
Using coordinate transformations in Nektar++
incompressible flow solver

Douglas Serson

Department of Aeronautics
Imperial College London

Nektar++ Workshop, June 2016



Outline

Motivation

Formulation

Implementation

Examples

Summary



Motivation

I Nektar++ already supports complex geometries, so why use
coordinate transformations?

I By simplifying the geometry, we can reduce the computational
cost

I Quasi-3D approach
I Moving bodies without deformable mesh



Motivation

I Nektar++ already supports complex geometries, so why use
coordinate transformations?

I By simplifying the geometry, we can reduce the computational
cost

I Quasi-3D approach
I Moving bodies without deformable mesh



Motivation

Example:

Geometry we want to study Transformed geometry



Motivation

I What is available in the literature?
I Explicit approach for spectral/hp discretization (Newman,

1997; Darekar, 2001) ⇒ restricted to constant Jacobian
I Semi-implicit approach for pseudo-spectral method (Carlson,

1995) ⇒ pressure boundary condition?

I These methods were generalized, leading to an explicit and a
semi-implicit formulation, both of which

I Support general transformations (including time-dependent)
I Have consistent pressure boundary conditions



Motivation

I What is available in the literature?
I Explicit approach for spectral/hp discretization (Newman,

1997; Darekar, 2001) ⇒ restricted to constant Jacobian
I Semi-implicit approach for pseudo-spectral method (Carlson,

1995) ⇒ pressure boundary condition?
I These methods were generalized, leading to an explicit and a

semi-implicit formulation, both of which
I Support general transformations (including time-dependent)
I Have consistent pressure boundary conditions



Formulation



Formulation - original

Typically, we solve the incompressible Navier-Stokes equations in a
Cartesian coordinate system

∂u
∂t

= N(u)−∇p + νL(u)

∇ · u = 0

where
N(u) = −(u · ∇)u

and
νL(u) = ν∇2u



Formulation - original

In the velocity-correction scheme, the pressure is solved by∫
Ω
∇pn+1 · ∇φ dΩ =

∫
Ω
φ∇ ·

(
− û

∆t

)
dΩ

+

∫
Γ
φ

[
û− γ0un+1

∆t
− ν(∇×∇× u)∗

]
· n dS ,

where
û = u+ + ∆tN∗,

∗ represents extrapolation in time and + represents backward
differencing.



Formulation - original

The velocity is the solution of

γ0un+1 − û
∆t

= −∇pn+1 + νL(un+1)

with appropriate boundary conditions.



Navier-Stokes equations in the transformed system

In the transformed coordinate system, the incompressible
Navier-Stokes equations can be written as

∂u
∂t

= N(u)− G(p) + νL(u),

D(u) = 0,

where

N(u) = −ujui,j + V jui,j − ujV i
,j

G(p) = g ijp,j

νL(u) = νg jkui,jk

D(u) =
1
J
∇ · (Jui )

are the terms obtained from tensor calculus.



Explicit formulation

For the explicit formulation, we rewrite the equations as

∂u
∂t

= N(u)− ∇p
J

+ νL(u) + A(u, p),

D(u) = 0,

where the forcing term A can be obtained by

A(u, p) =
[
N(u)−N(u)

]
+

[
−G(p) +

∇p
J

]
+ ν

[
L(u)− L(u)

]
If J ≡ 1, we obtain the approach of Newman (1997), where we just
have to add A to N.



Explicit formulation

Following a derivation analogous to the one for Cartesian system,
we obtain the pressure equation∫

Ω
∇pn+1 · ∇φ dΩ =∫

Ω
φ∇ ·

[
− Jû

∆t
+ ν

(
∇
(u
J
· ∇J

))∗]
+ ν∇J · (∇×∇× u)∗ dΩ

+

∫
Γ
φJ

[
û− γ0ūn+1

∆t
−ν
(
∇
(u
J
· ∇J

))∗
− ν(∇×∇× u)∗

]
· n dS

where
û = u+ + ∆t(N∗ + A∗)



Explicit formulation

The velocity is obtained by solving

γ0un+1 − û
∆t

= −∇p
n+1

J
+ νL(un+1)

with appropriate boundary conditions.



Semi-implicit formulation

I The semi-implicit formulation consists in following the original
procedure using the modified operators N, G, and L

I The modified Helmholtz equations are solved iteratively, since
assembling the matrix would break the symmetries created by
the transformation (in quasi-3D, the Fourier modes would get
coupled)

I It is also necessary to modify the (∇×∇×) operator.



