

Simulating the electrophysiology of discretely-coupled cardiac cells in a multi-domain formulation

C. Houston, E. Dupont, R.A. Chowdhury, N.S. Peters, S.J. Sherwin, C.D. Cantwell

ElectroCardioMaths Programme, Imperial College London

Nektar++ Workshop, 11 June 2019

- Introduction to cardiac electrophysiology
- Discrete-cell model in Nektar++
- Initial validation results
- Conclusions & Future work

Outline

Outline

Introduction to cardiac electrophysiology

Discrete-cell model in Nektar++

Initial validation results

Conclusions & Future work

What's in a heartbeat?

JHeuser, 2005.

AC Guyton and JE Hall. Textbook of Medical Physiology. 1996. S Rohr. Role of gap junctions in the propagation of cardiac action potential. *Cardiovasc Res.* 2004. N Sperelakis, K McConnell. Electric field interactions between closely abutting excitable cells. *IEEE engineering in medicine and biology magazine*. 2002 Jan;21(1):77-89.

What's in a heartbeat?

JHeuser, 2005.

AC Guyton and JE Hall. Textbook of Medical Physiology. 1996. S Rohr. Role of gap junctions in the propagation of cardiac action potential. *Cardiovasc Res.* 2004. N Sperelakis, K McConnell. Electric field interactions between closely abutting excitable cells. *IEEE engineering in medicine and biology magazine*. 2002 Jan;21(1):77-89.

Adapted from Guyton and Hall, 1996. Fig 9-2.

What's in a heartbeat?

JHeuser, 2005.

AC Guyton and JE Hall. Textbook of Medical Physiology. 1996. S Rohr. Role of gap junctions in the propagation of cardiac action potential. *Cardiovasc Res.* 2004. N Sperelakis, K McConnell. Electric field interactions between closely abutting excitable cells. *IEEE engineering in medicine and biology magazine*. 2002 Jan;21(1):77-89.

P Pathmanathan and RA Gray. Validation and trustworthiness of multiscale models of cardiac electrophysiology. Front Physiol. 2018. J Keener and J Sneyd. Mathematical Physiology II: Systems Physiology. Springer Science & Business Media. 2009. CD Cantwell et al. Nektar++: An open-source spectral/element framework. Comput Phys Commun. 2015.

P Pathmanathan and RA Gray. Validation and trustworthiness of multiscale models of cardiac electrophysiology. Front Physiol. 2018. J Keener and J Sneyd. Mathematical Physiology II: Systems Physiology. Springer Science & Business Media. 2009. CD Cantwell et al. Nektar++: An open-source spectral/element framework. Comput Phys Commun. 2015.

P Pathmanathan and RA Gray. Validation and trustworthiness of multiscale models of cardiac electrophysiology. *Front Physiol.* 2018. J Keener and J Sneyd. Mathematical Physiology II: Systems Physiology. *Springer Science & Business Media.* 2009. CD Cantwell et al. Nektar++: An open-source spectral/element framework. Comput Phys Commun. 2015.

P Pathmanathan and RA Gray. Validation and trustworthiness of multiscale models of cardiac electrophysiology. *Front Physiol.* 2018. J Keener and J Sneyd. Mathematical Physiology II: Systems Physiology. Springer Science & Business Media. 2009. CD Cantwell et al. Nektar++: An open-source spectral/element framework. Comput Phys Commun. 2015.

Organ-scale rotational activity

Cantwell CD et al. High-order spectral/hp element discretisation for reaction-diffusion problems on surfaces: Application to cardiac electrophysiology. Journal of computational physics. 2014 Jan 15;257:813-29.

Biological preparation

Houston C et al. Characterisation of re-entrant circuit (or rotational activity) in vitro using the HL1-6 myocyte cell line. Journal of molecular and cellular cardiology. 2018 Jun 1;119:155-64.

Cell-scale rotational activity

Unprocessed recording (Fluo-4 AM)

Houston C et al. Characterisation of re-entrant circuit (or rotational activity) in vitro using the HL1-6 myocyte cell line. Journal of molecular and cellular cardiology. 2018 Jun 1;119:155-64.

of re-entrant arrhythmias and fibrillation in vivo.

potential propagation in cardiac cell monolayers.

We hypothesise that conduction features at a cellular level are a key factor in the initiation and perpetuation

We aim to develop the first biophysically-validated and morphologically-accurate discrete cell model for action

Introduction to cardiac electrophysiology

- Discrete-cell model in Nektar++
- Initial validation results
- Conclusions & Future work

Outline

Multi-domain global matrix system

Multi-domain global matrix system

- Introduction to cardiac electrophysiology
- Discrete-cell model in Nektar++
- Initial validation results
- Conclusions & Future work

Outline

Steady-state solution for fixed potential at cable end

 $\lambda_g \downarrow R_g \uparrow$

Increased gap junction resistance leads to greater proportion of decay across gap junctions.

Steady-state solution for current injected into cable

 $\lambda_g \downarrow R_g \uparrow$

'Speed bumps' at gap junctions as current redistributes for path of least resistance.

- Introduction to cardiac electrophysiology
- Discrete-cell model in Nektar++
- Initial validation results
- Conclusions & Future work

Outline

level conduction in cardiac electrophysiology.

cable of connected cardiac cells.

- We have constructed a multi-domain formulation within the Nektar++ framework to solve steady-state solutions for cell-
- The framework reproduces known analytical solutions for a

Incorporate time-dependent features at interfaces (i.e. cell model ODEs).

Direct biophysical validation of our model with one-to-one matching biological preparations.

Prediction of effects of changes to intercellular coupling on cell-scale conduction patterns.

• Generalise multi-domain support in the library.

Acknowledgements

Supervisors

Dr Chris Cantwell Dr Rasheda A Chowdhury Prof Spencer Sherwin Prof Nicholas S Peters Dr Emmanuel Dupont (past)

ElectroCardioMaths Group

Dr David Pitcher Dr Fu Siong Ng

PhD Assessors

Prof Denis Doorly Prof Cesare Terraciano

1D steady-state solutions

$(L + \Lambda)\hat{u} = f$

L = discrete Laplacian Λ = interface coupling

Conduction block/slowing algorithm

C Houston et al. Characterisation of re-entrant circuit (or rotational activity) in vitro using the HL1-6 myocyte cell line. *J Mol Cell Cardio*. 2018. B Handa et al. Analytical approaches for myocardial fibrillation signals. *Comput. Biol. Med.* 2018.