What is the SEM-based iLES / uDNS approach?

• How to understand its properties and capabilities?

• For DG, dispersion-diffusion eigenanalysis has proved insightful

• Ongoing eigenanalysis of CG with SVV-based stabilisation

• Current work focuses on CG’s performance for a specific test case (non-trivial turbulent BL case)
Test case description

- Rotating turbulent BL case proposed by Spalart [*]
- Admits an asymptotic solution (stat. steady in the rotating frame)
- Rich physics, enhanced unsteadiness and stronger anisotropy
- Misalignment between mean-flow shear and Reynolds stresses
- Requires sophisticated modeling and relatively fine grids

\[
\begin{align*}
 u(x, z, t) &= V_o \cos \phi \\
 w(x, z, t) &= V_o \sin \phi \\
 \phi &= ft
\end{align*}
\]
Test case description

- Rotating turbulent BL case proposed by Spalart [*]
- Admits an asymptotic solution (stat. steady in the rotating frame)
- Rich physics, enhanced unsteadiness and stronger anisotropy
- Misalignment between mean-flow shear and Reynolds stresses
- Requires sophisticated modeling and relatively fine grids

\[
\begin{align*}
u(x, z, t) &= V_o \cos \phi \\
w(x, z, t) &= V_o \sin \phi \\
\phi &= ft
\end{align*}
\]
Relevant quantities and available DNSs

- Known laminar solution gives $\delta_L = (2 \nu / f)^{1/2}$

- Several Reynolds can be defined: R_L, R_T ... $\text{Re} = \delta_T V_O / \nu$

- Summary of relevant data from available DNS results:

<table>
<thead>
<tr>
<th>R_ℓ</th>
<th>R_T</th>
<th>Re</th>
<th>δ_T/δ_ℓ</th>
<th>V_*/V_O</th>
<th>δ_*/δ_ℓ</th>
<th>$\alpha (^{\circ})$</th>
<th>$\phi^* (^{\circ})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>466</td>
<td>7632</td>
<td>15.3</td>
<td>0.0610</td>
<td>0.0328</td>
<td>26.24</td>
<td>19.88</td>
</tr>
<tr>
<td>620</td>
<td>653</td>
<td>11203</td>
<td>18.1</td>
<td>0.0583</td>
<td>0.0277</td>
<td>23.20</td>
<td>18.62</td>
</tr>
<tr>
<td>767</td>
<td>914</td>
<td>16397</td>
<td>21.4</td>
<td>0.0561</td>
<td>0.0232</td>
<td>20.91</td>
<td>17.70</td>
</tr>
</tbody>
</table>
Relevant quantities and available DNSs

- Known laminar solution gives $\delta_L = (2 \nu / \text{f})^{1/2}$

- Several Reynolds can be defined: $R_L, R_T \ldots \ Re = \delta_T V_O / \nu$

- Summary of relevant data from available DNS results:

<table>
<thead>
<tr>
<th>R_ℓ</th>
<th>R_T</th>
<th>Re</th>
<th>δ_T/δ_ℓ</th>
<th>V_*/V_o</th>
<th>δ_*/δ_ℓ</th>
<th>$\alpha(\circ)$</th>
<th>$\phi^*(\circ)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>466</td>
<td>7632</td>
<td>15.3</td>
<td>0.0610</td>
<td>0.0328</td>
<td>26.24</td>
<td>19.88</td>
</tr>
<tr>
<td>620</td>
<td>653</td>
<td>11203</td>
<td>18.1</td>
<td>0.0583</td>
<td>0.0277</td>
<td>23.20</td>
<td>18.62</td>
</tr>
<tr>
<td>767</td>
<td>914</td>
<td>16397</td>
<td>21.4</td>
<td>0.0561</td>
<td>0.0232</td>
<td>20.91</td>
<td>17.70</td>
</tr>
</tbody>
</table>
Available solutions at $R_L = 767$

- In previous LESs, the Mixed Lagrangian (ML) model gave best results [*]

<table>
<thead>
<tr>
<th>Approach</th>
<th>Model</th>
<th>Discretisation</th>
<th>L_x, L_z</th>
<th>L_y</th>
<th>Mesh points</th>
<th>Δx^+, Δz^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS [40]</td>
<td>—</td>
<td>Spectral method [49]</td>
<td>$2 \delta_t$</td>
<td>?</td>
<td>$256^2 \cdot 80$</td>
<td>7</td>
</tr>
<tr>
<td>LES [41]</td>
<td>ML</td>
<td>2^{nd} order central FD</td>
<td>$1.6 \delta_t$</td>
<td>$1.6 \delta_t$</td>
<td>65^3</td>
<td>23</td>
</tr>
<tr>
<td>LES [42]</td>
<td>DA</td>
<td>2^{nd} order central FD</td>
<td>$1.6 \delta_t$</td>
<td>$1.6 \delta_t$</td>
<td>66^3</td>
<td>22</td>
</tr>
</tbody>
</table>

(first node at $y^+ = 1$ and 10 equispaced nodes within $y^+ < 10$, then a constant geometric stretching along the remainder of the BL thickness)
Available solutions at $R_L = 767$

- In previous LESs, the Mixed Lagrangian (ML) model gave best results [*]

