
Improvements to post–processing in Nektar++

Douglas Serson

Department of Mechanical Engineering
University of São Paulo

Nektar++ Workshop, June 2017
London



Introduction

I I will present some new developments to FieldConvert
I At the moment, these changes are in the branch

feature/FC-refactor
I Comments or suggestions are welcome



Introduction: FieldConvert

I Post-processing in Nektar++ is done using FieldConvert, e.g.

FieldConvert in1.xml in2.fld -m vorticity out.vtu

I FieldConvert is organized in modules, which are classified as
Input, Process and Output

.xml

.fld

.pts
InputModule ProcessModule OutputModule

.vtu

.dat

.fld

.pts

I It is possible to use many input and process modules in a
single FieldConvert call



Problem

I FieldConvert modules operate on a Field object m_f, which
contains: m_data/m_fielddef, m_exp, m_fieldPts...

I For a particular module, it is not clear what parts of m_f act
as input and output for the module

? Module ?

I Since when using a sequence of modules, the inputs and
outputs must match, this compromises the compatibility of
different modules

I For this reason, it can be difficult to chain several process
modules in a single command



Modules priorities

I To solve this problem, priorities were assigned to modules
I Each priority has a well defined input and output type. For

example, modules of priority ModifyExp can only operate on
the m_exp portion of m_f

I There is a clear sequence for executing modules of different
priorities



Modules priorities: structure

CreateGraph CreateFieldData ModifyFieldData

CreateExp FillExp ModifyExp BndExtraction

CreatePts ConvertExpToPts ModifyPts Output



Modules priorities

Advantages of this priorities system include:
I It is clear in which order modules should be executed.

Therefore, we enforce the execution in the correct sequence,
automatically correcting simple usage errors

I Because the inputs and outputs of modules in each priority
level are well defined, compatibility between different modules
should be improved

I It is possible to check for errors considering only the types of
modules. For example, whenever we have a module of type
ModifyExp we need a CreateGraph module (corresponding to
an xml input)



Modules priorities

Advantages of this priorities system include:
I It is clear in which order modules should be executed.

Therefore, we enforce the execution in the correct sequence,
automatically correcting simple usage errors

I Because the inputs and outputs of modules in each priority
level are well defined, compatibility between different modules
should be improved

I It is possible to check for errors considering only the types of
modules. For example, whenever we have a module of type
ModifyExp we need a CreateGraph module (corresponding to
an xml input)



Modules priorities

Advantages of this priorities system include:
I It is clear in which order modules should be executed.

Therefore, we enforce the execution in the correct sequence,
automatically correcting simple usage errors

I Because the inputs and outputs of modules in each priority
level are well defined, compatibility between different modules
should be improved

I It is possible to check for errors considering only the types of
modules. For example, whenever we have a module of type
ModifyExp we need a CreateGraph module (corresponding to
an xml input)



Other improvements

The feature/FC-refactor also contains other improvements, like:
I The boundary extraction module can now output directly to

.vtu and .dat
I Tidy modules to guarantee they follow the new rules
I Bug fixes



FilterFieldConvert

FilterFieldConvert allows applying FieldConvert modules to
checkpoints during the simulation

I Already available since v4.4.0
I Will also benefit from feature/FC-refactor
I The AverageFields and MovingAverage filters are derived from

this filter, and therefore can also use these features
I To allow accessing modules by a Filter, all modules were

moved to a new library, called FieldUtils



FilterFieldConvert

Examples:

<FILTER TYPE="FieldConvert">
<PARAM NAME="OutputFile">output.vtu </PARAM >
<PARAM NAME="OutputFrequency">100</PARAM >
<PARAM NAME="Modules"> vorticity C0Projection </PARAM >

</FILTER >

<FILTER TYPE="AverageFields">
<PARAM NAME="OutputFile">output.fld </PARAM >
<PARAM NAME="OutputFrequency">100</PARAM >
<PARAM NAME="Modules"> extract:bnd=0 </PARAM >

</FILTER >



FilterFieldConvert

Possible reasons for using this filter:
I Convenience
I Simulations with large memory usage
I Modules leading to output files with reduced size



Summary

I A new priority system was developed in FieldConvert,
improving compatibility of different modules and dependency
checking

I FilterFieldConvert allows processing checkpoint files during the
simulation



Thank you!


	Introduction
	FieldConvert
	FilterFieldConvert
	Summary

