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Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.

where U = [⇢, ⇢u, ⇢v, ⇢w, E]> is the vector of conserved vari-
ables in terms of density ⇢, velocity (u1, u2, u3) = (u, v,w), E is
the specific total energy, and
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where p is the pressure. To close the system we need to specify
an equation of state, in this case the ideal gas law p = ⇢RT
where T is the temperature and R is the gas constant. For the
Euler equations, the tensor of viscous forces Fv(U) = 0, and for
Navier-Stokes

Fv(U) =
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A = u⌧xx + v⌧xy + w⌧xz + k@xT,
B = u⌧yx + v⌧yy + w⌧yz + k@yT,
C = u⌧zx + v⌧zy + w⌧zz + k@zT

where in tensor notation the stress tensor ⌧xi x j = 2µ(@xi ui +

@xi u j � 1
3@xk uk�i j), µ is the dynamic viscosity calculated using

Sutherland’s law and k is the thermal conductivity.
To discretise these equations in space, we adopt an approach

which allows for the resolution of discontinuities and shocks
that may appear in the solution at transonic and supersonic flow
speeds. We therefore use approximations to our solution com-
prised of functions which are not continuous across element
boundaries. Traditionally, we follow a Galerkin approach by
utilising the variational form of the equations in order to ob-
tain the discontinuous Galerkin method. One of the key fea-
tures of Nektar++ is the ability to select a wide range of nu-
merical options, and to this end we support both discontinuous

Galerkin and flux reconstruction spatial discretisations, which
have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation
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Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.
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where p is the pressure. To close the system we need to specify
an equation of state, in this case the ideal gas law p = ⇢RT
where T is the temperature and R is the gas constant. For the
Euler equations, the tensor of viscous forces Fv(U) = 0, and for
Navier-Stokes
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where in tensor notation the stress tensor ⌧xi x j = 2µ(@xi ui +
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Sutherland’s law and k is the thermal conductivity.
To discretise these equations in space, we adopt an approach

which allows for the resolution of discontinuities and shocks
that may appear in the solution at transonic and supersonic flow
speeds. We therefore use approximations to our solution com-
prised of functions which are not continuous across element
boundaries. Traditionally, we follow a Galerkin approach by
utilising the variational form of the equations in order to ob-
tain the discontinuous Galerkin method. One of the key fea-
tures of Nektar++ is the ability to select a wide range of nu-
merical options, and to this end we support both discontinuous

Galerkin and flux reconstruction spatial discretisations, which
have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation
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Figure 5: Contours of the magnitude of velocity in a periodic hill simulation at
Re = 2800.

for flow over a NACA0012 aerofoil at a farfield Mach number
Ma1 = 0.8 and a 1.5� angle of attack. The transonic mach
number of this flow leads to the development of a strong and
weak shock along the upper and lower surfaces of the wing re-
spectively. This figure shows isocontours of the mach number
where the presence of the shocks are clearly identified. Finally,
In Fig. 4(c), we visualise the temperature field from flow pass-
ing over a T106C low-pressure turbine blade at Re = 80,000
to highlight applications to high Reynolds number flow simula-
tions.

4.2. Transitional turbulent flow dynamics

Transient problems in which turbulence dominates the flow
domain, or in which the transition to turbulence dominates the
simulation, remain some of the most challenging problems to
resolve in computational fluid simulations. Here, accurate nu-
merical schemes and high resolution of the domain is critical.
Moreover, any choice of scheme must be e�cient in order to ob-
tain results in computationally feasible time-scales. Tradition-
ally, highly resolved turbulence simulations, such as the Taylor-
Green vortex problem, lie firmly in the class of spectral meth-
ods. However, spectral methods typically lead to strong geom-
etry restrictions which limits the domain of interest to simple
shapes such as cuboids or cylinders.

Whilst spectral element methods may seem the ideal choice
for such simulations, particularly when the domain of interest
is geometrically complex, they can be more computationally
expensive in comparison to spectral methods. However, when
the domain of interest has a geometrically homogeneous com-
ponent – that is, the domain can be seen to be the tensor prod-
uct of a two-dimensional ‘complex’ part and a one-dimensional
segment – we can combine both the spectral element and tradi-
tional spectral methods to create a highly e�cient and spectrally
accurate technique [4].

We consider the application of this methodology to the prob-
lem of flow over a periodic hill, depicted in Fig. 5, where the
flow is periodic in both streamwise and spanwise directions.
This case is a well-established benchmark problem in the DNS
and LES communities [25], and is challenging to resolve due to
the smooth detachment of the fluid from the surface and recir-
culation region. Here we consider a Reynolds number of 2800,
normalised by the bulk velocity at the hill crest and the height
of the hill, with an appropriate body forcing term to drive the
flow over the periodic hill configuration.

The periodicity of this problem makes it an ideal candidate
for the hybrid technique described above. We therefore con-

struct a two-dimensional mesh of 3626 quadrilateral elements
at polynomial order P = 6, and exploit the domain symmetry
with a Fourier pseudospectral method consisting of 160 collo-
cation points in the spanwise direction to perform the simula-
tion. This yields a resolution of 20.9M degrees of freedom per
field variable and allows us to obtain excellent agreement with
the benchmark statistics.

4.3. Flow stability
In addition to direct numerical simulation of the full

non-linear incompressible Navier-Stokes equations, the
IncNavierStokesSolver supports global flow stability
analysis through the linearised Navier-Stokes equations with
respect to a steady or periodic base flow. This process identifies
whether a steady flow is susceptible to a fundamental change
of state when perturbed by an infinitesimal disturbance. The
linearisation takes the form

@u0

@t
+ (u0 · r)U + (U · r)u0 = �rp0 + ⌫r2u0

r · u0 = 0,

where U is the base flow and u0 is now the infinitesimal pertur-
bation. The time-independent base flow is computed through
evolving Equs. 9 to steady-state with appropriate boundary con-
ditions. For time-period base flows, the flow is sampled at reg-
ular intervals and interpolated.

