Imperial College London

Thermal convection with flow rate forcing in Nektar++

M. Z. Hossain and S. J. Sherwin Department of Aeronautics

Motivation

Currently Nektar++ [1], an open-source spectral/hp element software, is not configured for the solution of thermal convective flow with flow rate forcing. This forcing acts as a means to sustain the forced convective flow.

Governing equations

Navier-Stokes equations:

$$\frac{\partial u}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p + \nu \nabla^2 \boldsymbol{u} + \boldsymbol{f}_{\boldsymbol{b}}$$
(1)

Advection-Diffusion equation:

$$\frac{\partial\theta}{\partial t} + \boldsymbol{u} \cdot \nabla\theta = \epsilon \nabla^2 \theta \tag{2}$$

where, u(u,v,w) is the velocity vector, p is the specific pressure, θ is the temperature, v is the kinematic viscosity, ϵ is the diffusion coefficient.

The vertical body force term (due to heating)

$$f_b = \frac{Ra \ \theta}{Pr \ Re^2}$$

Ra - Rayleigh number,

Pr – Prandtl number,

Re – Reynolds number.

Computational methods

- Explicit treatment of the body force f_b in Navier-Stokes equations decouples the Advection-Diffusion equation.
- Momentum equations are solved using higher order velocity and pressure splitting scheme by Karniadakis, Israeli and Orszag [2], and Guermond and Shen [3]. This scheme essentially treats the advection (non-liner) terms explicitly, solves the pressure Poisson system, and finally solves a Helmholtz problem using pressure field to enforce viscous forcing and boundary conditions.
- In addition to the thermal forcing, flow rate forcing is used as an external forcing.
- To enforce the flow rate forcing Green's function method [4] is used. At the first-time step, Stokes equation with unit flow rate is solved to obtain an intermediate velocity field [5].
- For the Stokes solver, presence of the explicit term f_b causes the pressure Neumann boundary condition to be non-zero. Since Stokes solver requires homogeneous boundary condition, at the first time step this pressure boundary condition is explicitly set to zero.
- For time integration, second order implicit-explicit (IMEX2)

(iii) 2D channel flow with periodic heating at bottom wall:

Figure 1: Channel flow with periodic heating. α – heating wave-number.

- The obtained solution is compared with a spectral solver [6], and the velocity and temperature fields agree at least four digits.
- Figure 2 shows the velocity and temperature fields which are in qualitative agreement with the solver used in [6].

Figure 2: *u*-velocity distribution and streamlines (left) and temperature (θ) distribution (right) for Re = 1, Ra = 600, $\alpha = 3$.

- (iv) 3D1H channel flow with uniform heating at bottom wall: (homogeneous in z-direction).
 - Conditions in case (*i*) together with *w* = 0 are prescribed.
 - It is observed that the 2D solutions obtained in case (i) are recovered.

Conclusion and future direction

Various test cases suggest that the code provides expected accuracy.

The followings are some of the future directions,

- flow physics for 3D1H and 3D cases to be captured,
- flow stability of the above cases to be examined using the • stability solver.

Acknowledgement

Newton International Fellowship Scheme funded by The Royal Society of UK.

References

scheme is used.

Test cases

The following test cases are considered,

(i) 2D channel flow with uniform heating at bottom wall:

Prescribed initial conditions:

 $u = 1 - y^2$, v = 0, $P = \frac{Ra}{2 PrRe^2} \left(y - \frac{y^2}{2}\right)$, $\theta = (1 - y)/2$

- Comparing with the exact solution for Re = 1 to 100 and Ra = 0 to 1000, maximum error norm in velocity fields obtained is ~10⁻¹².
- (ii) 2D channel flow with uniform heating at upper wall:
 - Comparing with the exact solution, maximum error norm in velocity fields obtained is also $\sim 10^{-12}$.

- C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De Grazia, S. Yakovlev, J-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R. M. Kirby, and S. J. Sherwin, Nektar plus plus : an open-source spectral/hp element framework. Comput. Phys. Comm., 192, 205-219, 2015.
- 2. G. E. Karniadakis, M. Israeli, and S. A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys., 97(2), 414-443, 1991.
- 3. J. L. Guermond and J. Shen, Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal., 41, 112-134, 2003.
- 4. D. Chu, R. Henderson and G. E. Karniadakis, Parallel spectral-element-Fourier simulation of turbulent flow over riblet-mounted surfaces. Theor. Comput. Fluid Dyn., 3(4), 219-229, 1992.
- 5. D. C. Moxy, Spatio-temporal dynamics in pipe flow. Ph. D. Thesis, The University of Warwick, UK.
- 6. M. Z. Hossain and J. M. Floryan, Mixed convection in a periodically heated channel. J. Fluid Mech., 768, 51-90, 2015.

Email: mohammad.hossain@imperial.ac.uk

Nektar++ Workshop 2019, June 10-12, Exeter, UK