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•  Steep spatial gradient at wavefront.

•  Stiffness of ODE cell model.

•  Geometric complexity. 
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We aim to develop the first biophysically-validated and 
morphologically-accurate discrete cell model for action 
potential propagation in cardiac cell monolayers.

Hypothesis & Aims

We hypothesise that conduction features at a cellular 
level are a key factor in the initiation and perpetuation 
of re-entrant arrhythmias and fibrillation in vivo.
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Idealised model for cable of  cells

(L + Λ)û = f
L = discrete Laplacian
Λ = interface coupling
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proportion of decay across gap junctions.λg      Rg
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‘Speed bumps’ at gap junctions as current 
redistributes for path of least resistance.
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Conclusions

We have constructed a multi-domain formulation within the 
Nektar++ framework to solve steady-state solutions for cell-
level conduction in cardiac electrophysiology.


The framework reproduces known analytical solutions for a 
cable of connected cardiac cells.



What’s next?

Incorporate time-dependent features at interfaces (i.e. cell model ODEs).


Direct biophysical validation of our model with one-to-one matching 
biological preparations.


Prediction of effects of changes to intercellular coupling on cell-scale 
conduction patterns.

• Generalise multi-domain support in the library.


• Parallelise solving in separate domains.
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L = discrete Laplacian
Λ = interface coupling

Idealised model for cable of  cells
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