The linear evolution of a perturbation under Equs. 10 can be
expressed as

u0(t) = A(t)u00

for some initial state u00, and we seek, for some arbitrary time
T, the dominant eigenvalues and eigenmodes of the operator
A(T ), which are solutions to the equation

A(T )ũ j = � jũ j.

The sign of the leading eigenvalues � j are used to establish the
global stability of the flow. An iterative Arnoldi method [26]
is applied to a discretisation M of A(T ). Repeated actions
of M are applied to the initial state u0 using the same time-
integration code as for the non-linear equations [27]. The re-
sulting sequence of vectors spans a Krylov subspace of M and,
through a partial Hessenberg reduction, the leading eigenval-
ues and eigenvectors can be e�ciently determined. The same
approach can be applied to the adjoint form of the linearised
Navier-Stokes evolution operatorA⇤ to examine the receptivity
of the flow and, in combination with the direct mode, identify
the sensitivity of the flow to base flow modification and local
feedback. The direct and adjoint methods can also be combined
to identify convective instabilities over di↵erent time horizons
⌧ in a flow by computing the leading eigenmodes of (A⇤A)(⌧).
This is referred to as transient growth analysis.

To illustrate the linear analysis capabilities of Nektar++, we
use the example of two-dimensional flow past a circular cylin-
der at Re = 42, just below the critical Reynolds number for
the onset of the Bénard-von Kármán vortex street. This is a
well-established test case for which significant analysis is avail-
able in the literature. We show in Fig. 6 the leading eigen-
modes for the direct (A) and adjoint (A⇤) linear operators for
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Figure 6: Linear stability analyses of two-dimensional flow past a circular
cylinder at Re = 42. Illustrative plots of (a) streamwise (left) and transverse
(right) components of velocity for the dominant direct mode, (b) streamwise
(left) and transverse (right) velocity for the dominant adjoint mode and (c)
structural sensitivity to base flow modification (left) and local feedback (right).

both the streamwise and cross-stream components of velocity.
The modes are characterised by the asymmetry in the stream-
wise component and symmetry in the cross-stream component.
We also note the spatial distribution of the modes with the
leading direct modes extending far downstream of the cylin-
der, while the adjoint modes are predominantly localised up-
stream but close to the cylinder. This separation is a result of
the non-normality of the A operator. We also show the struc-
tural sensitivity of the flow to base flow modification and local
feedback. The latter highlights regions where localised forcing
would have greatest impact on the flow.

4.4. Shallow water modelling

The ShallowWaterSolver simulates depth-averaged wave
equations, often referred to as “long-wave” approximations.
These equations are often used for engineering applications
where the vertical dimension of the flow is small compared
to the horizontal. Examples of applications include tidal flow,
river flooding and nearshore phenomena such as wave-induced
circulation and wave disturbances in ports.

The governing equations are derived from potential flow:
the Laplace equation inside the flow domain and appropriate
boundary conditions at the free surface and bottom. The two
key steps are (i) the expansion of the velocity potential with re-
spect to the vertical coordinate and (ii) the integration of the
Laplace equation over the fluid depth. This results in sets of
equations expressed in horizontal dimensions only. Depending
on the order of truncation in nonlinearity and dispersion, nu-
merous long-wave equations with di↵erent kinematic behavior
have been derived over the years [28, 29, 30].

Many depth-averaged equations can be written in a generic
form as

@U
@t
+ r · F(U) + D(U) = S(U) , (11)

where U = [H ,Hu ,Hv]T is the vector of conserved variables.
The horizontal velocity is denoted by u = [u(x, t) , v(x, t)]T ,
H(x, t) = ⌘(x, t) + d(x) is the total water depth, ⌘ is the free
surface elevation and d the still water depth. The flux vector
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, (12)

in which g is the acceleration due to gravity. The source term
S(U) contains forcing due to, for example, Coriolis e↵ects, bed-
slopes and bottom friction. Importantly, D(U) contains all the
dispersive terms. The actual form of the dispersive terms di↵ers
between di↵erent wave equations and the term can be highly
complex with many high-order mixed and spatial derivatives.

At present, the ShallowWaterSolver supports the non-
dispersive shallow-wter equations (SWE) and the weakly dis-
persive Boussinesq equations of Peregrine [28]. The SWE are
recovered if D(U) ⌘ 0 while for the Peregrine equation the ex-
pression is:

D(U) = @t
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(13)

The Boussinesq equations are solved using the wave conti-
nuity approach [31]. The momentum equations are first recast
into a scalar Helmholtz type equation and solved for the aux-
iliary variable z = r · @t (Hu). The conservative variables are
recovered in a subsequent step.

A frequently used test-case for Boussinesq models is the
scattering of a solitary wave impinging a vertical cylinder. Here
a solitary wave with nonlinearity ✏ = 0.1 is propagating over a
still water depth of 1 m (✏ = A/d, where A is the wave ampli-
tude). The initial solitary wave condition is given by Laitone’s
first order solution. The cylinder has a diameter of 4 m, giving
a Keulegan-Carpenter number well below unity and di↵raction
number on the order of 2. Hence, the viscous e↵ects are small
while the di↵raction and scattering are significant.

We compute the solution in the domain x 2 [�25 , 50] me-
ters and y 2 [�19.2 , 19.2] meters, discretized into 552 triangles
using P = 5. Snapshots of the free surface elevation at four
di↵erent times are shown in Fig. 7. In Fig. 7a the solitary wave
reaches its maximum run-up on the cylinder, while in Fig. 7b
the peak of solitary wave has reached the center of the cylin-
der and a depression in the free surface around the cylinder is
clearly visible. The propagation of the scattered, and later re-
flected from the side walls, waves are seen in Figs. 7c and 7d.

