
Nektar++ 5.0

Target: Jan 2018

v5.0

C++ 11
Dear all,

As part of our ongoing efforts to modernise our codebase, we are planning to transition to the C++11 standard in the near
future.

A consequence of this is that you will in future require a compiler which supports the C++11 standard (either as an option,
such as --std=c++11, or by default).

Current versions of popular compilers all fully support the standard, but older compilers may only have partial support. We
recommend the following compiler versions to minimise the likelihood of problems going forward:

- GCC: 4.8 or later
- Clang: 3.3 or later
- MSVC: 19.0 or later
- Intel: 15.0 or later
- PGI: 2015 or later

We encourage users to test out support for basic C++11 by compiling the branch 'feature/libutils-c++11' from the code
repository and updating build scripts and configuration as necessary.

Please let us know if you have any problems or concerns. We will be making the transition after the Nektar++ Workshop in
mid-June.

Cheers,
Nektar++ Development Team

C++ 11
• Variadic Templates

• Auto

• Lambda functions

• Native shared pointers

• Unordered maps

Managing external
dependencies

• C++ 11 allows us to remove loki

• Reduce duplication of Boost/C++

• Remove specialised "mod"-metis and replace with
scotch

• Will allow CMake to use default packages

• Investigating CCMIO library for star-ccm interfacing

NekMesh 3D
• Independent web site & release for people who do

not need full Nektar++ release

• Reduction of duplicate code between NekMesh
and existing libraries

• Integrating CAD engine into Spatial Domains library

• Allows for "on the fly" mesh movement

HDF5 Geometry
• Currently severe limitations on big meshes: > 10K partitions,

10M elements

• Key bottleneck is xml format

• Slow/conflicted reading

• Partition then requires a write

• Switch to binary based hdf5 format

• Parallel partitioning parmetis/ptscotch

• Will maintain xml backwards compatibility

Accelerator & Memory
Layout

• Workshop on Thursday afternoon:

• AoSoA Blend of AoS and SoA

• Kokkos vs OpenMP 4.5

• Targeting Explicit code performance

u,v,w

SoA

u,v,w

AoS

Pyramids & 3D Variable P
94 Spectral/hp Element Methods for CFD Ch. 3

ξ2

ξ3

ξ1

ξ2

ξ3

ξ1

ξ2

ξ3

ξ1

ξ2

ξ3

ξ1

ξ2 ξ3ξ1

ξ2 ξ3ξ3
η
1

−1=
ξ12 (1+)

 (1−)

ξ3

ξ3

ξ3
η
1

−1=
ξ12 (1+)

 (1−)
η
2

−1=
ξ22 (1+)

 (1−)ξ3

η
2

−1=
ξ22 (1+)

 (1−)ξ3ξ3
η
1

−1=
ξ12 (1+)

 (−ξ −)
2

Figure 3.9 Planes of constant value of the local collapsed Cartesian coordinate sys-
tems in the hexahedral, prismatic, pyramidic, and tetrahedral domains. In all but the
hexahedral domain, the standard Cartesian coordinates ξ1, ξ2, ξ3 describing the re-
gion have an upper bound which couples the coordinate system as shown in table 3.2.
The local collapsed Cartesian coordinate system η1, η1, η2, η3 represents a system of
non-orthogonal coordinates which are bounded by a constant value within the region.

Therefore l1, l2, and l3 have a unit value at the vertices marked 1, 2 and 3 in figure
3.10(a), respectively. By definition these coordinates satisfy the relationship:

l1 + l2 + l3 = 1,

and they can be expressed in terms of Cartesian coordinates ξ1, ξ2 as:

l1 = 1
2 (1 − ξ1) − 1

2 (1 + ξ2),

l2 = 1
2 (1 + ξ1),

l3 = 1
2 (1 + ξ2).

The two-dimensional collapsed coordinate system was defined in sections 3.2.1.1
and 3.2.1.2 as

Ch. 3 Multi-dimensional Expansion Bases 97

p
q

p

p

aψp(η1)
q

ξ1

ξ2

ψpq(η2)b∼ ∼

 φpq(ξ1,ξ2) = ψp(η1) ψpq(η2)a b~ ~

Figure 3.11 Construction of two-dimensional expansion modes φpq(ξ1, ξ2) within a

triangular region using the product of a one-dimensional tensor ψ̃a
p (η1(ξ1, ξ2)) and a

two-dimensional tensor ψ̃b
pq(η2(ξ2)).

ψ̃c
pqr(z) =

(
1−z
2

)p+q
P 2p+2q+2,0

k (z).

The two-dimensional expansions in terms of the principal functions are defined
as: Formulation

note: Definition of or-

thogonal modal expan-

sions in 2D standard

hybrid regions.

Quadrilateral expansion: φpq(ξ1, ξ2) = ψ̃a
p(ξ1)ψ̃a

q (ξ2),

Triangular expansion: φpq(ξ1, ξ2) = ψ̃a
p(η1)ψ̃b

pq(η2),

where

η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

are the two-dimensional collapsed coordinates illustrated in figure 3.7. The shape
of all the triangular modes for a fourth-order polynomial expansion are shown
in figure 3.11.

The three-dimensional expansions are defined in terms of the principal func-
tions as: Formulation

note: Definition of or-

thogonal modal expan-

sions in 3D standard

hybrid regions.

Hexahedral expansion: φpqr(ξ1, ξ2, ξ3) = ψ̃a
p(ξ1) ψ̃a

q (ξ2) ψ̃a
r (ξ3),

Prismatic expansion: φpqr(ξ1, ξ2, ξ3) = ψ̃a
p(η1) ψ̃a

q (ξ2) ψ̃b
pr(ξ3),

Pyramidic expansion: φpqr(ξ1, ξ2, ξ3) = ψ̃a
p(η1) ψ̃a

q (η2) ψ̃c
pqr(η3),

Tetrahedral expansion: φpqr(ξ1, ξ2, ξ3) = ψ̃a
p(η1) ψ̃b

pq(η2) ψ̃
c
pqr(η3),

where

η1 =
2(1 + ξ1)

(−ξ2 − ξ3)
− 1, η1 =

2(1 + ξ1)

(1 − ξ3)
− 1, η2 =

2(1 + ξ2)

(1 − ξ3)
− 1, η3 = ξ3,

are the three-dimensional collapsed coordinates illustrated in figure 3.9.•Pyramids now in similar
pattern to other shapes

•Now have 3D
preconditioners for
pyramids and variables P

Developers Guide
• Need to formalise …. Mike and Dave (Developer)!

FieldConvert Refactor
• As discussed by Douglas.

Co-Simulation coupling
• As discussed by Kilian.

Any comments?

