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Introduction
Rationale

• Pattern based flow control

• Mass and heat transfer intensification

• Cooling of microelectronics

• Blood oxygenations, DNA screening microarray

• Drag reduction and roughness modelling
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What is mixing?
’If you have to ask what jazz is, you’ll never know.’ Louis Armstrong

• In fluids it is a two-stage process (Eckart, 1948)1

• mechanical stirring
• inter-material diffusion

• Stirring produces small scales (layers) in a stretching and folding action much
like the horseshoe transformation, that can be rapidly smoothed by diffusion

• Turbulization is effective, but not always applicable

1Eckart, C. 1948. An Analysis of the Stirring and Mixing Processes in Incompressible Fluids. J.
Mar. Res., 7, 265–275.
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Chaotic advection and mixing

• Simple, low Reynolds number flow lead to the onset of Lagrangian chaos (Aref
1984)1

• Motion described by ẋ = u(x, t)

• Or ẋ = ∂Ψ/∂y , ẏ = −∂Ψ/∂x , equivalent to a single-degree-of-freedom
system

1 Two dimensional, steady flows result in integrable advection equations meaning
that particle trajectories are regular.

2 Unsteady flows in two dimensions and steady or unsteady flows in three
dimensions may result in non-integrable advection equations leading to chaotic
particle trajectories.

1Aref, Hassan. 1984. Stirring by chaotic advection. Journal of Fluid Mechanics, 143, 1–21.
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Double gyre example
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Quantifying mixing
Is not well agreed upon

• Strange eigenmodes - eigen function to the advection-diffusion process.
Leading AD operator mode corresponds to the slowest decaying initial
distribution of the advected scalar. This mode is a representation of structures
that are persistent under the flow, with the corresponding eigen value
determining the exponential decay rate. Consequently, it imposes an upper
limit on the efficiency of the stirring

• Dynamical system analogy (Ottino 1989)1

• strives to quantify the stirring action by the amount of stretching experienced by
individual fluid parcels traced in the advection field

• based on the notion of the specific rate of stretch

• Norms2: L2 and H−1

• L
2: Variance Varθ = 1

|Ω|

∫
Ω
θ
2
dΩ)

• Mix-norm based on negative index Sobolev norms

1Ottino, Julio M. 1989. The kinematics of mixing: stretching, chaos, and transport. Vol. 3.
Cambridge university press.

2Thiffeault, Jean-Luc. “Using multiscale norms to quantify mixing and transport.” (2012).
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How to invoke chaotic advection without turbulization?

• Baffles, obstacles, bends

• External actuation

• Why not hydrodynamic stability?

• Optimal initial perturbation in Poiseuille flow (Vermach 20181, Foures 20142)

Mixers for the Plastics Processing Industry, Sulzer Chemtech, https://sulzer.com/

1Foures, D., Caulfield, C., & Schmid, P. (2014). Optimal mixing in two-dimensional plane
Poiseuille flow at finite Péclet number. Journal of Fluid Mechanics, 748, 241-277.

2Vermach, L., & Caulfield, C. (2018). Optimal mixing in three-dimensional plane Poiseuille flow
at high Péclet number. Journal of Fluid Mechanics, 850, 875-923.
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What everybody knows
about hydrodynamic stability

• We look for eigenfunctions of the linearised NS operator

• Those could be either attenuated or amplified, stationary or travelling

• In the smooth channel case the critical perturbation is the 2D TS wave that
becomes unstable at Recr = 5772, δ = 1.02 and travels downstream with
frequency σr ≈ 0.27 and phase speed vp = σr/βcr ≈ 0.26

u: v:
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Longitudinal grooves

• S - corrugation amplitude

• Re = UL
ν

- reference flow, Qr = 4
3

• n - number of corrugations in computations

• α - spanwise wave number → λα = 2π
α

• β - streamwise wave number

(α, S ,Re, n, β)
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2D base flow and stability
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Nonlinear saturation

α = 1, S = 0.4,Re = 70, α = 1, β = 0.4
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Nonlinear Saturation
α = 1, S = 0.4, α = 1, β = 0.4
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Nonlinear Saturation
Flow pattern α = 1, S = 0.4,Re = 80, α = 1, β = 0.4
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Nonlinear Saturation

Mq = 1
Ω

∫
Ω

(qs − qb)2dΩ
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Nonlinear Saturation

Re = 60
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Nonlinear Saturation

Re = 70
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Nonlinear Saturation

Re = 100
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Nonlinear Saturation

Re = 250
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Quantification of mixing
Homogenization of a passive scalar
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Quantification of mixing
Homogenization of a passive scalar

Re = 100, Sc = 10, θ = 0
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Interface area
Homogenization of a passive scalar
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Quantification of mixing
Homogenization of a passive scalar
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Quantification of mixing
Homogenization of a passive scalar
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Poincaré sections
L = 320h, intersections every 10h
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Poincaré sections
L = 320h, intersections every 10h

Re = 60 Re = 65 Re = 80

Re = 100 Re = 150 Re = 200
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Experiment

L = 0.3mm, t = 0.12s, Re = 120

0Szumbarski, Jacek, Blonski, Slawomir, & Kowalewski, Tomasz. 2011. Impact of
transversely-oriented wallcorrugation on hydraulic resistance of a channel flow. Archive of
Mechanical Engineering, 58(4), 441.
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