4.5. Cardiac electrophysiology
The cardiac electrical system in the heart is the signalling

mechanism used to ensure coordinated contraction and e�cient
pumping of blood. Conduction occurs due to a complex se-
quence of active ion exchanges between intracellular and extra-
cellular spaces, initiated due to a potential di↵erence between
the inside and outside of the cell exceeding a threshold, pro-
ducing an action potential. This causes a potential di↵erence
across boundaries with adjacent cells, resulting in a flow of ions
between cells and triggering an action potential in the adjacent
cell. Disease, age and infarction lead to interruption of this
signalling process and may produce abnormal conduction pat-
terns known as arrhythmias. Clinically this can be treated using
catheter ablation, however acurately selecting the most e↵ective
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Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;

substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations

�

 

Cm
@u
@t
+ Iion

!

= r · �ru,

where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by

@U
@t
+H@U
@x
= S (14)

U =
"

U
A

#

, H =
"

U A
⇢ @p
@A U

#

, S =
"

0
1
⇢

⇣

f
A � s

⌘

#

in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p

A � p

A0
⌘

, � =

p
⇡hE

(1 � ⌫2)A0
(15)

where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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Figure 9: Geometry used for the simulation. Insets show how flow and pressure
vary with time and di↵erent locations in the geometry.

thickness and ⌫ is the Poisson’s ratio. Other more elaborate
pressure - area relationships are currently being implemented
into the framework. Application of Riemann’s method of char-
acteristics to Equations 14 and 15 indicates that velocity and
area are propagated through the system by forward and back-
ward travelling waves. These waves are reflected within the
network by appropriate treatment of interfaces and boundaries
(see for example [34, 35]). The final system of equations are
discretised in the Nektar++ framework using a discontinuous
Galerkin projection.

To illustrate the capabilities of the PulseWaveSolver, a 1D
geometry was created by extracting the centreline directly from
a 3D segmentation of a carotid bifurcation (the extracted cen-
treline with the segmented geometry overlaid is shown in Fig-
ure 9). At the inlet a half-sinusoidal flow profile was applied
during the systolic phase, whist during the diastolic phase a no-
flow condition was applied. Although this profile is not rep-
resentative of the carotid wave, it is useful for demonstrating
essential dynamics of the system e.g. reflection of backward
travelling waves only during the diastolic phase. At the outflow
RCR boundary conditions were utilised [35]. These boundary
conditions take into account the peripheral resistance and com-
pliance of the vasculature. The pressure and flow results are
shown in Figure 9. The insets demonstrate that the pressure
needs about 4 cycles to reach a periodic state.

To conclude this section, we illustrate the flexibility of the
software in combining two solvers to understand mass trans-
port in the aorta. We consider the simulation of blood-flow
through a pair of intercostal branches in the decending aorta.
The three-dimensional geometry is derived from CT scans and
is meshed using a combination of tetraheda and prismatic el-
ements. Prisms are used to better capture the boundary layer
close to the wall, while tetrahedra fill the remaining interior of
the domain. The embedded manifold discretisation code can
be used to compute boundary conditions for three-dimensional
simulations where the complexity of the geometry precludes the
use of analytic conditions.

The flow is modelled using the incompressible Navier-Stokes
equations (see Section 4.1). In this case, the inlet flow profile
f in Equ. 9 is the solution of the Poisson problem, computed
using the ADRSolver, on the two-dimensional inlet boundary

surface for a prescribed body force, as shown in Fig. 10(a).
The resulting profile is imposed on the three-dimensional flow
problem as illustrated. The steady-state velocity field from the
flow simulation at Reynolds number Re = 300 is shown in
Fig. 10(b). A single boundary layer of prismatic elements is
used for this simulation and both the prismatic and tetrahedral
elements use a polynomial expansion order of P = 4. This is
su�cient to capture the boundary layer at the walls.

We now solve the advection-di↵usion equation,

r · (�Drc + cu) = 0,

to model transport of oxygen along the arterial wall. Here, c
is the concentration and u is the steady-state flow solution ob-
tained previously. D = 1/Pe is the di↵usivity of the species
considered (Pe = 7.5 ⇥ 105 for oxygen). For most of the do-
main, the non-dimensional concentration remains constant at
c = 1. However, a particularly high gradient in concentration
forms at the wall. It is this gradient which is of particular inter-
est and needs to be captured accurately. The existing mesh used
for the flow simulation is unable to resolve the gradients close
to the wall. We therefore refine the boundary layer in the wall-
normal direction using element heights following a geometric
progression. To reduce computational cost, we also exploit the
spectral/hp discretisation and reduce the polynomial order of
the prisms in the directions parallel to the wall, since the con-
centration shows negligible variation in these directions. Fur-
thermore, the domain-interior tetrahedra may also be discarded
and a dirichlet c = 1 condition imposed on the resulting interior
prism boundary.

Fig. 10(c) shows the resulting concentration gradient field on
the surface of the arterial wall. Regions of low concentration
gradient are observed upstream of the branches, while high con-
centration gradients are observed downstream. Fig.10(d) shows
close-ups of the branches to illustrate this.

5. Discussion & Future Directions

The Nektar++ framework provides a feature-rich platform
with which to develop numerical methods and solvers in the
context of high-order finite element methods. It has been de-
signed in such a way that the libraries reflect the mathematical
abstractions of the method, to simplify uptake for new users,
as well as being written in a modular way to improve the ro-
bustness of the code, minimise duplication of functionality and
promote sustainability.

