

Instituto Tecnológico de Aeronáutica - ITA - Brasil

Under-resolved DNS of non-trivial turbulent boundary layers via spectral/hp continuous Galerkin methods

Rodrigo C. Moura, Joaquim Peiró and Spencer Sherwin

Nektar++ Workshop Exeter, UK - June 10 / 2019

Introduction & motivation

- (U)RANS is less reliable for "non-standard" flows
- Wall-modeled LES still unreliable for certain flows [*]
- Wall-resolved LES too expensive at high Reynolds
- Wall-resolved implicit LES / under-resolved DNS via spectral/hp methods are promising strategies (CG, DG, etc)
- They seem to offer reliable results for highly complex flows at a reduced cost (being affordable at moderate Reynolds)

J. Larsson, S. Kawai, J. Bodart, and I. Bermejo-Moreno. Large eddy simulation with modeled wall-stress: recent progress and future directions. *Mechanical Engineering Reviews*, 3(1):15, 2016.

Introduction & motivation

- (U)RANS is less reliable for "non-standard" flows
- Wall-modeled LES still unreliable for certain flows [*]
- Wall-resolved LES too expensive at high Reynolds
- Wall-resolved implicit LES / under-resolved DNS via spectral/hp methods are promising strategies (CG, DG, etc)
- They seem to offer reliable results for highly complex flows at a reduced cost (being affordable at moderate Reynolds)

Introduction & motivation

- (U)RANS is less reliable for "non-standard" flows
- Wall-modeled LES still unreliable for certain flows [*]
- Wall-resolved LES too expensive at high Reynolds
- Wall-resolved <u>implicit LES / under-resolved DNS</u> via spectral/hp methods are promising strategies (CG, DG, etc)
- They seem to offer reliable results for highly complex flows at a reduced cost (being affordable at moderate Reynolds)

Presentation outline

- What are spectral element methods (SEM)?
- What is the SEM-based iLES / uDNS approach?
- How to understand its properties and capabilities?
- For DG, dispersion-diffusion eigenanalysis has proved insightful
- Ongoing eigenanalysis of CG with stabilisation based on SVV (and others)

Presentation outline

- What are spectral element methods (SEM)?
- What is the SEM-based iLES / uDNS approach?
- How to understand its properties and capabilities?
- For DG, dispersion-diffusion eigenanalysis has proved insightful
- Ongoing eigenanalysis of CG with stabilisation based on SVV (and others)
- Current work focuses on CG's performance for a specific test case (non-trivial turbulent BL case)

Spectral element methods

Stabilisation for iLES / uDNS

Stabilization via SVV or upwind (Riemann) fluxes

Hyperviscous-like dissipation at higher orders Improved resolution power per DOF employed Rationale for implicit LES / under-resolved DNS

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = \mu \frac{\partial}{\partial x} \left(\mathcal{Q} \star \frac{\partial u}{\partial x} \right) \approx$$
$$\approx -\mu \sum_{k} k^2 \, \hat{\mathcal{Q}}_k \, \hat{u}_k \, \exp(ikx)$$

Eigenanalysis for DG – linear advection in 1D

Tests with Burgers turbulence (1D)

$$\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u^2}{\partial x} = \frac{A_F}{\sqrt{\Delta t}} \sum_{N \in \mathbb{N}_F} \frac{\sigma_N(t)}{\sqrt{|N|}} \exp\left(i\frac{2\pi N}{L}x\right)$$

Tests with Burgers turbulence (1D)

$$\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u^2}{\partial x} = \frac{A_F}{\sqrt{\Delta t}} \sum_{N \in \mathbb{N}_F} \frac{\sigma_N(t)}{\sqrt{|N|}} \exp\left(i\frac{2\pi N}{L}x\right)$$

R. C. Moura, S. J. Sherwin, and J. Peiró. Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods. *Journal of Computational Physics*, 298:695–710, 2015.

Tests with Burgers turbulence (1D)

$$\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u^2}{\partial x} = \frac{A_F}{\sqrt{\Delta t}} \sum_{N \in \mathbb{N}_F} \frac{\sigma_N(t)}{\sqrt{|N|}} \exp\left(i\frac{2\pi N}{L}x\right)$$

Tests with the inviscid TGV flow

3D energy spectra – **adapted 1% rule (3D version)**

R. C. Moura, G. Mengaldo, J. Peiró, and S. J. Sherwin. On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES / under-resolved DNS of Euler turbulence. *Journal of Computational Physics*, 330:615–623, 2017.

