
Python bindings for Nektar++
David Moxey

College of Engineering, Mathematics & Physical Sciences
University of Exeter

Nektar++ Workshop, London, UK
16th June 2017

Why Python?
• Python is a fantastic ‘glue’ language

• Easy to use and write code for

• Many non-Python libraries offer bindings: interfaces for huge
amounts of software across lots of different fields

• Great for rapid prototyping of ideas and coupling with complex
software

• Also much easier for GUI applications

• However pure Python can be quite slow: write C extensions
instead

2

Talking to Python
Lots of approaches for bridging with external code:

• Can use the Python C API directly
➡ Very technical, lots of code, quite hard work

• Can try to use an automatic wrapper (e.g. SWIG)
➡ Quality of bindings tends to be poor
➡ Do you need every function and class to be

wrapped?
➡ Technical problems: Nektar++ heavily uses shared

pointers, inheritance everywhere

3

Boost.Python
• Solution: use Boost.Python

• Create Python classes in C++, point them towards our
classes and functions

• Boost.Python then handles the Python API for you

• Clever C++ interface, can automatically convert between
a lot of Python and C++ data types

• However it’s a manual wrapper: produces high quality
wrappings, but you have to decide how much to wrap and
how to do it

4

Hello World!

5

#include <boost/python.hpp>

char const* greet()
{
 return "hello, world";
}

BOOST_PYTHON_MODULE(hello_ext)
{
 using namespace boost::python;
 def("greet", greet);
}

Boilerplate for a simple
Boost.Python wrapper

Compile, link against
boost.python, save as

hello_ext.so

>>> import hello_ext
>>> print hello_ext.greet()
hello, world

Now launch python
from same directory

A simple class

6

#include <boost/python.hpp>
struct World {
 void set(std::string msg) { this->msg = msg; }
 std::string greet() { return msg; }
 std::string msg;
};

using namespace boost::python;

BOOST_PYTHON_MODULE(hello) {
 class_<World>("World")
 .def("greet", &World::greet)
 .def("set", &World::set)
 ;
}

>>> import hello
>>> planet = hello.World()
>>> planet.set('howdy')
>>> planet.greet()
'howdy'

Inheritance

7

void export_StdExpansion()
{
 py::class_<StdExpansion,
 boost::shared_ptr<StdExpansion>,
 boost::noncopyable>(
 "StdExpansion", py::no_init);
}

void export_StdQuadExp()
{
 py::class_<StdQuadExp, py::bases<StdExpansion>,
 boost::shared_ptr<StdQuadExp> >(
 "StdQuadExp", py::init<
 const LibUtilities::BasisKey&,
 const LibUtilities::BasisKey&>());
}

Remember that Python can do multiple inheritance!

Likely problems
• Abstract classes don’t exist in Python: use noncopyable

and no_init

• Wrapping overloaded methods is a pain, although there
are some macros to help you

• Wrapping functions that return things by reference

• Complex STL things (e.g. vector, iostream) as well as e.g.
double **

• A lot of these can be sorted out (and made more
Pythonic) using thin wrappers

8

Nektar++ bindings
• Current status: experimental and incomplete

➡ LibUtilities (basis & points, SessionReader)
➡ StdRegions (1D & 2D elements)
➡ SpatialDomains (MeshGraph, Geometry objects)
➡ LocalRegions (1D & 2D elements)

• Written as a separate package, i.e. not in the
Nektar++ repository, you link against it:

9

https://gitlab.nektar.info/nektar/nektar-python

https://gitlab.nektar.info/nektar/nektar-python

Nektar++ bindings
• Has a layout very similar to the library level: filenames

the same so it is clear where they live

• Maps Array<OneD, > to and from numpy.ndarray,
which makes wrapping class functions quite easy

• Arrays are shallow copied to NumPy arrays

• NumPy arrays are always deep copied to Arrays

• For this we need Boost.NumPy (Boost 1.63+): if you
don’t have it (quite likely), it’ll compile it (hopefully)

10

Very exciting demo

Caveats

• Probably quite inefficient right now

• Array to NumPy interface only works for doubles
and won’t support Arrays of Arrays (nothing
stopping this in principle)

• Deep copy of Array - needs modifications inside of
Nektar++

• Obviously not much has been wrapped yet!

12

My hopes with this
• Can get a user-friendly set of bindings out in order

to make development easier

• Easier pre- and post-processing, maybe even
writing solvers

• Rapid prototyping of new numerical ideas

• Custom GUIs (e.g. visualisation)

• Someone might find it useful!

13

Compiling the wrapper

• First compile Nektar++ (from master) and install as
normal, then point bindings towards that directory

• Hopefully not too much of a pain, but not as seamless
as Nektar++

• macOS probably easiest because I’m biased

• Please make sure you use your system’s Boost library

• Instructions on GitLab website

14

In this workshop
1. Compile Nektar++ and the bindings

2. Try to run some of the examples

3. Modify them to do something more interesting

4. Then start wrapping: can you add new functions to
StdExpansion? Can you wrap StdTetExp, TetGeom
and TetExp? I’ll help solve problems!

5. More adventurous: try to add a basic wrapper for
MultiRegions::ExpList and ExpList2D, do VTK output

15

https://gitlab.nektar.info/nektar/nektar-python

https://gitlab.nektar.info/nektar/nektar-python