Development
The development of a complex and extensive software

project such as Nektar++ necessitates the adoption of certain
development practices to enable developers to easily write new
code for their features without breaking the code for other peo-
ple. The code is managed using the git distributed version
control system [36] due to its performance, enhanced support
for branching, as well as supporting o↵-line development. All
development is performed in branches and only after rigor-
ous multi-architecture testing and internal peer-review is new
code merged into the main codebase, thereby always maintain-
ing a stable distribution. Any new bugs or feature requests
are tracked using the Trac issue-management system, which
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(a)

(b)

(c)

(d)

Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;

substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations

�

 

Cm
@u
@t
+ Iion

!

= r · �ru,

where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by

@U
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#
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#

in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p

A � p

A0
⌘

, � =

p
⇡hE

(1 � ⌫2)A0
(15)

where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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(Figure 2B). To assess the influence of false detections on correct 
rotor identification, both the number and distribution of falsely identi-
fied PSs were assessed.

A methodology for determining an appropriate threshold for the 
number of permissible false detections was developed by consider-
ing the number of PSs as a function of distance from the true rotor 
core location, which was taken to be the time-averaged full-resolution 

rotor core location (Figure 2C). A resolution is considered to fail the 
false PS detection histogram criterion if the resulting histogram con-
tains multiple peaks (Figure 2F), corresponding to additional spatial 
clusters of PSs that represent false detections. These spatial clusters 
could be misidentified as rotor locations.

Example resolutions for which identification is successful and un-
successful for each of the 3 criteria are shown in Figure 2.

Figure 1. Methods schematic. A, Action potential (AP) data were computed at a mesh resolution (MR) of 0.34 mm edge length (93 927 
points). Data were then downsampled: 1.62 to 17.1 mm (4813–36 points). Voltages were interpolated (to MR=1.62 mm), and phase was 
calculated. Unipolar electrograms were calculated at AP point distribution. Bipolar electrograms were calculated from paired unipolar 
electrograms with 4-mm interelectrode spacing. Phase of unipolar and bipolar electrograms was calculated and interpolated to MR=1.62 
mm. Phase singularities were tracked over time (>120 ms trajectories tagged as rotors), and regional assessment was performed. B, A 
mapping is introduced for phase interpolation. Direct interpolation of the phase angle θ leads to issues when interpolating, in the instance 
that neighboring points are close to π and −π (left). Mapping to the exponential form (eiϑ), interpolating this and then converting back to a 
phase angle, removes the issue with phase angle discontinuities (right). The errors become larger as the grid spacing is increased (bot-
tom). The domain size shown here is 10 cm-by-10 cm.
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DNS of NACA65 compressor blades at

Re = 135000 with spectral/hp element methods

Andrea Cassinelli, Francesco Montomoli and Spencer J. Sherwin

Motivation

Current RANS-based methods have inherent limitations in modeling transi-
tional and turbulent flows in turbomachinery applications. The recent ad-
vances in high-performance computing capabilities support the development
of high-fidelity methods to o↵er better resolved simulations that can shed
light on the flow physics and, eventually, lead to better design techniques.

Computational Methodology

The software framework Nektar++ is employed to solve the Navier-Stokes
equations [1].

I Unstructured high-order 2D mesh generated with NekMesh.
I Spectral element discretisation in the x-y plane, and Fourier expansion
in the spanwise z- direction.

I Spectral Vanishing Viscosity [2] relied upon to stabilise the simulation.

Figure 1: High-order mesh of the NACA65 profile, comprised of 2719 quadrilateral
elements in the O-mesh and 6145 triangular elements in the unstructured mesh.

2D results

I Convergence study by p-refinement shows increasing accuracy in
pressure distributions

I Comparison against existing numerical data set [3] shows that
separation on the suction surface is well captured by the current setup.
The recent introduction of a new kernel for SVV, matching the
dispersion and di↵usion property of DG schemes, also shows good
agreement with previous numerical results.

Figure 2: Pressure distributions. Left: P-refinement e↵ect. Right: Comparison between
exponential kernel (cuto↵ M = 0.75, di↵usion coe�cient ✏

SVV

= 1), DG kernel and
previous results from [3].

2-5D results

Velocity and vorticity fields are shown as computed with 7-th order expan-
sions, a spanwise width of L

z

= 0.2 and 128 Fourier planes in the z-direction.
It can be appreciated that the flow separates and undergoes transition to tur-
bulence on both the pressure and suction side.

Figure 3: 2D mean mode (plane zero in Fourier space) of the 2.5D simulation. Left:
instantaneous velocity magnitude field. Right: instantaneous spanwise vorticity field.

Boundary Layers extraction

Boundary layer edge detection is based on a pseudo-velocity defined as [4]:

u

⇤(s, n) :=

Z
n

0
(! ⇥ n̂)dn0

The boundary layer edge is computed as being the first wall-normal location
simultaneously satisfying the two conditions:

k!̄k n < ✏1 kū⇤k ,
����
@!̄

@n

���� n
2 < ✏2 kū⇤k

with ✏1 = 0.01 and ✏2 = 0.1. The overbar denotes temporal and cross-flow
averaging. This framework further provides with a way of calculating bound-
ary layer parameters such as displacement thickness, momentum thickness
and shape factor.
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Figure 4: Top-left: boundary layer profiles extracted along the blade. The red dashed line
indicates BL thickness. Bottom-left: shape factor profile. Right: corresponding locations
of the boundary layer profiles.

Q iso-surfaces

Q iso-surfaces extracted from the suction surface of the blade reveal the pres-
ence of full-span Kevin-Helmholtz roll-ups near the trailing edge. As these
coherent structures convect downstream, they develop spanwise waviness
before breaking down to turbulence.

Figure 5: Q iso-surfaces (Q = 500) contoured by streamwise velocity.

