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Motivation

Current RANS-based methods have inherent limitations in modeling transi-
tional and turbulent flows in turbomachinery applications. The recent ad-
vances in high-performance computing capabilities support the development
of high-fidelity methods to offer better resolved simulations that can shed
light on the flow physics and, eventually, lead to better design techniques.

Computational methodology

The software framework Nektar++ is employed to solve the Navier-Stokes
equations [1].

I Unstructured high-order 2D mesh generated with NekMesh.

I Spectral element discretisation in the x-y plane, and Fourier expansion
in the spanwise z- direction.

I Spectral Vanishing Viscosity [2] relied upon to stabilise the simulation.

Figure 1: High-order mesh of the NACA65 profile, comprised of 2719 quadrilateral
elements in the O-mesh and 6145 triangular elements in the unstructured mesh.

2D results

I Convergence study by p-refinement shows increasing accuracy in
pressure distributions

I Comparison against existing numerical data set [3] shows that
separation on the suction surface is well captured by the current setup.
The recent introduction of a new kernel for SVV, matching the
dispersion and diffusion property of DG schemes, also shows good
agreement with previous numerical results.
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Figure 2: Pressure distributions. Left: P-refinement effect. Right: Comparison between
exponential kernel (cutoff M = 0.75, diffusion coefficient εSVV = 1), DG kernel and
previous results from [3].

2-5D results

Velocity and vorticity fields are shown as computed with 7-th order expan-
sions, a spanwise width of Lz = 0.2 and 128 Fourier planes in the z-direction.
It can be appreciated that the flow separates and undergoes transition to tur-
bulence on both the pressure and suction side.

Figure 3: 2D mean mode (plane zero in Fourier space) of the 2.5D simulation. Left:
instantaneous velocity magnitude field. Right: instantaneous spanwise vorticity field.

Boundary layers extraction

Boundary layer edge detection is based on a pseudo-velocity defined as [4]:

u∗(s, n) :=

∫ n

0

(ω × n̂)dn′

The boundary layer edge is computed as being the first wall-normal location
simultaneously satisfying the two conditions:

‖ω̄‖ n < ε1 ‖ū∗‖ ,
∥∥∥∥∂ω̄∂n

∥∥∥∥ n2 < ε2 ‖ū∗‖

with ε1 = 0.01 and ε2 = 0.1. The overbar denotes temporal and cross-flow
averaging. This framework further provides with a way of calculating bound-
ary layer parameters such as displacement thickness, momentum thickness
and shape factor.
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Figure 4: Top-left: boundary layer profiles extracted along the blade. The red dashed line
indicates BL thickness. Bottom-left: shape factor profile. Right: corresponding locations
of the boundary layer profiles.

Q iso-surfaces

Q iso-surfaces extracted from the suction surface of the blade reveal the pres-
ence of full-span Kevin-Helmholtz roll-ups near the trailing edge. As these
coherent structures convect downstream, they develop spanwise waviness
before breaking down to turbulence.

Figure 5: Q iso-surfaces (Q = 500) contoured by streamwise velocity.

Summary and future outlook

We have carried out a series of direct numerical simulations of a NACA65
compressor blade, ensuring mesh convergence and assessing the validity of a
boundary layer parameters calculation methodology. The high spanwise res-
olution of the Fourier expansion allows to capture well the three-dimensional
features of the flow, visualised through Q iso-surfaces.
The tools here presented provide the grounding for the development of a
more systematic and structured refinement study strategy, followed by the
introduction of background turbulence and wake passing effects.
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