Multiphysics Simulations with Nektar++ using a Co-Simulation Approach

Kilian Lackhove 2017-06-14

Co-Simulation

Wikipedia: "In co-simulation the different subsystems which form a coupled problem are modeled and simulated in a distributed manner."

Applications

- Multi-physics: e.g. aeroacoustics, heat-transfer, fluid-structureinteraction etc.
- Split-domain: e.g. incompressible \leftrightarrow compressible, steady \leftrightarrow rotating, non-reacting \leftrightarrow reacting, different Δt , etc.
- Multi-Code: Combine features of different tools

Nektar++ Coupling Interface

Implementation

- \rightarrow extensible (e.g. CHIMPS, MpCCI, etc.)
- \rightarrow currently file-based and CWIPI-based
- Works with all UnsteadySystem based equation systems
- Not (yet?) in master

Demo Implementation!

- Most features already available through CheckpointFilter + Functions
- ➢Useful for testing

<FUNCTION NAME="CouplIn"> <F VAR="Vx,Vy" FILE="Vxy.csv"/> </FUNCTION>

Receive:

- Arbitrary fields read from Nektar++ functions (analytic expressions, pts, csv or fld files)
- Inverse distance interpolation

Send:

 Fields stored to pts files at quadrature points

File-based Coupling: Interpolation

<FUNCTION NAME="CouplIn"> <F VAR="Vx,Vy" FILE="Vxy.csv"/> </FUNCTION>

- ID: Quadratic Interpolation
- 2D, 3D: Modified Shepard inverse distance method (subclass of radial basis functions, RBF):

$$w_i(\mathbf{x}) = rac{1}{d(\mathbf{x},\mathbf{x}_i)^p}$$

- → Fast & low memory footprint
- \rightarrow Can cause wiggles and peaks
- → Probably not ideal for Spectral hp
- Element Method
- \rightarrow Different basis function?

CWIPI/MPI-based Coupling

- CWIPI: Open source C++ coupling library, developed by ONERA
 → Plain MPI interface, Decentralized, linear interpolation
- Designed for bi-directional, real-time data exchange
- Spatial and temporal interpolation & spatial filtering

• $\Delta h = 10 \text{ mm}$

• $\Delta t = 1E-5 s$

• *P* = 3

Nektar++ IncNavierStokesSolver

2017-06-14 | Kilian Lackhove | Energie- und Kraftwerkstechnik | 7

Usage

~/BluffBody/CFD/CFD.xml	~/BluffBody/CAA/CAA.xml
<nektar></nektar>	<nektar></nektar>
<pre></pre>	<pre> <coupling name="cpl1" type="Cwipi"></coupling></pre>
<solverinfo> <i <br="" property="EQType">VALUE="UnsteadyNavierStokes"/></i></solverinfo>	<conditions> <solverinfo> <i property="EQType" value="APE"></i></solverinfo></conditions>

Example: Nektar++ \rightarrow Nektar++

Example: PRECISE-UNS ↔ Nektar++ APESolver

CESAM-HP (EM2C, CNRS Paris)

- Combustion Noise testrig
- Enclosed premixed flame
- Propane (OP-16-2-0 & OP-13-5-0)

Combustion Noise: Multiphysics Approach

- Compressible CFD
 - \rightarrow High spatial resolution
 - \rightarrow Small time steps

expensive

- Acoustic time scales are up to 30 times smaller
- Multiphysics Approach: Large $\Delta t_{\rm CFD}$, small $\Delta t_{\rm CAA}$

Advantages

- Reduced computational effort
- Different CAA and CFD meshes & domains
- Best numerical schemes for each problem

Coupling: Governing Equations

Example: PRECISE-UNS ↔ Nektar++ APESolver

CESAM-HP (EM2C, CNRS Paris)

- Enclosed premixed flame
- Propane (OP-16-2-0 & OP-13-5-0)
- CAA (Nektar++ APESolver)
 - 6870 Elements
 - 4th Order Expansion
 - APE-RF Equations
 - Solid Wall & Non-reflecting BCs

CFD (PRECISE-UNS)

- 1.4 Mio CVs
- LES: Germano
- FGM & ATF
- FVM & Implicit Euler

Coupling: Scales

Time Scales

Low-Mach CFD

CAA

- CFD: $\Delta t_{CFD} = 2.5$ **E-6** s
- CAA: $\Delta t_{CAA} = 2.5 \text{E-8} \text{ s}$

Length Scales

- Flame: $\delta x = 1 \text{ mm}$
- CAA ($f_{max} = 5 \text{ kHz}, c=341 \text{ m/s}, P=5$): $\Delta x = 87 \text{ mm}$

Refined CAA Mesh (4th order Expansions) vs. 10x Thickened Flame

Interpolation & Filtering

Linear Interpolation

 $\Delta t_{CED} = 2.5 \text{E-6 S}$

 $\Delta t_{CAA} = 2.5 \text{E-8} \text{S}$

Coupling: Interpolation & Filtering

TECHNISCHE UNIVERSITÄT DARMSTADT

CESAM-HP Testrig: Source Terms

- Experiments by EM2C, CNRS Paris [1]
- Reference data from Frequency domain simulations, cooperation of TU Munich (CAA), TU Darmstadt (CFD) and Rolls Royce Deutschland [2]
- **Time-domain data** obtained with presented approach [3] (bi-directional)

[1] Mazur, M., Tao, W., Scouflaire, P., Richecoeur, F., & Ducruix, S. (2015)

[2] Ullrich, W., Lackhove, K., Fischer, A., Hirsch, C., Sattelmayer, T., Sadiki, A., & Staufer, M. (2016)

[3] Lackhove, K., Sadiki, A., & Janicka, J. (2017)

2017-06-14 | Kilian Lackhove | Energie- und Kraftwerkstechnik | 18

Computational Cost

CESAM-HP:

Theroretical Computational Cost:

- CFD: 112 Cores \rightarrow 9 s/step
- CAA: 112 Cores → 0.09 s/step
- \rightarrow 224 Cores or **twice the cost**!

Huge data exchanged every CFD step → Efficiency crucial

- Passed data minimized
- MPI-based transfers
- Asynchronous Calls
- Helmholtz Smoother + MUMPS
- \rightarrow Less than 4% overhead!

1.5

Time [s]

1.0

2.0

0.5

0.0

3.0

2.5

Summary

- 2 coupling interfaces: File Based (testing) & CWIPI (MPIbased, real-time)
- Example 1: IncNavierStokes & APE
- Example 2: Nektar++ APE & PRECISE-UNS
 - Multiphysics CFD & CAA for combustion noise simulations
 - Temporal interpolation & spatial interpolation & filtering scheme based on intermedia receive-expansion
 - Promising results
 - Less than 4% computational overhead
 - 20 times faster than compressible CFD