Summary and future outlook

We have carried out a series of direct numerical simulations of a NACA65
compressor blade, ensuring mesh convergence and assessing the validity of a
boundary layer parameters calculation methodology. The high spanwise res-
olution of the Fourier expansion allows to capture well the three-dimensional
features of the flow, visualised through Q iso-surfaces.
The tools here presented provide the grounding for the development of a
more systematic and structured refinement study strategy, followed by the
introduction of background turbulence and wake passing e↵ects.
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(a)

(b)

FIGURE 2. Streamlines of the stationary (S = 0.125, ⌅ = 5.48 ⇥ 10�6) (a) and a snapshot
of an oscillatory (S = 0.150, ⌅ = 1.15 ⇥ 10�1) (b) velocity field. ↵ = 1, Re = 1500.
Computational boxes containing one corrugation wavelength have been used to produce
these results.

(a) (b) (c) (d )

FIGURE 3. Development of the recirculation zone for ↵ = 3, Re = 2300, at different
corrugation amplitudes: (a) S = 0.075, (b) S = 0.150, (c) S = 0.2 and (d) S = 0.225
(a snapshot of an oscillatory solution). Computational boxes containing one corrugation
wavelength have been used to produce these results.

transition to the oscillatory flow happens through breaking of this symmetry, we use
change in the flow symmetry as a criterion for identification of the onset of flow
unsteadiness. Accordingly, we define the symmetricity parameter ⌅ as:

⌅ = 1
N

NX

1

Z yu(xn)

0
(|u(y) � u(�y)| + |v(y) + v(�y)| + |p(y) � p(�y)|) dy (2.20)

over a snap shot of the flow field where N is the number of sample points over one
corrugation wavelength and yu(xn) denotes point at the upper wall at xn. N = 9 sample
points have been used in this work with all points spaced evenly in the x-direction
from x = 0.1� to x = 0.9�.

We shall now discuss properties of stationary flows. Here we define such flows as
flows with ⌅ < 10�3. We shall describe a more precise stationarity measure in the
next section. We shall limit our interest to S < 0.2 and Re < 3500. The reasons for
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FIG. 7. Iso-surfaces of |!
x

| for various Re values obtained using the spectral element method. The iso-surfaces are shown
at di↵erent |!

x

| values for di↵erent Re so as to display the main features of the wake structures. Dark grey and light yellow
denote positive and negative values, respectively. The flow is from the left to the right past the cylinder on the left.

simulation is run for a su�ciently long time. For example, the maximum value of |!
x

| for
Re = 175 decays from 5.0 ⇥ 10�3 at t⇤ = 200 to 1.7 ⇥ 10�6 at t⇤ = 500.

D. Physical mechanism for stable state of Mode A

The physical mechanism responsible for the stable state of Mode A wake structure observed
at Re < Recr is believed to be due to the convective instability of the flow, which amplifies the
small-scale spanwise disturbance introduced in the computational domain upstream of the cylinder.
The transient stability analysis of flow past a circular cylinder by Abdessemed et al. (2009) suggests
that the energy amplification of spanwise disturbance due to convective instability could be as high
as 103 at Re = 200 over a few vortex shedding cycles. Abdessemed et al. (2009) also found that
the transient growth of initial disturbance occurs at Re values much smaller than Recr and that the
energy amplification generally increases with increase of Re. When disturbance is introduced as
an initial condition at Re < Recr, the transient flow structure formed due to the initial disturbance
is expected to be eventually damped out at a rate dictated by the eigenmode (Abdessemed et al.,
2009).



Change Log
https://gitlab.nektar.info/nektar/nektar/blob/master/CHANGELOG.md 

$NEKTARHOME/CHANGELOG.md



Change Log v4.4



Change Log v4.4.1



Change Log v4.4



StdRegions LocalRegionsSpatialDomains

MultiRegions Collections

Core Nektar++ libraries

LibUtilities
Quadrature, bases, partitioning, input/output, linear algebra, interpreter, FFT, ...

Boost Metis TinyXML Gslib VTK PETSc ARPACK

FFTW Scotch Zlib QT

SolverUtils

IncNavierStokes CompressibleFlow ADR CardiacEP ...

Framework Layout

Global Mappings



FieldConvertIncNavierStokes CompressibleFlow ADR ImageWarping ...

Framework Layout

SolverUtils

StdRegions LocalRegionsSpatialDomains

MultiRegions Collections

Core Nektar++ libraries

Global Mappings

NekMesh

FieldUtilsNekMeshUtils



Library Developments: 

• Variable p (primarily 2, 2.5D) 
•  3D variable polynomial order (not preconditioner)  

• HDF5 output  
• Incompressible Navier Stokes Solvers 
• Tutorials



● Example: Naca0012 with Re=50,000 and alpha=15 (Pmin = 2, Pmax = 9)

Library Developments:  
Adaptive Polynomial Order

● Variable P available in 3D but pyramids and 
preconditioners only available in branch



Library Developments:  
Hdf5 Field files

Default parallel output is a directory:  
myjob_fld /or myjob_chk/

Info.xml P0000000.fld P0000001.fld P0000002.fld P0000003.fld

Have a challenge of generating too many files: 
8000 cores for 100 dumps leads to 800K files! 

../IncNavierStokesSolver -h  
      -i [ --io-format ] arg    Default input/output format (e.g. Xml, Hdf5)  

../IncNavierStokesSolver -i hdf5 myrun.xml



Incompressible Navier Stokes 
developments

• Fixed linearised stability 
• Weak pressure Poisson system 
• Dong Outflow / mixed pressure  
• Womersley BCs



Pressure Poisson System

Methods: solution of the Navier-Stokes equations

In the velocity-correction scheme, the pressure is the solution of
8
<

:

�0ūn+1�u+

�t

+rp

n+1 + ⌫(r⇥r⇥ u)⇤ � N⇤ = 0 in ⌦,
r · ūn+1 = 0 in ⌦,
ūn+1 · n = u

D

· n on �
D

,

where represents extrapolation in time and + represents backward
differencing.

