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Introduction & metivation

(U)RANS is less reliable for “non-standard” flows
Wall-modeled LES still unreliable for certain flows [*]
Wall-resolved LES too expensive at high Reynolds

Wall-resolved implicit LES / under-resolved DNS via
spectral/hp methods are promising strategies (CG, DG, etc)

They seem to offer reliable results for highly complex
flows at a reduced cost (being affordable at moderate Reynolds)
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What are spectral element methods (SEM)?

What is the SEM-based iLES / uDNS approach?

How to understand its properties and capabilities?

For DG, dispersion-diffusion eigenanalysis has proved insightful

Ongoing eigenanalysis of CG with stabilisation based on SVV (and others)
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What are spectral element methods (SEM)?

What is the SEM-based iLES / uDNS approach?

How to understand its properties and capabilities?

For DG, dispersion-diffusion eigenanalysis has proved insightful

Ongoing eigenanalysis of CG with stabilisation based on SVV (and others)

Current work focuses on CG's performance for a specific test case
(non-trivial turbulent BL case)
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Extensions of FE / FV via polynomial basis

Kind of spectral method within the element
Natural high-order with geometrical flexibility

Strong / weak inter-element continuity (CG / DG)
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Stabilisation for iLES / ubDNS

Stabilization via SVV or upwind (Riemann) fluxes
Hyperviscous-like dissipation at higher orders
Improved resolution power per DOF employed

Rationale for implicit LES / under-resolved DNS

au _|_a8u 0 0 au
— ,c— *x — | &~
Jat dx f dx dX

A — UL Zk2 Oy Ui exp(ikx)
k

Numencal anfusnon

P=2to P=8 7




Imperial College
London

Eigenanalysis for DG - linear advection in 1D
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Tests with Burgers turbulence (1D)
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Tests with Burgers turbulence (1D)
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Tests with Burgers turbulence (1D)
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3D energy spectra — adapted 1% rule (3D version)
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3D energy spectra — adanted 1% rule (3D version)
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Numerical Dispersion (CG) Numerical Diffusion (CG)
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What are spectral element methods (SEM)?

What is the SEM-based iLES / uDNS approach?

How to understand its properties and capabilities?

For DG, dispersion-diffusion eigenanalysis has proved insightful
Ongoing eigenanalysis of CG with SVV-based stabilisation

Current work focuses on CG's performance for a specific test case
(non-trivial turbulent BL case)
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Test case description

Rotating turbulent BL case
proposed by Spalart [*]

Admits an asymptotic solution
(stat. steady in the rotating frame)

Rich physics, enhanced unsteadiness
and stronger anisotropy

Misalignment between mean-flow

shear and Reynolds stresses

Requires sophisticated modeling
and relatively fine grids
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Philippe R Spalart. Theoretical and numerical study of a three-dimensional turbulent boundary
layer. Journal of Fluid Mechanics, 205:319-340, 1989.

Test case description

Rotating turbulent BL case u(z,z,t) =V, cos o
proposed by Spalart [*] w(z,z,t) = V,sin¢

Admits an asymptotic solution
(stat. steady in the rotating frame)

Rich physics, enhanced unsteadiness
and stronger anisotropy

Misalignment between mean-flow
shear and Reynolds stresses

Requires sophisticated modeling
and relatively fine grids

gt oL




Imperial College
London

« Known laminar solution gives 6, = (2 v/ f)Y?

- Several Reynolds can be defined: R, , R; ...

« Summary of relevant data from available DNS results:

Re=06;:Vy/vVv

Ry R, Re o.f6p VSV, 6./6p «al®) o°(°)
00 466 T632 153 0.0610 0.032% 26.24 19.88
620 653 11203 18.1 0.0583 0.0277 23.20 18.62
67 914 16397 214 0.0561 0.0232 2091 17.7
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« Known laminar solution gives 6, = (2 v/ f)Y?
« Several Reynolds can be defined: R, , Ry ... Re=6;V5/vV

« Summary of relevant data from available DNS results:

R, R, Re o.f6, V,JV, 0,/6, «(®) ¢"(°)

500 466 7632 153 0.0610 0.0328 26.24 19.88
620 653 11203 181 0.0583 0.0277 23.20 18.62

767 914 16397 214 0.0561 0.0232 20.91
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Available solutions at R, =767

