
Future Directions

In the pipeline:

• Library
• Solver Capabilities
• Outreach

In the pipeline: Library

• Vector expansions
• Multiregions refactoring
• Linear solvers

• Acceleration
• Fault Tolerance

Vector Expansions

v

u

• Rotated periodic, no permeability BCs couple components
of vector field.

• Scalar variables (pressure) already implemented.
• Vector variables (velocity) most easily done in iterative solver
• Would allow possibility of propellor, wind turbine modelling

too.

U . n = 0
unx + vny = 0

Multiregions restoring

• MultiRegions: ExpList simplified
• constructors reduced from 36 to 6.
• Some changes within SolverUtils

ExpList

ExpList0D
is

-a
ExpList1D ExpList2D ExpList3D

DisContField1D

ContField1D

is
-a

is
-a

DisContField2D

ContField2D

is
-a

is
-a

DisContField3D

ContField3D

is
-a

is
-a

ExpList

is
-a

DisContField

ContField

is
-a

Linear Algebra Solver
operator

operator

compressed block
assembled storage

degrees of freedom

elements

Acceleration/Memory Layout

1
4

1
2 1 2 4 8 16 32 64 128 256

Arithmetic intensity

32

64

128

256

512

1024

G
F
L
O

P
S

Peak FLOPS, 2.0 GHz with FMA/AVX2

without FMA

without vectorisation

Tet (regular)

Tet (deformed)

Prism (regular)

Prism (deformed)

Hex (regular)

Hex (deformed)

1
4

1
2 1 2 4 8 16 32 64 128 256

Arithmetic intensity

32

64

128

256

512

1024

G
F
L
O

P
S

Peak FLOPS, 2.0 GHz with FMA/AVX2

without FMA

without vectorisation

Quad (regular)

Quad (deformed)

Tri (regular)

Tri (deformed)

2D: Quads, triangles 3D: Hexahedra, prisms, tetrahedra

Moxey, Amici, Kirby "Efficient matrix-free high-order finite element
evaluation for simplical elements" Under review SIAM J.Sci Comp,

Algorithm: Protection

9

Application
Resilience

MPI

Application
Resilience

MPI

Part. A

Part. B

Application
Resilience

MPI

(Spare)

rank

rank

rank

Algorithm: Protection

9

Application
Resilience

MPI

Application
Resilience

MPI

Part. A

Part. B

Application
Resilience

MPI

(Spare)

rank

rank

rank

Static init

Static init

Wait

Fault Tolerance/Resilience

The need for Resilience at Exascale

• Errors due to both hardware failure and software bugs
• Permanent and transient errors
• M is the mean time to interrupt (MTTI) of a component
• MTTI of system:

Msys =
Mnode

n

• Increased probability of hardware failure: more CPUs, memory, disks
• Exascale systems expected to contain >100,000 nodes

Example PF MTTI

Titan 27.11 173 hours [1]
Blue Waters (CPU-only) 5.66 8.6 hours [2]
Tianhe-2 (8k nodes) 17.30 2 hours [3]
(Exascale) 1000 < 1 hour ? [4]

[1] Barker et al, 2014 [2] Di Martino et al, 2015 [3] Chen et al, 2017 [4] Cappello et al, 2014

3
Algorithm: Protection

9

Application
Resilience

MPI

Application
Resilience

MPI

Part. A

Part. B

Application
Resilience

MPI

(Spare)

rank

rank

rank

Static init

Static init

Wait

Static
backup

Record Comm

Record Comm

Algorithm: Protection

9

Application
Resilience

MPI

Application
Resilience

MPI

Part. A

Part. B

Application
Resilience

MPI

(Spare)

rank

rank

rank

Static init

Static init

Wait

Static
backup

Record Comm

Record Comm

Step ...

...