(see for example Guermond and Shen, 2003)

where * represents extrapolation and 
+ represents backward differencing  

Guermond & Shen 2003 JCP

Methods: solution of the Navier-Stokes equations

Dotting with r�, applying the divergence theorem and using some
identities:
Z
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rp
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û � �0un+1

�t

� ⌫(r⇥r⇥ u)⇤
�
· n dS ,

where
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Doting with         and using some identities:r�

This option is implemented as  VCSWeakPessure
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This option is implemented as VelocityCorrectionScheme
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developments
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h nh + E(nh,u∗,n+1
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bh − ν
(
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h

)
nh

]}
ϕh,

∀ϕh ∈ Xh0, (33)

together with

un+1
h = wn+1

h , on ∂$dh. (34)

Our final algorithm therefore consists of the following operations within a time step: (i) Solve equation (32) for pn+1
h ; 

(ii) Solve equation (33), together with the Dirichlet condition (34) on ∂$dh , for un+1
h . The computations for the pressure 

and the velocity are de-coupled, and the computations for the three components of the velocity are also de-coupled. All the 
terms on the right hand sides of equations (32) and (33) can be computed directly using C0 spectral elements. Note that 
the auxiliary velocity ũn+1 is not explicitly computed.

We employ equal orders of expansion polynomials to approximate the pressure and the velocity in the current spectral-
element implementation, similar to our previous works [16,17,10,12,14,18]. Note that in all the numerical simulations and 
flow tests of Section 3 we have used the same polynomial orders for the pressure and the velocity. We refer the reader to 
the equal-order approximations for the pressure/velocity by other researchers in the literature [40,68,31,41,47,46,1,50].

We finally make some comments on a possible implementation of the algorithm (20a)–(21c) with finite difference type 
discretizations. One can refer to [14] for suggestions in this regard with the open boundary condition presented therein. The 
following discussion largely follows that of [14], but with the current open boundary condition. As suggested in [14], one 
can take the divergence of equation (20a), leading to a pressure Poisson-type equation

∇2 pn+1 = ∇ ·
(

fn+1 + û
#t

− u∗,n+1 · ∇u∗,n+1
)

(35)

where equation (20b) has been used. By taking the inner product between equation (20a) and directional vector n on ∂$d
and using (20c), one attains the Neumann-type condition

∂ pn+1

∂n
= n ·

(
fn+1 + û

#t
− u∗,n+1 · ∇u∗,n+1

)
− νn · ∇ × ω∗,n+1 − γ0

#t
n · wn+1, on ∂$d. (36)

By taking the inner product between (20a) and the directional vector n on ∂$o , and combining the resulting equation with 
(20d), one can obtain the Robin-type condition

∂ pn+1

∂n
+ 1

νD0
pn+1 = n ·

(
fn+1 − u∗,n+1 · ∇u∗,n+1

)
− νn × ω∗,n+1

− 1
νD0

[
fn+1
b · n + n · E(n,u∗,n+1) − νn · ∇u∗,n+1 · n

]
, on ∂$o. (37)

One can therefore solve equation (35), together with the boundary conditions (36) and (37), for the pressure pn+1. For 
the velocity un+1, one can solve equation (29), together with the Dirichlet condition (21b) and the following Robin-type 
condition

∂un+1

∂n
+ γ0 D0

#t
un+1 = 1

ν

[
fn+1
b + E(n,u∗,n+1) + pn+1n − ν(∇ · u∗,n+1)n

]
+ D0

#t
û, on ∂$o, (38)

which stems from and is equivalent to (21c).

2.4. The case of D0 = 0 in open boundary condition

So far we have focused on the case D0 > 0 in the open boundary condition (19). In this subsection we briefly discuss 
the case D0 = 0 in the boundary condition.

As noted in Section 2.1, with D0 = 0 the boundary condition (4) is reduced to a form (so-called “OBC-C”) that is already 
studied in [18]. One can therefore employ the algorithms from [18] or [14] to treat this case. Note that the algorithm 
presented in [14] is with respect to the open boundary condition having a form corresponding to the so-called “OBC-E” 
in [18]. But the algorithm of [14] also applies to other forms of open boundary conditions given in [18].

With D0 = 0 the essential difference when compared with the scheme presented in Section 2.2 lies in that, in the 
pressure sub-step the pressure condition on the open boundary will now become of Dirichlet type rather than Robin type, 
and in the velocity sub-step the velocity condition on the open boundary will become of Neumann type rather than Robin 
type.
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the equal-order approximations for the pressure/velocity by other researchers in the literature [40,68,31,41,47,46,1,50].

We finally make some comments on a possible implementation of the algorithm (20a)–(21c) with finite difference type 
discretizations. One can refer to [14] for suggestions in this regard with the open boundary condition presented therein. The 
following discussion largely follows that of [14], but with the current open boundary condition. As suggested in [14], one 
can take the divergence of equation (20a), leading to a pressure Poisson-type equation

∇2 pn+1 = ∇ ·
(

fn+1 + û
#t

− u∗,n+1 · ∇u∗,n+1
)

(35)

where equation (20b) has been used. By taking the inner product between equation (20a) and directional vector n on ∂$d
and using (20c), one attains the Neumann-type condition

∂ pn+1

∂n
= n ·

(
fn+1 + û

#t
− u∗,n+1 · ∇u∗,n+1

)
− νn · ∇ × ω∗,n+1 − γ0

#t
n · wn+1, on ∂$d. (36)

By taking the inner product between (20a) and the directional vector n on ∂$o , and combining the resulting equation with 
(20d), one can obtain the Robin-type condition

∂ pn+1

∂n
+ 1

νD0
pn+1 = n ·

(
fn+1 − u∗,n+1 · ∇u∗,n+1

)
− νn × ω∗,n+1

− 1
νD0

[
fn+1
b · n + n · E(n,u∗,n+1) − νn · ∇u∗,n+1 · n

]
, on ∂$o. (37)

One can therefore solve equation (35), together with the boundary conditions (36) and (37), for the pressure pn+1. For 
the velocity un+1, one can solve equation (29), together with the Dirichlet condition (21b) and the following Robin-type 
condition

∂un+1

∂n
+ γ0 D0

#t
un+1 = 1

ν

[
fn+1
b + E(n,u∗,n+1) + pn+1n − ν(∇ · u∗,n+1)n

]
+ D0

#t
û, on ∂$o, (38)

which stems from and is equivalent to (21c).