3D energy spectra – **adapted 1% rule (3D version)**

Eigenanalysis for CG – linear advection plus SVV

R. C. Moura, S. J. Sherwin, and J. Peiró. Eigensolution analysis of spectral/hp continuous Galerkin approximations to advection-diffusion problems: insights into spectral vanishing viscosity. Journal of Computational Physics, 307:401–422, 2016.

Eigenanalysis for CG – linear advection plus SVV

Presentation outline

- What are spectral element methods (SEM)?
- What is the SEM-based iLES / uDNS approach?
- How to understand its properties and capabilities?
- For DG, dispersion-diffusion eigenanalysis has proved insightful
- Ongoing eigenanalysis of CG with SVV-based stabilisation
- Current work focuses on CG's performance for a specific test case (non-trivial turbulent BL case)

Test case description

- Rotating turbulent BL case proposed by Spalart [*]
- Admits an asymptotic solution (stat. steady in the rotating frame)
- Rich physics, enhanced unsteadiness and stronger anisotropy
- Misalignment between mean-flow shear and Reynolds stresses
- Requires sophisticated modeling and relatively fine grids

$$u(x, z, t) = V_o \cos \phi$$
$$w(x, z, t) = V_o \sin \phi$$
$$\phi = ft$$

Philippe R Spalart. Theoretical and numerical study of a three-dimensional turbulent boundary layer. Journal of Fluid Mechanics, 205:319–340, 1989.

Test case description

- Rotating turbulent BL case proposed by Spalart [*]
- Admits an asymptotic solution (stat. steady in the rotating frame)
- Rich physics, enhanced unsteadiness and stronger anisotropy
- Misalignment between mean-flow shear and Reynolds stresses
- Requires sophisticated modeling and relatively fine grids

$$u(x, z, t) = V_o \cos \phi$$
$$w(x, z, t) = V_o \sin \phi$$
$$\phi = ft$$

Relevant quantities and available DNSs

- Known laminar solution gives $\delta_L = (2 v / f)^{1/2}$
- Several Reynolds can be defined: R_L , R_T ... Re = $\delta_T V_O / v$
- Summary of relevant data from available DNS results:

R_{ℓ}	R_{τ}	Re	$\delta_{\tau}/\delta_{\ell}$	V_*/V_o	δ_*/δ_ℓ	$\alpha\left(^{\rm o}\right)$	$\phi^{*}\left(^{\mathrm{o}}\right)$
500	466	7632	15.3	0.0610	0.0328	26.24	19.88
620	653	11203	18.1	0.0583	0.0277	23.20	18.62
767	914	16397	21.4	0.0561	0.0232	20.91	17.70

Relevant quantities and available DNSs

- Known laminar solution gives $\delta_L = (2 v / f)^{1/2}$
- Several Reynolds can be defined: R_L , R_T ... Re = $\delta_T V_O / v$
- Summary of relevant data from available DNS results:

R_{ℓ}	R_{τ}	Re	$\delta_{\tau}/\delta_{\ell}$	V_*/V_o	δ_*/δ_ℓ	$\alpha\left(^{\rm o}\right)$	$\phi^*\left(^{\rm o}\right)$
500	466	7632	15.3	0.0610	0.0328	26.24	19.88
620	653	11203	18.1	0.0583	0.0277	23.20	18.62
767	914	16397	21.4	0.0561	0.0232	20.91	17.70

Available solutions at $R_L = 767$

In previous LESs, the Mixed Lagrangian (ML) model gave best results [*]

Approach	Model	Discretisation	L_x , L_z	L_y	Mesh points	$\Delta x^+, \Delta z^+$
DNS [40]	ML	Spectral method [49]	$2 \delta_t$ 1.6 δ_t	? 16 &	$256^2 \cdot 80_{65^3}$	7
LES $[41]$ LES $[42]$	DA	2^{nd} order central FD	$1.6 \delta_t$ $1.6 \delta_t$	$1.6 \delta_t$ $1.6 \delta_t$	66^{3}	23

X. Wu and K. D. Squires. Large eddy simulation of an equilibrium three-dimensional turbulent boundary layer. AIAA Journal, 35(1):67–74, 1997.