Semi-implicit formulation

The pressure is solved by the iteration

∇pn+1
s+1 = ∇pn+1

s + J

[
u+ − γ0ūn+1

∆t
− νQ∗ + N̄∗ − Ḡ(pn+1

s )

]
,

which leads to∫
Ω
∇pn+1

s+1 · ∇φ dΩ =∫
Ω
φ

[
JD

(
−û
∆t

)
+ JD(Ḡ (pn+1

s ))−∇2pn+1
s

]
dΩ

+

∫
Γ
φ

[
J

(
û− γ0ūn+1

∆t

)
− νJQ∗ − JḠ (pn+1

s ) +∇pn+1
s

]
· n dS ,

where s is the iteration counter and

Q = εimnεljkgnlgkpu
p
,jm



Semi-implicit formulation

The velocity is solved by

γ0un+1
s+1

∆t
− νL(un+1

s+1) =
û

∆t
− Ḡ (pn+1) + νL̄(un+1

s )− νL(un+1
s ),

where again s is the iteration counter.

A relaxation factor can be included in the iterative loops to improve
the numerical stability.



Explicit vs. Semi-implicit

I Both are similar in terms of accuracy
I Explicit is faster
I Semi-implicit is more robust
I Both eventually become unstable as the transformation

becomes more energetic



Implementation



Implementation

The implementation of the coordinate transformations consists of
I A new library encapsulating tensor calculus functionality
I Changes in the solver level
I Postprocessing changes



Libraries



Libraries

GlobalMapping



The GlobalMapping library

The GlobalMapping library is formed by
I A base class Mapping

I Transformations between the two coordinate systems
I Basic tensor calculus functions (e.g. Jacobian, raise index)
I Differential operators
I Auxiliary functions

I Implementation of particular mappings



Mapping types

Mapping type x̄ ȳ z̄

Translation x + f (t) y + g(t) z + h(t)
XofZ x + f (z , t) y z
XofXZ f (x , z , t) y z
XYofZ x + f (z , t) y + g(z , t) z
XYofXY f (x , y , t) g(x , y , t) z
General f (x , y , z , t) g(x , y , z , t) h(x , y , z , t)



Examples



Flow around wavy square cylinder

Original geometry Transformed geometry



Flow around wavy square cylinder

What changes are required in the session file?

<CONDITIONS>
<SOLVERINFO>
<I PROPERTY="SolverType"
VALUE="VelocityCorrectionScheme"/>

</SOLVERINFO>

</CONDITIONS>

<CONDITIONS>
<SOLVERINFO>
<I PROPERTY="SolverType"
VALUE="VCSMapping" />

</SOLVERINFO>

<FUNCTION NAME="MappingFcn">
<E VAR="x"

VALUE="x-0.15*cos(PI*z/1.5)"/>
</FUNCTION>

</CONDITIONS>

<MAPPING TYPE="XofZ">
<COORDS>MappingFcn</COORDS>

</MAPPING>



Flow around wavy square cylinder

I By default, the explicit formulation is used
I The simulation is around 70% more expensive than the original

one
I This should still be advantageous compared to running a full

3D case
I The increase in cost is emphasized by the high efficiency of the

implicit solves.



Flow around wavy flexible cylinder (forced vibration)

Original geometry Transformed geometry



Flow around wavy flexible cylinder (forced vibration)

I Same changes to session file, but now the MAPPING section is

<MAPPING TYPE="General">
<COORDS>MappingFcn</COORDS>
<VEL>MappingVel</VEL>
<TIMEDEPENDENT>True</TIMEDEPENDENT>

</MAPPING>

I For time dependent mappings, also need to define function
describing coordinates velocity

<FUNCTION NAME="MappingVel">
<E VAR="vx" VALUE="0.0" />
<E VAR="vy" VALUE="omega*Av*cos(omega*t)*sin(2*PI*z/lambdaV)"/>

</FUNCTION>



Flow around wavy flexible cylinder (forced vibration)

I The wall boundary condition for the moving body is set using

<REGION REF="0">
<D VAR="u" USERDEFINEDTYPE="MovingBody" VALUE="0" />
<D VAR="v" USERDEFINEDTYPE="MovingBody" VALUE="0" />
<D VAR="w" VALUE="0" />
<N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />

</REGION>

I Extra parameters are required for using semi-implicit approach
(see user guide)



Flow around two moving cylinders

Original geometry

Transformed geometry



Flow around two moving cylinders

I Need to calculate a coordinate transformation based on
cylinder displacement (in this case solving a Laplace equation)

I Not possible with current version of master
I Potential for a future fluid-structure interaction module

(possibly combined with re-meshing)



Summary

I Nektar++ incompressible solver now supports coordinate
transformations

I An explicit and a semi-implicit approach are available
I These methods are

I Flexible ⇒ time-dependent, non-constant Jacobian
I Easy to use
I Efficient
I Accurate

I Numerical stability can be a problem



Thank you!


	Motivation
	Formulation
	Implementation
	Examples
	Summary

