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Overview

I Part 1: Formulation of DG scheme based on MMF for Maxwell’s
Equations

I Part 2: Numerical Results: Applications to Invisible Cloak and
ELF



Maxwell’s Equations

Consider the time-dependent Maxwell’s equations on curved
surfaces without source terms such as

ε̂
∂E

∂t
= ∇×H, µ̂

∂H

∂t
= −∇×E,

I E is the electric field

I H is the h-field

I ε̂ =

[
εxx εxy

εyx εyy

]
permittivity tensor

I µ̂ =

[
µxx µxy

µyx µyy

]
permeability tensor

If the off-diagonal terms of these tensors are nonzero, the
equations are off-diagonally anisotropic.
For diagonal tensors, with non-equal diagonal terms, the equations
are axially anisotropic.
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DG Scheme for Maxwell’s Equations

I The DG method has been acclaimed for its flexibility and
accuracy, even for complex geometry with complex boundaries.

I The stable and accurate performance of the DG largely owes
to the use of the upwind flux between the interfaces of
elements that satisfies the Rankine-Hugoniot condition for
conservational laws.

I The universal upwind flux for general anisotropic media has
been unknown, because of the difficulty of satisfying the
Rankine-Hugoniot conditions in anisotropic media.



DG Scheme for Maxwell’s Equations

I It has been demanded for the studies of important modern
electromagnetic phenomena for example, metamaterial
physical phenomena such as invisible cloak and
electromagnetic wave propagation in the earth-ionosphere
waveguide.

I The use the central flux, which will require a reduction in
accuracy and stability requirements.

I There are some methods for the derivation of upwind flux in
anisotropic media but the extention to higher dimensions is
not clear.



Moving Frames

Construct moving frames consisting of three vectors at a point P :
(e1) and second moving frame (e2) lie on the x-y plane and in
arbitrary direction, but they are orthogonal.
The third (e3) is aligned along the z-direction, orthogonal to e1

and e2. The location of a point P , as P = Pxx+ Pyy + Pzz is
transformed in the moving frames (ei) such as

P = P1e
1 + P2e

2 + P3e
3.



Converting from anisotropy to isotropy

We start from Cartesian coordinate system as follows:

ε̂E=[x y]

 εxx εxy

εyx εyy

 Ex

Ey

=(εxxEx+εxyEy)x+(εyxEx+εyyEy)y.

Let e1 be aligned along this anisotropy and e2 is orthogonal to e1.
In this set of moving frames we obtain

ε̂E =
[
e1 e2

] [ ε1 0
0 ε2

] [
E1

E2

]
= ε1E1e1 + ε2E2e2,

where ε1 and ε2 are the eigenvalues of the permittivity tensor ε̂.

Furthermore, by using the new moving frames d1 = (
√
ε1/
√
ε2)e1

and d2 = (
√
ε2/
√
ε1)e2, the isotropic representation of ε̂E is

obtained as follows:

ε̂E =
√
ε1ε2

(
E1d1 + E2d2

)
.
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Converting from anisotropy to isotropy

(a) (b) (c)

Figure: (a) Off-diagonal anisotropic expression in the Cartesian
coordinate system, (b) axial anisotropic representation and (c) isotropic
representation in a local reference frame (right). The dashed lines
represent anisotropy.



Moving frames for real and imaginary tensors

In general, in the perspective of energy dissipation, the permittivity
tensor is expressed as a complex tensor as ε̂ = ε̂r + σ̂/iω, where ε̂r
is the real permittivity tensor and σ̂ is the electric conductivity
tensor for frequency ω. Thus, the moving frames that should be
aligned along an anisotropy should also be expressed in a complex
form as follows: for 1 ≤ i ≤ 3,

ei = eiε + ieiσ,

where eiε and eiσ are aligned along the anisotropic direction of real
permittivity and the electric conductivity, respectively.



Maxwell’s equations in moving frames
coordinates

Expand E and H in TM mode such that E = E3e3 and
H = H1e1 +H2e2. By substitution, the Maxwell’s equations
yield, for i = 1, 2,

µi ∂H
i

∂t
+RiH+σ∗iHi+∇E3·(e3×ei)+E3ei·(∇×e3)=0,

ε3 ∂E
3

∂t
+RE+σ3E3−

∑2
m=1[∇Hm·(em×e3)−Hme3·(∇×em)]=0,

where
RiH=

∑2
m=1 µ

mHm
(
∂em

∂t
·ei
)
, RE=ε3E3

(
e3· ∂e

3

∂t

)
.



