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Motivation

Bottlenecks towards the adoption of high-order methods in industry
are the availability of robust meshing capabilities, and their
efficiency on heterogeneous HPC systems.

High-Order Mesh Generation

High-order meshes are generated by deforming linear meshes to con-
form to the curved CAD geometry and a subsequent element distor-
tion using an elastic body analogy to improve the mesh quality.

Figure 1: Initial straight-sided but
boundary-conforming mesh

Figure 2: Curvilinear mesh after
hyper-elastic optimisation

Parallel Mesh Optimisation Method

The optimisation is implemented within the meshing tool NekMesh
[1], which is part of the spectral/hp element suite Nektar++ [2],
using a variational framework [3].
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Figure 3: Mapping between straight-sided, and curvilinear element

The mesh is processed by minimising an energy functional E , that
is a function of the mesh deformation φ.

find min
φ
E(∇φ) =

∫
ΩI

W (∇φ) dy (1)

The global minimisation is
solved with a relaxation ap-
proach, to calculate the energy
functional based on the ele-
ment subset of node i . This
allows the parallel process-
ing of independent mesh
nodes.

Figure 4: Example domain; nodes with
the same colour are processed in parallel.

find min
φ
Ei(∇φ) =

∑
e⊂i

∫
Ωe
I

W (∇φ) dy (2)

The coordinates x of node i are then updated using a Newton
method.

xk+1
i = xki − αH(Ei)−1G(Ei) (3)
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Kokkos Programming Model

We employ the Kokkos library [4] to express the parallelism with
architecture-independent abstraction layers within a sin-
gle code-base, that is compiled with different back-ends such as
OpenMP or CUDA to work efficienctly on different architectures.

Kokkos abstraction layers
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Figure 5: Implementing the Kokkos programming model

Performance Results

vs : The full Kokkos version is 9.5-times faster than the native
implementation and can benefit from hyper-threading.

vs : Kokkos data-structures lead to superior performance.
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Figure 6: Strong scaling of 3rd-order tetrahedral case on Xeon Phi 7120
(Knights Landing) accelerator using up to 256 threads on 64 cores.

vs : The GPUs outperform both multi-core systems and are
less dependent on mesh polynomial orders.
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Figure 7: Costs (runtime × monthly prices of equivalent bare-metal cloud
computing systems) vs runtime for tetrahedral meshes of different orders.

Summary

We have implemented a high-order mesh optimiser using Kokkos, an
architecture-independent programming model. We achieve better
performance than a native multi-core implementation on CPUs and
Xeon Phi’s. Without changing the code-base we can realise even
further cost and time savings by leveraging the Kokkos portability
to GPU architectures using the CUDA backend.
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