
 

Currently Nektar++ [1], an open-source spectral/hp element 
software, is not configured for the solution of thermal convective 
flow with flow rate forcing. This forcing acts as a means to 
sustain the forced convective flow.   
 

Navier-Stokes equations:  

					"𝒖
"$
+ 𝒖 ∙ ∇𝒖 = −∇𝑝 + 𝜈∇,𝒖 + 𝒇𝒃    (1) 

 
Advection-Diffusion equation:  

					"/
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+ 𝒖 ∙ ∇𝜃 = 𝜖∇,𝜃      (2) 

where, u (u,v,w) is the velocity vector, p is the specific 
pressure,  q  is the temperature, n is the kinematic viscosity,        
𝜖 is the diffusion coefficient.  
The vertical body force term (due to heating)  

𝑓3 =
𝑅𝑎	𝜃
𝑃𝑟	𝑅𝑒, 

Ra – Rayleigh number,  
Pr – Prandtl number,  
Re – Reynolds number. 

 

• Explicit treatment of the body force 𝑓3 in Navier-Stokes 
equations decouples the Advection-Diffusion equation.  

• Momentum equations are solved using higher order velocity 
and pressure splitting scheme by Karniadakis, Israeli and 
Orszag [2], and Guermond and Shen [3]. This scheme 
essentially treats the advection (non-liner) terms explicitly, 
solves the pressure Poisson system, and finally solves a 
Helmholtz problem using pressure field to enforce viscous 
forcing and boundary conditions.     

• In addition to the thermal forcing, flow rate forcing is used 
as an external forcing.  

• To enforce the flow rate forcing Green’s function method [4] 
is used. At the first-time step, Stokes equation with unit flow 
rate is solved to obtain an intermediate velocity field [5].  

• For the Stokes solver, presence of the explicit term 𝑓3 
causes the pressure Neumann boundary condition to be 
non-zero. Since Stokes solver requires homogeneous 
boundary condition, at the first time step this pressure 
boundary condition is explicitly set to zero.   

• For time integration, second order implicit-explicit (IMEX2) 
scheme is used. 

The following test cases are considered,  
(i) 2D channel flow with uniform heating at bottom wall: 
• Prescribed initial conditions:  

 𝑢 = 1 − 𝑦,, 𝑣 = 0, 𝑃 = ?@
,	AB?CD

	E𝑦 − FD

,
G, 𝜃 = (1 − 𝑦)/2 

• Comparing with the exact solution for Re = 1 to 100 and 
Ra = 0 to 1000, maximum error norm in velocity fields 
obtained is ~10-12. 

(ii) 2D channel flow with uniform heating at upper wall: 
• Comparing with the exact solution, maximum error norm 

in velocity fields obtained is also ~10-12.   

(iii) 2D channel flow with periodic heating at bottom wall: 
 
 
 
 
 
 
 
 
 

Figure 1: Channel flow with periodic heating. a – heating wave-number. 
 

• The obtained solution is compared with a spectral solver 
[6], and the velocity and temperature fields agree at least 
four digits. 

• Figure 2 shows the velocity and temperature fields which 
are in qualitative agreement with the solver used in [6].   

 
Figure 2: u-velocity distribution and streamlines (left) and temperature (q) 

distribution (right) for Re = 1, Ra = 600, a = 3. 
 
(iv) 3D1H channel flow with uniform heating at bottom wall:     

(homogeneous in z-direction). 
• Conditions in case (i) together with w = 0 are prescribed.  
• It is observed that the 2D solutions obtained in case (i) are 

recovered.   
   

Various test cases suggest that the code provides expected 
accuracy.  
The followings are some of the future directions, 
• flow physics for 3D1H and 3D cases to be captured, 
• flow stability of the above cases to be examined using the 

stability solver. 
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𝜃L = 0.5	cos	(𝛼𝑥) 
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