
Future Directions



In the pipeline:

• Library 
• Solver Capabilities 
• Outreach



In the pipeline: Library

• Vector expansions 
• Multiregions refactoring 
• Linear solvers 

• Acceleration 
• Fault Tolerance 



Vector Expansions

v

u

• Rotated periodic, no permeability BCs couple components 
of vector field. 

• Scalar variables (pressure) already implemented.  
• Vector variables (velocity) most easily done in iterative solver  
• Would allow possibility of  propellor, wind turbine modelling 

too.

U . n = 0
unx + vny = 0



Multiregions restoring

• MultiRegions: ExpList simplified 
• constructors reduced from 36 to 6. 
• Some changes within SolverUtils 
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Linear Algebra Solver
operator

operator

compressed block  
assembled storage



degrees of freedom

elements

Acceleration/Memory Layout
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2D: Quads, triangles 3D: Hexahedra, prisms, tetrahedra

Moxey, Amici, Kirby "Efficient matrix-free high-order finite element  
evaluation for simplical elements" Under review SIAM J.Sci Comp, 
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Fault Tolerance/Resilience

The need for Resilience at Exascale

• Errors due to both hardware failure and software bugs
• Permanent and transient errors
• M is the mean time to interrupt (MTTI) of a component
• MTTI of system:

Msys =
Mnode

n

• Increased probability of hardware failure: more CPUs, memory, disks
• Exascale systems expected to contain >100,000 nodes

Example PF MTTI

Titan 27.11 173 hours [1]
Blue Waters (CPU-only) 5.66 8.6 hours [2]
Tianhe-2 (8k nodes) 17.30 2 hours [3]
(Exascale) 1000 < 1 hour ? [4]

[1] Barker et al, 2014 [2] Di Martino et al, 2015 [3] Chen et al, 2017 [4] Cappello et al, 2014
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Cantwell C, Nielsen A, 2018, A minimally intrusive low-memory approach 
to resilience for existing transient solvers,  Journal of Scientific Computing, Pages: 1-17



HDF5 Geometry
• Had severe limitations on big meshes: > 10K 

partitions, 10M elements 
• Key bottleneck is xml format 

• Slow/conflicted reading 
• Partition then requires a write 

• Nek 5.0 has introduced binary based hdf5 format 
• Parallel partitioning ptscotch  
• Maintained xml backwards compatibility  

• Intent to move to hdf5 as default so please 
consider enabling on your compilation



In the pipeline: Capabilities

• Sliding meshes  
• (Session 4, Edward Laughton) 

• Implicit solver  
• (Session 4, Zhenguo Yan) 

• NekMesh  
• (Session 3, Joaquim Peiro) 



Sliding Mesh
 Edward Laughton (Exeter): Non-conformal mesh interfaces in 2D    

                                                 with the discontinuous Galerkin method



Zhenguo Yan (Imperial): Development of implicit compressible flow 
solver in Nektar++ 

Implicit solver 
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Jacobian-free Newton Krylov method (JFNK)

We need to solve

N

⇣
u
n+1,m

⌘
= u

n+1,m � Sm � ↵mmFm = 0 (un+1,m,0 = Sm), (12)

JFNK method is used for solving the nonlinear system

Newton method: solving nonlinear system iteratively
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⇣
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(13)

Jacobian-free, linearize nonlinear equation in each Newton iteration

@N
@u

· q =
N(un+1,m,l + ✏JFq)�N(un+1,m,l)

✏JF
, N(un+1,m,l) stored (14)

Krylov method to solve linear system:
GMRES, restarted every 30 iterations

Preconditioner, approximate block Jacobi inversion

q̂
k+1 = D

�1
⇣
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E�ciency: Explicit vs Implicit

Cost to run 2.5 time units (xsh/uinf )

AV

RK2 DIRK2
4t 6.64e-5 1.13e-3 5.56e-3 1.13e-2
CFL 0.05 1 5 10
CPUh 10.7 12.4 4.14 3.19

speed-up 0.86 2.58 3.35



NekMesh
Joaquim Peiró (Imperial): NekMesh: An open-source             

                                         high-order mesh generator 

r-adaption

Figure 16: Coarse (top) and split (bottom) quad meshes obtained on Geometry IV, a

NACA 0012 profile. High-order interior degrees of freedom have been hidden for clearer

visualisation.
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Figure 15: Split meshes obtained on Geometries I and III.
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Figure 15: Split meshes obtained on Geometries I and III.
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Quad meshing



In the pipeline: Outreach

Python            Jupyter tutorials

9.

9.

Tuesday afternoon: Jupyter notebooks & the Python interface 



Any comments?