In previous LESSs, the Mixed Lagrangian (ML) model gave best results [*]

Approach Model Discretisation Ly. L., L, Meshpoints Az*, Azt
DNS [40] —  Spectral method [49] 24, 7 256 - 80 7
LES [41] ML 2™ order central FD  1.64; 1.66; 65° 23
LES [42] DA 2™ order central FD  1.64; 164 66 22

(first node at y* = 1 and 10 equispaced nodes within y* < 10, then
a constant geometric stretching along the remainder of the BL thickness)
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X. Wu and K. D. Squires. Large eddy simulation of an equilibrium three-dimensional turbulent
boundary layer. AIAA Journal, 35(1):67-74, 1997.

Available solutions at R, =767

* In previous LESSs, the Mixed Lagrangian (ML) model gave best results [*]
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a constant geometric stretching along the remainder of the BL thickness)
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X. Wu and K. D. Squires. Large eddy simulation of an equilibrium three-dimensional turbulent
boundary layer. AIAA Journal, 35(1):67-74, 1997.

Available solutions at R, =767

* In previous LESSs, the Mixed Lagrangian (ML) model gave best results [*]

Approach Model Discretisation Ly. L., L, Meshpoints Az*, Azt

DNS [40] —  Spectral method [49] 24, 7 256 - 80 7
mm) LES [41] ML 2™ order central FD 166  1.66 65° 23

LES [42] DA 2™ order central FD  1.64; 164 66 22

(first node at y* = 1 and 10 equispaced nodes within y* < 10, then
a constant geometric stretching along the remainder of the BL thickness)

» Discretisations employed in the present work:
 Run 32pl: 8 equispaced P = 1 elements within y* < 10 and the
remaining 24 elements stretched until y = 1.6 o ... (total 3273 dofs)
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X. Wu and K. D. Squires. Large eddy simulation of an equilibrium three-dimensional turbulent
boundary layer. AIAA Journal, 35(1):67-74, 1997.

Available solutions at R, =767

* In previous LESSs, the Mixed Lagrangian (ML) model gave best results [*]

Approach Model Discretisation Ly. L., L, Meshpoints Az*, Azt

DNS [40] —  Spectral method [49] 24, 7 256 - 80 7
) [LES [41] ML 2 order central FD 1646 166 65° 23

LES [42] DA 2™ order central FD  1.64; 164 66 22

(first node at y* = 1 and 10 equispaced nodes within y* < 10, then
a constant geometric stretching along the remainder of the BL thickness)

» Discretisations employed in the present work:
 Run 32pl: 8 equispaced P = 1 elements within y* < 10 and the
remaining 24 elements stretched until y = 1.6 o ... (total 3273 dofs)
* Run 8p4: 2 equispaced P = 4 elements within y* < 10 and the
remaining 6 elements stretched until y = 1.6 o ... (total 3273 dofs)
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Pseudocolor
Var: p

. 0.000

-0.2500

Nektar++ incompressible solver [*]

-0.5000

-0.7500

Spectral/hp CG with P=1 and P=4

¢
-1.000

Using polynomial dealiasing, but no SVV
Perturbed laminar solution as IC
Transient takes ~ 10 cicles

Statistics gathered over ~ 1 cicle
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Var: p
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Nektar++ incompressible solver [*]
Spectral/hp CG with P=1 and P=4

Using polynomial dealiasing, but no SVV
Perturbed laminar solution as IC
Transient takes ~ 10 cicles

Statistics gathered over ~ 1 cicle
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Resulits of run 32n1

CG-uDNS (p=1) on 323 dofs VS. dynamic Smagorinsky (FD-based) on 643 dofs
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Results of run 8p4

CG-uDNS (p=4) on 323 dofs VS. mixed Lagrangian model (FD-based) on 642 dofs
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Results of run 8p4
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« Uems

CG-uDNS (p=4) on 323 dofs VS. mixed Lagrangian model (FD-based) on 642 dofs
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Results of run 8p4

CG-uDNS (p=4) on 323 dofs VS. mixed Lagrangian model (FD-based) on 642 dofs
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Superior resolution power per DOF at higher orders

Absence of (often restrictive) modeling assumptions

Reynolds not too high yet (no SVV need so far)
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Analysis of the energy spectrum, and other statistics

Try and correlate with dispersion-diffusion analysis

Increase the Reynolds number (and probably add SVV)
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