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Motivations

High-order CFD methods are highly susceptible to inaccuracies in the geometrical
representation of meshes. The core of our research focuses on the generation of
CAD-accurate high-order meshes for curvilinear geometries. The work presented
below concerns recent developments in the open-source code NekMesh relative
to two-dimensional mesh generation.

A new approach to r-adaption is also presented. This method is based on a
variational framework initially developped for mesh optimisation, that allows to
move both vertex and high-order nodes using a local and highly scalable approach.

High-order mesh generation

In the framework of NekMesh, high-order meshes are generated in two steps
[1]:

The first step consists in generating a linear mesh with an outside-in approach.
First, curves are discretised using a spacing based on local curvature; then, tri-
angulation is applied to surfaces.

The second step deals with the high-order nodes which are first generated on the
linear elements before being projected onto the CAD curves and surfaces. This
second step can in fact be applied to a mesh that was not generated internally.

Two-dimensional mesh generation features

I STEP file format support.

I NACA aerofoil geometry generation.

I Structured boundary layer mesh generation: based on the splitting of a single
boundary layer element as shown in [2]. The boundary can be closed or open.

Figure 1 : Mesh of a NACA 0012 aerofoil at 10◦ angle of attack including a structured
boundary layer, generated with the NACA generator.

I GEO file format support: standard used by Gmsh.

I Conforming boundary mesh for periodic boundary conditions.

Figure 2 : Mesh of a T106a blade profile with periodic boundaries and boundary layer mesh,
generated from a GEO file (courtesy of Andrea Cassinelli).
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Variational optimiser

High-order mesh optimisation in NekMesh is performed using a variational
framework. The mesh is deformed to minimise an energy functional ε, a function
of the mesh deformation φ [3]:
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Figure 1: Notation for mappings used throughout the paper: a triangular element is used for illustration purposes, but the notation is general and
applicable to other element types. On the left we map a standard (reference) element ⌦st onto the straight-sided element ⌦e

I through the mapping
�I : ⌦st ! ⌦e

I and onto the curvilinear element �e : ⌦st ! ⌦e. The deformation mapping � : ⌦e
I ! ⌦e is then defined through the composition

� = �e
M � ��1

I .

The mapping � is constructed by considering each element ⌦e
I separately. We refer to the diagram in Fig. 1,

wherein we consider a triangular element and denote the coordinates inside each element as ⇠ 2 ⌦st, x 2 ⌦e and
y 2 ⌦e

I . These mappings are constructed in an isoparametric fashion, so that the nodes ⇠n that define the Lagrange
basis functions on the standard element map to yn under �I and xn under �M . We note that other element types, such
as quadrilaterals in two dimensions and tetrahedra, triangular prisms, pyramids and hexahedra in three dimensions,
may use exactly the same definitions as above.

The energy functional is then defined as the integral

E(r�) =
Z

⌦I

W(r�) dy, (1)

where W depends on the deformation gradient tensor
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⇤
i j =
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,

and its determinant J = detr�, which we hereafter refer to as the Jacobian. In the following section we describe the
di↵erent forms of the energy that we investigate in this article.

2.1. Forms of the energy functional
This section outlines a key contribution of this work, where we show that many of the existing curvilinear mesh

generation methods can be unified in a variational setting through the definition of an energy functional. More impor-
tantly, a judicious choice of an energy functional that satisfies the convexity requirements of Ball’s existence theory
[22] guarantees the existence of a minimiser. We therefore seek to employ energy functionals that are polyconvex.
A discussion of the properties of such functionals and how to verify them, together with examples of their use in
mesh generation can be consulted in section 6.2 of the book by Huang and Russell [16]. Futher information of
polyconvex energy functionals, their properties and applications to finite elasticity can be found, for instance, in the
articles [23, 24] and references therein. Similar ideas are also being explored in image registration [25].
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Figure 3 : Existing mappings between the reference, the straight-sided and the curvilinear
elements.

r-adaption

To aphieve r-adaption, the mapping φI used in the variational framework is mod-
ified to force the deformation of individual elements. This way, we can obtain
anisotropic mesh deformation based on a tensor metric field. Furthermore, the
mapping φI can be spatially varying inside each element leading to finer adaption
in non-smooth metric fields. Finally, because NekMesh retains all CAD infor-
mation, nodes are able to slide on boundaries while retaining full geometrical
accuracy.

Figure 4 : Anisotropic adaption along a diagonal: initial (left) and deformed meshes (right)

Summary

The work hereby presented is part of ongoing developments made in the open-
source code NekMesh and is intended in aiding high-order CFD, including Nek-
tar++ [4], users in their meshing tasks. The two-dimensional mesh generator
already provides features covering a large array of meshing needs and current
research and development efforts are focused on the varionational approach to
r-adaption. Future work will focus on sensors and metrics and their application
to r-adaption.
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