Python bindings for Nektar++

David Moxey

Nektar++ Workshop, London, UK
16t June 2017

Why Python®

Python is a fantastic ‘glue’ language
Easy to use and write code for

Many non-Python libraries offer bindings: interfaces tor huge
amounts of software across lots of different fields

Great for rapid prototyping of ideas and coupling with complex
software

Also much easier for GUI applications

However pure Python can be quite slow: write C extensions
instead

Talking to Python

Lots of approaches for bridging with external code:

» Can use the Python C API directly
= \ery technical, lots of code, quite hard work

» Can try to use an automatic wrapper (e.g. SWIG)
= Quality of bindings tends to be poor

= Do you need every function and class to be
wrapped?

= Technical problems: Nektar++ heavily uses shared
pointers, inheritance everywhere

3

Boost.Python

Solution: use Boost.Python

Create Python classes in C++, point them towards our
classes and functions

Boost.Python then handles the Python API for you

Clever C++ interface, can automatically convert between
a lot of Python and C++ data types

However it's a manual wrapper: produces high quality
wrappings, but you have to decide how much to wrap and
how to do it

Hello World!

#include <boost/python.hpp>

char const* greet()

{

return "hello, world";

}

BOOST PYTHON MODULE (hello ext)
{

using namespace boost::python;
def("greet", greet);

>>> 1mport hello ext
>>> print hello ext.greet()
hello, world

Boilerplate for a simple
Boost.Python wrapper

Compile, link against
boost.python, save as
hello_ext.so

Now launch python
from same directory

A simple class

#include <boost/python.hpp>

struct World ({
volid set(std::string msg) { this->msg = msg; }
std::string greet() { return msg; }
std: :string msg;

i
using namespace boost::python;

BOOST PYTHON MODULE (hello) {
class <World>("World")
.def("greet", &World::greet)
.def("set", &World::set)

>>> import hello

>>> planet = hello.World()
>>> planet.set(' howdy')
>>> planet.greet()

'howdy

INnheritance

vold export StdExpansion ()
{
py::class <StdExpansion,
boost: :shared ptr<StdExpansion>,
boost: :noncopyable> (
"StdExpansion", py::no 1init);

J

vold export StdQuadExp ()

{
py::class <StdQuadExp, py::bases<StdExpansion>,

boost: :shared ptr<StdQuadExp> > (
"StdQuadExp", py::init<
const LibUtilities: :BasisKeyg,
const LibUtilities::BasisKey&>())

Remember that Python can do multiple inheritance!

7

Likely problems

Abstract classes don't exist in Python: use noncopyable
and no_init

Wrapping overloaded methods is a pain, although there
are some macros to help you

Wrapping functions that return things by reference

Complex STL things (e.g. vector, iostream) as well as e.g.
double ™

A lot of these can be sorted out (and made more
Pythonic) using thin wrappers

8

Nektar++ bindings

o Current status: experimental and incomplete
= |ibUtilities (basis & points, SessionReader)
= StdRegions (1D & 2D elements)
= SpatialDomains (MeshGraph, Geometry objects)
= | ocalRegions (1D & 2D elements)

» \Written as a separate package, I.e. not in the
Nektar++ repository, you link against it:

https://gitlab.nektar.info/nektar/nektar-python

Nektar++ bindings

Has a layout very similar to the library level: filenames
the same so it Is clear where they live

Maps Array<OneD, > to and from numpy.ndarray,
which makes wrapping class functions quite easy

Arrays are shallow copied to NumPy arrays
NumPy arrays are always deep copied to Arrays

For this we need Boost.NumPy (Boost 1.63+): if you
don’t have it (quite likely), it'll compile it (hopefully)

10

Very exciting demo

Caveats

Probably quite inefticient right now

Array to NumPy interface only works for doubles
and won't support Arrays of Arrays (nothing
stopping this in principle)

Deep copy of Array - needs modifications inside of
Nektar++

Obviously not much has been wrapped yet!

12

My hopes with this

Can get a user-friendly set of bindings out in order
to make development easier

Easier pre- and post-processing, maybe even
writing solvers

Rapid prototyping of new numerical ideas
Custom GUIs (e.g. visualisation)

Someone might find it useful!

13

Compiling the wrapper
First compile Nektar++ (from master) and install as

normal, then point bindings towards that directory

Hopefully not too much of a pain, but not as seamless
as Nektar++

macOS probably easiest because I'm biased

Please make sure you use your system's Boost library

- Instructions on GitLab website

14

INn this workshop

. Compile Nektar++ and the bindings

. Try to run some of the examples

. Modity them to do something more interesting

. Then start wrapping: can you add new functions to
StdExpansion”? Can you wrap StdTetExp, TetGeom

and TetExp? I'll help solve problems!

. More adventurous: try to add a basic wrapper for
MultiRegions::ExpList and ExpList2D, do VIK output

15

https://gitlab.nektar.info/nektar/nektar-python