Weak formulation in moving frames
coordinates

the weak form of the above equations is obtained for the test
function ϕ as follows:

∫
µi ∂H

i

∂t
ϕdx+

∫
σ∗iHidx−

∫
E3∇ϕ·e3idx

+
∫
E3e3·(∇×ei)ϕdx+

∫
∂M n·(E∗×ei)ϕds=0,

∫
ε3 ∂E

3

∂t
ϕdx+

∫
σ3E3dx−

∑2
m=1

∫
Hm∇ϕ·e3mdx

−
∑2
m=1

∫
Hmem·(∇×e3)ϕdx−

∫
∂M n·(H∗×e3)ϕds=0,

I n is the edge normal vector.

I E∗ and H∗ are numerical fluxes.



Numerical flux

The solution of Rankine-Hugoniot equations leads to the following
upwind flux for TM mode: for i = 1, 2,

−ei·(n×E∗)=ei·(
−n×e3){{YiE3}}+0.5αn×(n×[H])

{{Yi}}
,

e3·(n×H∗)=e3·
∑2
m=1 n

mem×{{ZmH}}−0.5α[E3]∑2
m=1{{Zm}}

.

I Z±i ≡
√
µ3−i/ε3≡(Y ±i )−1

I {{A}}≡0.5(A++A−)

I [A]≡A−−A+

I α is in the range of 0<α≤1

For α=0 and Zi=Yi=1, the above flux is reduced to the central flux.



Spectral Convergence

Figure: Error convergence of the test case

I TM mode with PEC boundary conditions:
H= π

ω
sinωt[−x sinπx cosπy+y cosπx sinπy], E=z(sinπx sinπy cosωt)

I Test Case I): µt=4.0, µr=0.5,

I Test Case II): µt=0.5, µr=(1−2x2)



PMLs

Figure: Right rectangular PML

A perfectly matched layer (PML) is an artificial absorbing layer
commonly used to truncate computational domain for simulations
with open boundary. The incident wave upon a PML from interior
medium does not reflect at the interface and is absorbed strongly.



Oblique PMLs

Figure: Oblique rectangular PML and circular PML

PMLs have been applied only to rectangular regions in which
boundaries are parallel to the Cartesian coordinate axis. However,
moving frames can be adapted to a PML with an oblique angle.
However, PMLs for a curved boundary such as the circular PML is
still impossible by assumption of planar waves.



PMLs
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Figure: Relative error of Hz for rectangular PML, oblique PML, and
circular PML.

I The observation points are P1=(−3,0) and P2=(−3,3).

I The incident plane waves applied.

I The scatterer is circular PEC.



Invisible Cloak

The mechanism of the metamaterial invisible cloak is based on the
annihilation of the field component along the direction of the
surface, often analogously expressed as hiding under the carpet.
The tangential component of the electric field detours the energy
flux without significant losses in nontrivial shadow behind the
object.



Figure: Scattering of Hz: Distribution of the scattered and total field

I Rectangular PMLs are used.

I Material properties of cloak: µ̂ = Î and ε̂ = εtt̂+ εrr̂ where

εt =
(

b
b−a

)2
and εr =

(
b

b−a

)2 (
r−a
r

)2
I The scattering by the PEC object is significantly reduced by

the cloak.



ELF propagation

Extremely low frequency electromagnetic wave propagation
propagation (ELF) in the earth-ionosphere waveguide can be
modeled as a two-dimensional wave propagation on a curved
surface by ignoring the vertical velocity components.
The MMF-scheme should not be influenced by the range of
frequency the number of grid points for sufficient grid resolution to
reduce the discretization error.

ELF is simulated on various types of surfaces such as sphere
irregular or non-convex surfaces.
The wave of higher frequency requires relatively larger domain, but
it is more like to be absorrerd by lossy materials such as earth and
seawater.
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ELF propagation

Figure: Electromagnetic field distribution Ez (contour) and H (arrow) at
T = 0.2 (left), T = 1.0 (middle). Energy (contour), and Energy density
flux (arrow) (right).



Extensions to 3D
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Figure: Error convergence of the test case

I Hx(x,y,z,t)=sin(mπx) cos(nπy) cos(jπz) sin(ωt),
Hy(x,y,z,t)=cos(mπx) sin(nπy) cos(jπz) sin(ωt),
Hz(x,y,z,t)=cos(mπx) cos(nπy) sin(jπz) sin(ωt),

I Ex(x,y,z,t)=cos(mπx) sin(nπy) sin(jπz) sin(ωt),
Ey(x,y,z,t)=sin(mπx) cos(nπy) sin(jπz) sin(ωt),
Ez(x,y,z,t)=sin(mπx) sin(nπy) cos(jπz) sin(ωt).

With m = n = j = ω = 1.



Three-Dimensional Invisibility Cloak



Conclusions and future directions

I The derivation of upwind flux for anisotropic materials in
Maxwell’s equations for DG methods.

I The advantage in solving numerically Maxwell’s equations on
curved surfaces without the metric tensor and composite
meshes.

I Extension to 3D formulation is demanding.



Thank You!
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