
Accelerating an high-order mesh optimiser using
an architecture-independent programming model

Jan Eichstädt, David Moxey, Mashy Green, Michael Turner, and
Joaquim Peiró

Motivation

Bottlenecks towards the adoption of high-order methods in industry
are the availability of robust meshing capabilities, and their
efficiency on heterogeneous HPC systems.

High-Order Mesh Generation

High-order meshes are generated by deforming linear meshes to con-
form to the curved CAD geometry and a subsequent element distor-
tion using an elastic body analogy to improve the mesh quality.

Figure 1: Initial straight-sided but
boundary-conforming mesh

Figure 2: Curvilinear mesh after
hyper-elastic optimisation

Parallel Mesh Optimisation Method

The optimisation is implemented within the meshing tool NekMesh
[1], which is part of the spectral/hp element suite Nektar++ [2],
using a variational framework [3].

straight-sided element: y ∈ Ωe
I

yn xn

curvilinear element: x ∈ Ωe

φ

Figure 3: Mapping between straight-sided, and curvilinear element

The mesh is processed by minimising an energy functional E , that
is a function of the mesh deformation φ.

find min
φ
E(∇φ) =

∫
ΩI

W (∇φ) dy (1)

The global minimisation is
solved with a relaxation ap-
proach, to calculate the energy
functional based on the ele-
ment subset of node i . This
allows the parallel process-
ing of independent mesh
nodes.

Figure 4: Example domain; nodes with
the same colour are processed in parallel.

find min
φ
Ei(∇φ) =

∑
e⊂i

∫
Ωe
I

W (∇φ) dy (2)

The coordinates x of node i are then updated using a Newton
method.

xk+1
i = xki − αH(Ei)−1G(Ei) (3)

References

[1] M. Turner, D. Moxey, S. J. Sherwin, and J. Peiró. Automatic Generation of 3D Unstructured High-Order
Curvilinear Meshes. In: ECCOMAS Congress 2016 VII European Congress on Computational Methods in
Applied Sciences and Engineering. 2016, pp. 5–10.

[2] C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De Grazia, S. Yakovlev,
J. E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto,
R. M. Kirby, and S. J. Sherwin. Nektar++: An open-source spectral/hp element framework. Computer
Physics Communications 192 (2015), pp. 205–219. doi: 10.1016/j.cpc.2015.02.008.

[3] M. Turner, J. Peiró, and D. Moxey. A Variational Framework for High-Order Mesh Generation. Procedia
Engineering 163 (2016), pp. 340–352. doi: 10.1016/j.proeng.2016.11.069.

[4] H. Carter Edwards, C. R. Trott, and D. Sunderland. Kokkos: Enabling manycore performance portability
through polymorphic memory access patterns. Journal of Parallel and Distributed Computing 74.12 (2014),
pp. 3202–3216. doi: 10.1016/j.jpdc.2014.07.003.

Kokkos Programming Model

We employ the Kokkos library [4] to express the parallelism with
architecture-independent abstraction layers within a sin-
gle code-base, that is compiled with different back-ends such as
OpenMP or CUDA to work efficienctly on different architectures.

Kokkos abstraction layers

C++ code base

PthreadsOpenMP CUDA

CPUs Xeon Phi’s GPUs

Figure 5: Implementing the Kokkos programming model

Performance Results

vs : The full Kokkos version is 9.5-times faster than the native
implementation and can benefit from hyper-threading.

vs : Kokkos data-structures lead to superior performance.

1 2 4 8 16 32 64 128 256
Number of threads

101

102
R

un
tim

e
in

se
c

Ideal scaling
Pthreads scheduling
Kokkos-OpenMP scheduling
Kokkos-OpenMP scheduling & data

Figure 6: Strong scaling of 3rd-order tetrahedral case on Xeon Phi 7120
(Knights Landing) accelerator using up to 256 threads on 64 cores.

vs : The GPUs outperform both multi-core systems and are
less dependent on mesh polynomial orders.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Costs / DOF in $ ×10−8

0.0

0.5

1.0

1.5

2.0

2.5

R
un

tim
e

/D
O

F
in

se
c

×10−5

2nd

3rd
4th

5th

2nd

3rd
4th

5th
Xeon E5-2670v3
Xeon Phi 7120
Tesla K40
GTX 1070
Tesla P100

Figure 7: Costs (runtime × monthly prices of equivalent bare-metal cloud
computing systems) vs runtime for tetrahedral meshes of different orders.

Summary

We have implemented a high-order mesh optimiser using Kokkos, an
architecture-independent programming model. We achieve better
performance than a native multi-core implementation on CPUs and
Xeon Phi’s. Without changing the code-base we can realise even
further cost and time savings by leveraging the Kokkos portability
to GPU architectures using the CUDA backend.

J.E. gratefully acknowledges the support by the President’s Scholarship of
Imperial College London.

Department of Aeronautics, Imperial College London June 2017 e-mail: jan.eichstaedt13@imperial.ac.uk

http://dx.doi.org/10.1016/j.cpc.2015.02.008
http://dx.doi.org/10.1016/j.proeng.2016.11.069
http://dx.doi.org/10.1016/j.jpdc.2014.07.003