Step

Step Step

Dynamic
backup

Algorithm: Recovery

10

Application
Resilience

MPI

Application
Resilience

MPI

Part. A

Part. B

Application
Resilience

MPI

(Spare)

rank

rank

rank

Step

Step

Wait

Algorithm: Recovery

10

Application
Resilience

MPI

Application
Resilience

MPI

Part. A

Part. B

Application
Resilience

MPI

(Spare)

rank

rank

rank

Step

Step

Wait

Step

Step

Failure

Algorithm: Recovery

10

Application
Resilience

MPI

Application
Resilience

MPI

Part. A

Part. B

Application
Resilience

MPI

(Spare)

rank

rank

rank

Step

Step

Wait

Step

Step

Failure

Enrol

Enrol

Spare

rank

Failure Detected

Algorithm: Recovery

10

Application
Resilience

MPI

Application
Resilience

MPI

Part. A

Part. B

Application
Resilience

MPI

(Spare)

rank

rank

rank

Step

Step

Wait

Step

Step

Failure

Enrol

Enrol

Spare

rank

Failure Detected

Static init
Reply Comm

Wait

Restore

Rollback

Roll-forward

Algorithm: Recovery

10

Application
Resilience

MPI

Application
Resilience

MPI

Part. A

Part. B

Application
Resilience

MPI

(Spare)

rank

rank

rank

Step

Step

Wait

Step

Step

Failure

Enrol

Enrol

Spare

rank

Failure Detected

Static init
Reply Comm

Wait

Restore

Rollback

Roll-forward

...

...

Step

Step

Mean time
to interrupt

Cantwell C, Nielsen A, 2018, A minimally intrusive low-memory approach
to resilience for existing transient solvers, Journal of Scientific Computing, Pages: 1-17

HDF5 Geometry
• Had severe limitations on big meshes: > 10K

partitions, 10M elements
• Key bottleneck is xml format

• Slow/conflicted reading
• Partition then requires a write

• Nek 5.0 has introduced binary based hdf5 format
• Parallel partitioning ptscotch
• Maintained xml backwards compatibility

• Intent to move to hdf5 as default so please
consider enabling on your compilation

In the pipeline: Capabilities

• Sliding meshes
• (Session 4, Edward Laughton)

• Implicit solver
• (Session 4, Zhenguo Yan)

• NekMesh
• (Session 3, Joaquim Peiro)

Sliding Mesh
 Edward Laughton (Exeter): Non-conformal mesh interfaces in 2D

 with the discontinuous Galerkin method

Zhenguo Yan (Imperial): Development of implicit compressible flow
solver in Nektar++

Implicit solver

11/33

Introduction Modeling Test case Conclusions References

Jacobian-free Newton Krylov method (JFNK)

We need to solve

N

⇣
u
n+1,m

⌘
= u

n+1,m � Sm � ↵mmFm = 0 (un+1,m,0 = Sm), (12)

JFNK method is used for solving the nonlinear system

Newton method: solving nonlinear system iteratively

✓
@N
@u

P
�1

◆
P4 u

n+1,m,l = �N

⇣
u
n+1,m,l

⌘
(13)

Jacobian-free, linearize nonlinear equation in each Newton iteration

@N
@u

· q =
N(un+1,m,l + ✏JFq)�N(un+1,m,l)

✏JF
, N(un+1,m,l) stored (14)

Krylov method to solve linear system:
GMRES, restarted every 30 iterations

Preconditioner, approximate block Jacobi inversion

q̂
k+1 = D

�1
⇣
q� (L+U) q̂k

⌘
, = D

�1 stored (15)
28/33

Introduction Modeling Test case Conclusions References

E�ciency: Explicit vs Implicit

Cost to run 2.5 time units (xsh/uinf)

AV

RK2 DIRK2
4t 6.64e-5 1.13e-3 5.56e-3 1.13e-2
CFL 0.05 1 5 10
CPUh 10.7 12.4 4.14 3.19

speed-up 0.86 2.58 3.35

NekMesh
Joaquim Peiró (Imperial): NekMesh: An open-source

 high-order mesh generator

r-adaption

Figure 16: Coarse (top) and split (bottom) quad meshes obtained on Geometry IV, a

NACA 0012 profile. High-order interior degrees of freedom have been hidden for clearer

visualisation.

27

Figure 15: Split meshes obtained on Geometries I and III.

26

Figure 15: Split meshes obtained on Geometries I and III.

26

Quad meshing

In the pipeline: Outreach

Python Jupyter tutorials

9.

9.

Tuesday afternoon: Jupyter notebooks & the Python interface

Any comments?