2.4. The case of D0 = 0 in open boundary condition

So far we have focused on the case D0 > 0 in the open boundary condition (19). In this subsection we briefly discuss 
the case D0 = 0 in the boundary condition.

As noted in Section 2.1, with D0 = 0 the boundary condition (4) is reduced to a form (so-called “OBC-C”) that is already 
studied in [18]. One can therefore employ the algorithms from [18] or [14] to treat this case. Note that the algorithm 
presented in [14] is with respect to the open boundary condition having a form corresponding to the so-called “OBC-E” 
in [18]. But the algorithm of [14] also applies to other forms of open boundary conditions given in [18].

With D0 = 0 the essential difference when compared with the scheme presented in Section 2.2 lies in that, in the 
pressure sub-step the pressure condition on the open boundary will now become of Dirichlet type rather than Robin type, 
and in the velocity sub-step the velocity condition on the open boundary will become of Neumann type rather than Robin 
type.

•Robin (weak) boundary conditions on pressure and velocity 
•Details in user guide



Incompressible Navier Stokes 
developments

•Womersley Boundary Conditions for pulsatile flow 
•Details in user guide
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w(r, t) = A
0

(1 ≠ (r/R)2) +
Nÿ

n=1

Ã
n

[1 ≠ J
0

(i3/2–
n

r/R)
J

0

(i3/2–)
]eiÊ

n

t

where the womersley number – is defined:

–
n

= R

Ú
2fin

T‹

and Ã
n

(n = 1 : N)are the Fourier coe�cients scaled in the following way:

Ã
n

= 2A
n

/[1 ≠ 1
J

0

(i3/2–)
]

The Womersley velocity profile is implemented in the following way:
1 <REGION REF="0">
2 <D VAR="u" USERDEFINEDTYPE="Womersley:WomParams.xml" VALUE="0" />
3 <D VAR="v" USERDEFINEDTYPE="Womersley:WomParams.xml" VALUE="0" />
4 <D VAR="w" USERDEFINEDTYPE="Womersley:WomParams.xml" VALUE="0" />
5 <N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
6 </REGION>

A file containing the Fourier coe�cients, Ã, must be in the directory where the solver
is called from. The name of the file is defined by the string given in the attribute
USERDEFINEDTYPE after the “:” and contains the real and imaginary coe�cients. This

file has the format
1 <NEKTAR>
2 <WOMERSLEYBC>
3 <WOMPARAMS>
4 <W PROPERTY="Radius" VALUE="0.5" />
5 <W PROPERTY="Period" VALUE="1.0" />
6 <W PROPERTY="axisnormal" VALUE="0.0,0.0,1.0" />
7 <W PROPERTY="axispoint" VALUE="0.0,0.0,0.0" />
8 </WOMPARAMS>
9

10 <FOURIERCOEFFS>
11 <F ID="0"> 0.600393641193, 0.0 </F>
12 <F ID="1"> -0.277707172935, 0.0767582715413 </F>
13 <F ID="2"> -0.0229953131146, 0.0760936232478 </F>
14 <F ID="3"> 0.00858135174058, 0.017089888642 </F>
15 <F ID="4"> 0.0140332527651, 0.0171575122496 </F>
16 <F ID="5"> 0.0156970122129, -0.00547357750345 </F>
17 <F ID="6"> 0.00473626554238, -0.00498786519876 </F>
18 <F ID="7"> 0.00204434981523, -0.00614566561937 </F>
19 <F ID="8"> -0.000274697215201, 0.000153571881197 </F>
20 <F ID="9"> -0.000148037910774, 2.68919619581e-05 </F>
21 </FOURIERCOEFFS>
22 </WOMERSLEYBC>
23 </NEKTAR>

http://lions.math.hr/tok-kroz-cijev/tekstovi/womersley/womersley_en.html
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Advection problems

Chapter 2
Pre-processing

As already mentioned to set up the probelm we have two step. The first is setting up a
mesh in an input xml format consistent with Nektar++ as discussed in section 2.1. We
also need to configure the problem initial, boundary and parameters which are discussed
in 2.2.

2.1 Mesh generation

The first pre-processing step consists in generating the mesh in a Nektar++ compatible
format. One option to do this is to use the open-source mesh-generator Gmsh to first
create the geometry, that in our case is a square and successively the mesh. The mesh
format provided by Gmsh shown in Fig. (2.1) - i.e. .msh extension - is not consistent with
the Nektar++ solvers and, therefore, it needs to be converted. To do so, we need to run

Z

Y

XZ X

Y

Figure 2.1 Mesh generated by Gmsh.

the pre-processing routine called NekMesh within Nektar++. This routine requires two
line arguments, the mesh file generated by Gmsh, ADR_mesh.msh , and the name of the

6

Generate mesh

Chapter 4
Post-processing

Now that the simulation has been completed, we need to post-process the file in order to
visualise the results. In order to do so, we can use the built-in post-processing routines
within Nektar++. In particular, we can use the following command

Task 4.1

Convert the .xml and .chk files into a .vtu format by calling
$NEK/FieldConvert ADR_mesh_aligned.xml ADR_conditions.xml
ADR_mesh_aligned_0.chk ADR_mesh_aligned_0.vtu

which generates a .vtu file that is a readable format for the open-source package
Paraview. Note that we typically have to specify both the mesh .xml file and the
condition .xml file. We can now open the .vtu file just generated (which corresponds
to the initial condition, being the number ‘0’ .chk file) and visualise it with Paraview.
This produces the image in Fig. (4.1). It is possible to use the same post-processing

Figure 4.1 Initial solution

command for visualising the other .chk , thus monitoring the evolution of the simulation

16

Run solver 
(advection) 

and postprocess

2.2 Configuring problem definitions 9

Figure 2.2 Mesh distribution with local polynomial subdivision

where -m peralign is selecting the module for aligning the edges which are specified by
surf1 and surf2 (their IDs in this case are 200 and 400) and dir is the direction to

which the two periodic edges are perpendicular (in this case x). Note that since we have
not used the extension :xml:uncompress the blocks of data in this file are now stored
in compressed format.

