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Application Area: Aerodynamics

Formula 1 Car (Lombard, Sherwin)

T106C turbine blade (Mengaldo)

Turbulent hill (Moxey)

NACA 0012 with wavy leading-edge (Serson)

Vortex-induced vibration of cylinder (Bao)

Y250 Wing on F1 car (Lombard, Sherwin)

LES of wingtip vortex at Re = 1.2M

(Lombard, Moxey, Sherwin)

Compressible Flow over a cylinder (Mengaldo)

Shallow Water Equations (Eskilsson)
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Horizon 2020

The ExaFLOW project has received funding from the European Union Horizon 2020 Framework Programme (H2020) 
under grant agreement number 671571

2015-2018

"address current algorithmic bottlenecks to enable 
the use of accurate CFD codes for problems of 

practical engineering interest"

Adaptive error control and mesh refinement

Solver efficiency

Heterogeneous modelling

Extreme Parallel I/O and data reduction

Energy awareness of high-order methods

Objectives

Strategies for fault tolerance and resilience

Nek5000

SBLI

NS3D

Codes

Nektar++

Strategies for fault tolerance and resilience

Nektar++

Work with: Allan Nielsen, David Moxey, Jan Hesthaven, Spencer Sherwin
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Incompressible Navier-Stokes solver
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Read mesh
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Challenges of Exascale

Solve bigger problems in more detail

Contours of CP0, coloured by pressure RP1 car by Elemental Cars
• 2M elements

(697k prisms, 1653k tets)
• 5th-order, 4 variables
• 488M local DOFs.
• 2k cores on an SGI ICE-XA
• 122k DOFs/core
• 72hrs runtime, 30min start-up

Massive increase in parallelism
• Thousands/millions of cores - frequent hardware failures
• Low memory/core - costly (power and time) to move data

...so how do we make efficient use of such machines
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The need for Resilience at Exascale
• Errors due to both hardware failure and software bugs
• Hard (permanent) and soft (transient) errors

• Exascale systems expected to contain >100,000 nodes
• Increased probability of system failure: more CPUs, memory, disks
• Model time of failure with exponential distribution with PDF:
f(t) = 1

M e−t/M

• M is the mean time to interrupt (MTTI)
• Integrate to get prob. of failure before time T : P(t ≤ T ) = 1− e−T/M

MTTI of system:

1

Msys
= n× 1

Mnode

Name PF MTTI
Mira (BG/Q) 10.0 4-7 days
Titan 27.11 12 hours
Tianhe-2 33.86 8 hours
(Exascale) 1000 < 30 min Blue: M = 1, Red: M = 5
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At exascale, failures will be the norm
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Check-pointing to disk

7

 

"Classic" resilience methodology
- Periodically save state
- Restore last checkpoint on failure
- Redo pre-processing and recompute

 

Recompute

"A higher order estimate of the optimum checkpoint interval for restart dumps",
J.T. Daly, Future Generation Computer Systems, 22:300–312, 2006

Proportion of useful compute:

Optimal checkpoint interval:

At exascale disk checkpointing time     MTTI

At Exascale we might consider:
- MTTI is order of minutes, M smaller
- Larger simulations,    larger

Massive I/O load on distributed file systems
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Checkpointing to (remote) memory

8

Local in-memory check-pointing

- Provides resilience to data corruption errors
- More frequent check-points, reduced recompute
- Scalable
- No resilience to hardware / node failure
- Combine with less-frequent disk check-pointing

Remote in-memory check-pointing

- Resilience against node failure
- Intelligent 'buddying' of processes e.g. 'netloc'
- Greater demand on network
- Write checkpoint to disk on failure

If node fails, we are short of compute-capacity.
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A new strategy for surviving failure

Main challenges:
• Data is costly to move around, low memory-per-core at exascale
• Writing data to disk is slow and energy inefficient
• Restart and redistribution of work is expensive
• Static phase requires collective operations
• Complexity of existing codes

Proposed strategy:
• Exploit proposed User-Level Failure Mitigation (ULFM) in MPI to enrol a

spare node to replace failed nodes
• Record result of communication during initialisation (static) phase
• Rapidly reconstruct process state locally on spare and continue
• Utilise remote-memory checkpointing for (dynamic) solution
• Minimally intrusive changes to existing code required

9
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ULFM: Recovering from node failure

10

 

User-level Failure 
Management (ULFM)
MPIX_Comm_agree
MPIX_Comm_shrink
MPIX_Comm_revoke

1. Shrink MPI communicator
- Remove dead process
- Redistribute computation
- Preprocess / rebuild matrices
- Restart job?

Two options:

2. Add a spare

- Initialise a spare node
- Recover remote

in-memory check-point
- Continue computation
- All other nodes untouched

Restore state

Are spares a waste of resources?
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Putting everything together

11

Read mesh

Preprocessing
Build matrices

Time-integrate

Conjugate Gradient

Write final solution

Non-linear Advection

Checkpoint

P0 P1 P2

Initialise Initialise Initialise

Spare

Read mesh (0) Read mesh (1)

Preprocess Preprocess

Collective operation to 
build assembly map

Record MPI

Backup P1 Backup P0

Compute... Compute...

Wait...

Failure detect Failure detect

Read mesh (0)

Preprocess
(Recovery)

Restore P0

Replay MPI

Enrol Spare

Backup P1

Compute... Compute...
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Indicative memory usage
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Dynamic checkpoint
Static recovery data

11.1%

11.8%
9.5%
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9.8%
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Flow past a cylinder
830 elements, P=8
≈30k DOF

NProc ≈DOF/Proc
2 15000
3 10000
4 7500
6 5000
8 3750
12 2500
16 1900

• Memory required for recovery generally around 10% of total
• Dynamic checkpoint data less than 0.5%
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Preliminary benchmarking
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Summary
Exascale machines will likely have low memory/core and short MTTI.

• Algorithms at exascale need to be resilient to hardware failure

• Traditional approaches using disk check-pointing will be infeasible

• Propose new memory-conservative strategy for time-dependent solvers
– Use ULFM to avoid costly restarts
– Partition algorithm into static and dynamic phases
– Remote in-memory checkpointing through asynchronous pairwise exchange
– Only store the result from MPI calls to allow independent local recovery of

the lost partition

Future work:
• Test scalability on large-scale platforms (requires ULFM MPI!)
• Optimise remote-memory checkpoint placement

Thank you for listening!
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