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Introduction  & motivation

• (U)RANS is less reliable for “non-standard” flows

• Wall-modeled LES still unreliable for certain flows [*]

• Wall-resolved LES too expensive at high Reynolds

• Wall-resolved implicit LES / under-resolved DNS via

spectral/hp methods are promising strategies (CG, DG, etc)

• They seem to offer reliable results for highly complex

flows at a reduced cost (being affordable at moderate Reynolds)
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Presentation  outline

• What are spectral element methods (SEM)?

• What is the SEM-based iLES / uDNS approach?

• How to understand its properties and capabilities?

• For DG, dispersion-diffusion eigenanalysis has proved insightful

• Ongoing eigenanalysis of CG with stabilisation based on SVV (and others)
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Spectral element methods

Extensions of FE / FV via polynomial basis

Kind of spectral method within the element

Natural high-order with geometrical flexibility

Strong / weak inter-element continuity (CG / DG)



Stabilisation for iLES / uDNS

Stabilization via SVV or upwind (Riemann) fluxes

Hyperviscous-like dissipation at higher orders

Improved resolution power per DOF employed

Rationale for implicit LES / under-resolved DNS



Eigenanalysis for DG  – linear advection in 1D
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Tests with the inviscid TGV flow



3D energy spectra  – adapted 1% rule (3D version)
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Eigenanalysis for CG  – linear advection plus SVV



Eigenanalysis for CG  – linear advection plus SVV



Presentation  outline

• What are spectral element methods (SEM)?

• What is the SEM-based iLES / uDNS approach?

• How to understand its properties and capabilities?

• For DG, dispersion-diffusion eigenanalysis has proved insightful

• Ongoing eigenanalysis of CG with SVV-based stabilisation

• Current work focuses on CG’s performance for a specific test case

(non-trivial turbulent BL case)



Test case description

• Rotating turbulent BL case

proposed by Spalart [*]

• Admits an asymptotic solution

(stat. steady in the rotating frame)

• Rich physics, enhanced unsteadiness

and stronger anisotropy

• Misalignment between mean-flow

shear and Reynolds stresses

• Requires sophisticated modeling

and relatively fine grids
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Relevant quantities and available DNSs

• Known laminar solution gives dL = ( 2 n / f )1/2

• Several Reynolds can be defined: RL ,  RT …  Re = dT VO / n

• Summary of relevant data from available DNS results:
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Available solutions at RL = 767

• In previous LESs, the Mixed Lagrangian (ML) model gave best results [*]

(first node at y+ = 1 and 10 equispaced nodes within y+ < 10, then

a constant geometric stretching along the remainder of the BL thickness)
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Numerical set-up

• Nektar++ incompressible solver [*]

• Spectral/hp CG with P=1 and P=4

• Using polynomial dealiasing, but no SVV

• Perturbed laminar solution as IC

• Transient takes ~ 10 cicles

• Statistics gathered over ~ 1 cicle
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Results of run 32p1

CG-uDNS (p=1) on 323 dofs VS. dynamic Smagorinsky (FD-based) on 643 dofs
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Why so much success?

• Superior resolution power per DOF at higher orders

• Absence of (often restrictive) modeling assumptions

• Reynolds not too high yet (no SVV need so far)



Future directions

• Analysis of the energy spectrum, and other statistics

• Try and correlate with dispersion-diffusion analysis

• Increase the Reynolds number (and probably add SVV)



Questions