After having typed the last command, we have a mesh, ADR_mesh_aligned.xml , which
is fully compatible with Nektar++ and which allows us applying periodic boundary
conditions without encountering errors.

We can therefore now configure the conditions: initial conditions, boundary conditions,
parameters and solver settings.

2.2 Configuring problem definitions

To set the various problem parameters, the solver settings, initial and boundary conditions
and the expansion basese, we create a new file called ADR_conditions.xml , which can
be found within the completed directory for this tutorial. This new file contains the
CONDITIONS tag where we can specify the parameters of the simulations, the solver

settings, the initial conditions, the boundary conditions and the exact solution and
contains the EXPANSIONS tag where we can specify the polynomial order to be used inside
each element of the mesh, the type of expansion bases and the type of points.

We begin to describe the ADR_conditions.xml file from the CONDITIONS tag, and in
particular from the boundary conditions, initial conditions and exact solution sections:

1 <CONDITIONS>
2 ...
3 ...
4 ...

Convert to Nektar++, 
visualise in 

Paraview/Visit 
and configure solver



Taylor-Green vortex breakdown

Chapter 2 Background 9

Figure 2.2: u and v velocity components on the z = 0 plane at t = 0 using the 643

elements mesh.

Figure 2.3: z-vorticity on the surface z = 0 at t = 0 and vorticity iso-surfaces at t = 0 on
the 643 volume domain.

The u and v velocity components of the vector field are shown in Fig 2.2. Note how
these fields are formed by contiguous patches of velocity of same magnitude and opposed
direction. The resulting flow, when both velocity fields are combined, is presented
in Fig. 2.3 as vorticity contours. The vortical flow is formed by contiguous pairs of
counter-rotating vortices, with strength � and ≠�.

Starting 
vortex configuration

16 Chapter 4 Simulation Results

The enstrophy is a measure of the intensity of the vorticity and is related to dissipation
e�ects of the flow. More precisely, under the assumption of incompressible flow, the
enstrophy is related to the kinetic energy dissipation rate, ‘, via the equation on the left.
It is also defined as the rate of change of the kinetic energy, the equation on the right:

‘ = 2‹’ ‘ = ≠dEk

dt

(4.2)

Therefore, the dissipation rate can be calculated both from the enstrophy and numerically
from the evolution of the kinetic energy. From the modal energy file, it is possible to
evaluate the energy spectrum of the Fourier modes. This will in turn be helpful to
identify what length scales carry the most energy. After post-processing the energy files
on MATLAB, you should be able to produce the following figures, which depict the time
evolution of the kinetic energy and enstrophy of the flow, as well as the evolution of the
dissipation rate (both computed and enstrophy-based) and the energy spectrum:
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Figure 4.1: Time evolution of the kinetic energy (left) and enstrophy (right).
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Figure 4.2: Time evolution of numerically computed and enstrophy-based dissipation
rates (left) and time evolution of the energy spectrum of the fourier modes (right).

Chapter 4 Simulation Results 17

The time evolution of the kinetic energy is well predicted by the spectral, quasi-3D
computation. Since no force is applied to the fluid, the initial kinetic energy in the
flow is progressively dissipated, with the dissipation rate peaking at around · ¥ 9 when
the turbulent fluid structures are formed. This is consistent with the enstrophy. The
enstrophy, which is a measure of how vortical the flow is, peaks at the same time as the
dissipation rate, · ¥ 9: vortex stretching increases vorticity in the stretching direction
and reduces the length scale of the fluid structures. Hence, when vorticity is at its
highest, the flow is dominated by these small structures, which are responsible for the
main viscous dissipation e�ects. The discrepancy between the numerically computed and
enstrophy-based dissipation rates is directly related to the resolution of the mesh. The
enstrophy-based dissipation rate being lower than the numerically calculated one means
that, in the simulation, not all of the dissipation is due to the vorticity present in the
flow. The low resolution of the mesh accentuates the numerical di�usion present in the
spectral/hp element method and is the reason for the discrepancy.

Finally, from the evolution of the energy spectrum of the Fourier modes it is possible
to infer how the flow behaves. Initially, all the energy is contained in the smallest
wavenumbers, meaning that the flow is dominated by the large length scales. As time
passes, the energy is progressively transferred to smaller and smaller scales (larger
wavenumber). This energy in the small scales peaks between · = 8 and · = 10, when the
flow is fully turbulent, and then dies out for all wavenumbers due to dissipation. This
process is depicted in the figures below, through the z-component of the vorticity.

(a) ·=3, Laminar vortex sheets (b) ·=5, Vortex stretching (c) ·=7, Rearrangement

(d) ·=8, Breakdown (e) ·=9, Fully turbulent (f) ·=12, Dissipation and decay

Figure 4.3: Time evolution of z-vorticity isosurfaces

Breakdown to 
turbulence

Measure enstrophy 
and KE production



Summary

• Great activity over the past year  

• Focusing on functionality and continue 
to address fixes 

• Focus for coming year will likely be on 
performance