<table>
<thead>
<tr>
<th>Approach</th>
<th>Model</th>
<th>Discretisation</th>
<th>L_x, L_z</th>
<th>L_y</th>
<th>Mesh points</th>
<th>Δx^+, Δz^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS [40]</td>
<td>—</td>
<td>Spectral method [49]</td>
<td>2 δ_t</td>
<td>?</td>
<td>$256^2 \cdot 80$</td>
<td>7</td>
</tr>
<tr>
<td>LES [41]</td>
<td>ML</td>
<td>2nd order central FD</td>
<td>1.6 δ_t</td>
<td>1.6 δ_t</td>
<td>65^3</td>
<td>23</td>
</tr>
<tr>
<td>LES [42]</td>
<td>DA</td>
<td>2nd order central FD</td>
<td>1.6 δ_t</td>
<td>1.6 δ_t</td>
<td>66^3</td>
<td>22</td>
</tr>
</tbody>
</table>

(first node at $y^+ = 1$ and 10 equispaced nodes within $y^+ < 10$, then a constant geometric stretching along the remainder of the BL thickness)
Available solutions at $R_L = 767$

- In previous LESs, the Mixed Lagrangian (ML) model gave best results [*]

<table>
<thead>
<tr>
<th>Approach</th>
<th>Model</th>
<th>Discretisation</th>
<th>L_x, L_z</th>
<th>L_y</th>
<th>Mesh points</th>
<th>Δx^+, Δz^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS [40]</td>
<td>—</td>
<td>Spectral method [49]</td>
<td>$2 \delta_t$</td>
<td>?</td>
<td>$256^2 \cdot 80$</td>
<td>7</td>
</tr>
<tr>
<td>LES [41]</td>
<td>ML</td>
<td>2^{nd} order central FD</td>
<td>$1.6 \delta_t$</td>
<td>$1.6 \delta_t$</td>
<td>65^3</td>
<td>23</td>
</tr>
<tr>
<td>LES [42]</td>
<td>DA</td>
<td>2^{nd} order central FD</td>
<td>$1.6 \delta_t$</td>
<td>$1.6 \delta_t$</td>
<td>66^3</td>
<td>22</td>
</tr>
</tbody>
</table>

(first node at $y^+ = 1$ and 10 equispaced nodes within $y^+ < 10$, then a constant geometric stretching along the remainder of the BL thickness)

- **Discretisations employed in the present work:**
 - Run 32p1: 8 equispaced $P = 1$ elements within $y^+ < 10$ and the remaining 24 elements stretched until $y = 1.6 \delta_T$... (total 32^3 dofs)
Available solutions at $R_L = 767$

- In previous LESs, the Mixed Lagrangian (ML) model gave best results [*]

<table>
<thead>
<tr>
<th>Approach</th>
<th>Model</th>
<th>Discretisation</th>
<th>L_x, L_z</th>
<th>L_y</th>
<th>Mesh points</th>
<th>Δx^+, Δz^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS [40]</td>
<td>—</td>
<td>Spectral method [49]</td>
<td>$2\delta_t$</td>
<td>?</td>
<td>$256^2 \cdot 80$</td>
<td>7</td>
</tr>
<tr>
<td>LES [41]</td>
<td>ML</td>
<td>2nd order central FD</td>
<td>$1.6\delta_t$</td>
<td>$1.6\delta_t$</td>
<td>65^3</td>
<td>23</td>
</tr>
<tr>
<td>LES [42]</td>
<td>DA</td>
<td>2nd order central FD</td>
<td>$1.6\delta_t$</td>
<td>$1.6\delta_t$</td>
<td>66^3</td>
<td>22</td>
</tr>
</tbody>
</table>

(first node at $y^+ = 1$ and 10 equispaced nodes within $y^+ < 10$, then a constant geometric stretching along the remainder of the BL thickness)

- **Discretisations employed in the present work:**
 - Run **32p1**: 8 equispaced $P = 1$ elements within $y^+ < 10$ and the remaining 24 elements stretched until $y = 1.6\delta_T$ … (total 32^3 dofs)
 - Run **8p4**: 2 equispaced $P = 4$ elements within $y^+ < 10$ and the remaining 6 elements stretched until $y = 1.6\delta_T$ … (total 32^3 dofs)
Numerical set-up

- Nektar++ incompressible solver [*]
- Spectral/hp CG with P=1 and P=4
- Using polynomial dealiasing, but no SVV
- Perturbed laminar solution as IC
- Transient takes ~ 10 cycles
- Statistics gathered over ~ 1 cycle
Numerical set-up

- Nektar++ incompressible solver [*]
- Spectral/hp CG with P=1 and P=4
- Using polynomial dealiasing, but no SVV
- Perturbed laminar solution as IC
- Transient takes ~ 10 cycles
- Statistics gathered over ~ 1 cycle
Results of run 32p1

CG-uDNS (p=1) on 32^3 dofs VS. dynamic Smagorinsky (FD-based) on 64^3 dofs

$\hat{u}^+ = \frac{2.44 \ln (y^+)}{V_*} + 5.0$

$y = \delta_r$
Results of run 8p4

CG-uDNS (p=4) on 32^3 dofs VS. mixed Lagrangian model (FD-based) on 64^3 dofs

\[\hat{u}^+ = 2.44 \ln(y^+) + 5.0 \]

\[y = \delta_\tau \]
Results of run 8p4

CG-uDNS \((p=4)\) on \(32^3\) dofs VS. mixed Lagrangian model (FD-based) on \(64^3\) dofs
Results of run 8p4

CG-uDNS (p=4) on 32^3 dofs VS. mixed Lagrangian model (FD-based) on 64^3 dofs
Why so much success?

- Superior resolution power per DOF at higher orders
- Absence of (often restrictive) modeling assumptions
- Reynolds not too high yet (no SVV need so far)
Future directions

- Analysis of the energy spectrum, and other statistics
- Try and correlate with dispersion-diffusion analysis
- Increase the Reynolds number (and probably add SVV)
Questions