Available solutions at R_L = 767

In previous LESs, the Mixed Lagrangian (ML) model gave best results [*]

А	pproach	Model	Discretisation	L_x , L_z	L_y	Mesh points	$\Delta x^+, \Delta z^+$
	DNS [40] LES [41]	ML	Spectral method [49] 2^{nd} order central FD	$2 \delta_t$ 1.6 δ_t	? 1.6 δ_t	$256^2 \cdot 80$ 65^3	7 23

X. Wu and K. D. Squires. Large eddy simulation of an equilibrium three-dimensional turbulent boundary layer. AIAA Journal, 35(1):67–74, 1997.

Available solutions at R_L = 767

In previous LESs, the Mixed Lagrangian (ML) model gave best results [*]

	Approach	Model	Discretisation	L_x, L_z	L_y	Mesh points	$\Delta x^+, \Delta z^+$
	DNS [40] LES [41]	 ML	Spectral method [49] 2 nd order central FD	$2 \delta_t$ 1.6 δ_t	? 16 <i>δ</i> .	$256^2 \cdot 80$ 65^3	7 23
,	LES $[41]$ LES $[42]$	DA	2^{nd} order central FD	$1.6 \delta_t$	$1.6 \delta_t$	66^{3}	20

- Discretisations employed in the present work:
 - Run **32p1**: 8 equispaced P = 1 elements within $y^+ < 10$ and the remaining 24 elements stretched until $y = 1.6 \delta_T \dots$ (total 32^3 dofs)

X. Wu and K. D. Squires. Large eddy simulation of an equilibrium three-dimensional turbulent boundary layer. AIAA Journal, 35(1):67–74, 1997.

Available solutions at R_L = 767

In previous LESs, the Mixed Lagrangian (ML) model gave best results [*]

	Approach	Model	Discretisation	L_x, L_z	L_y	Mesh points	$\Delta x^+, \Delta z^+$
	DNS [40] LES [41]	ML	Spectral method [49]	$2 \delta_t$ 1.6 δ_t	? 16 &	$256^2 \cdot 80_{65^3}$	7
,	LES $[41]$ LES $[42]$	DA	2^{nd} order central FD	$1.6 \delta_t$ $1.6 \delta_t$	$1.6 \delta_t$ $1.6 \delta_t$	66^{3}	23

- Discretisations employed in the present work:
 - Run 32p1: 8 equispaced P = 1 elements within y⁺ < 10 and the remaining 24 elements stretched until y = 1.6 δ_T ... (total 32³ dofs)
 - Run **8p4**: 2 equispaced P = 4 elements within $y^+ < 10$ and the remaining 6 elements stretched until y = 1.6 δ_T ... (total 32^3 dofs)

Numerical set-up

- Nektar++ incompressible solver [*]
- Spectral/hp CG with P=1 and P=4
- Using polynomial dealiasing, but no SVV
- Perturbed laminar solution as IC
- Transient takes ~ 10 cicles
- Statistics gathered over ~ 1 cicle

C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De Grazia, S. Yakovlev, J-E. Lombard, - - and S. J. Sherwin. Nektar++: An open-source spectral/hp element framework. *Computer Physics Communications*, 192:205–219, 2015.

Numerical set-up

- Nektar++ incompressible solver [*]
- Spectral/hp CG with P=1 and P=4
- Using polynomial dealiasing, but no SVV
- Perturbed laminar solution as IC
- Transient takes ~ 10 cicles
- Statistics gathered over ~ 1 cicle

Results of run 32p1

CG-uDNS (p=1) on 32³ dofs VS. dynamic Smagorinsky (FD-based) on 64³ dofs

Results of run 8p4

CG-uDNS (p=4) on 32³ dofs VS. mixed Lagrangian model (FD-based) on 64³ dofs

Results of run 8p4

CG-uDNS (p=4) on 32³ dofs VS. mixed Lagrangian model (FD-based) on 64³ dofs

Results of run 8p4

CG-uDNS (p=4) on 32³ dofs VS. mixed Lagrangian model (FD-based) on 64³ dofs

Why so much success?

- Superior resolution power per DOF at higher orders
- Absence of (often restrictive) modeling assumptions
- Reynolds not too high yet (no SVV need so far)

Future directions

- Analysis of the energy spectrum, and other statistics
- Try and correlate with dispersion-diffusion analysis
- Increase the Reynolds number (and probably add SVV)

Questions

