

On implicit LES / under-resolved DNS via spectral element methods

Rodrigo C. Moura PhD student at Imperial

Nektar++ Workshop 2016 June 7, 2016

Introduction & outline

- Implicit LES vs. under-resolved DNS
- Why does it work and how to apply it ?
- Understanding the numerics is essential !
- Eigensolution (dispersion-diffusion) analysis
- Upwind DG vs. CG+SVV
- Numerical experiments with Nektar++
- Focusing on accuracy and robustness

Eigensolution analysis for DG – **linear advection in 1D**

$$\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u^2}{\partial x} = \frac{A_F}{\sqrt{\Delta t}} \sum_{N \in \mathbb{N}_F} \frac{\sigma_N(t)}{\sqrt{|N|}} \exp\left(i\frac{2\pi N}{L}x\right)$$

р	m	$(kh)^{1d}_{1\%}$	$2\pi/(k\hbar)^{1d}_{1\%}$	$(\Delta/h)^{1d}_{1\%}$		
:						
6	7	10.027	4.386	0.313		
7	8	12.018	4.183	0.261		
8	9	14.035	4.029	0.224		

$$k_{1\%} = \frac{(kh)_{1\%}^{1d}}{h} = \frac{12.018}{2/512} \approx 3077$$
$$\implies \log_{10} k_{1\%} \approx 3.49$$

р	m	$(kh)^{1d}_{1\%}$	$2\pi/(k\hbar)^{1d}_{1\%}$	$(\Delta/h)^{1d}_{1\%}$		
:						
6	7	10.027	4.386	0.313		
7	8	12.018	4.183	0.261		
8	9	14.035	4.029	0.224		

$$k_{1\%} = \frac{(kh)_{1\%}^{1d}}{h} = \frac{12.018}{2/512} \approx 3077$$
$$\implies \log_{10} k_{1\%} \approx 3.49$$

MESH REFINEMENT (p = 4)

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = \mu \frac{\partial}{\partial x} \left(\mathcal{Q} \star \frac{\partial u}{\partial x} \right) \approx -\mu \sum_{k} k^2 \, \hat{\mathcal{Q}}_k \, \hat{u}_k \, \exp(ikx)$$

KERNEL ENTRIES NORMALLY INCREASE FROM ZERO

REGULAR DIFFUSION RECOVERED WHEN
$$\mathcal{Q}_k = 1$$
 for all k

Eigensolution analysis for CG – advection+diffusion

Eigensolution analysis for CG – advection+diffusion

Eigensolution analysis for CG – advection+SVV

Proposed 'power kernel': $\frac{Q_k}{p} = \left(\frac{k}{p}\right)^{p_{svv}}, \ p_{svv} = p/2$

Eigensolution analysis for CG – irregular features

Eigensolution analysis for CG – irregular features

Eigensolution analysis for CG – a Péclet-free SVV

Using
$$\mu \propto \frac{ah}{p} \implies \text{fixed Pe}^* = a\hbar/\mu$$

(optimized SVV kernel to mimic DG)

Numerical experiments with Nektar++ (inviscid TGV)

Summary of test cases - crossed out numbers indicate cases that crashed

	Roe (~ HLLC, Exact)					Lax-Friedrichs (~ HLL)				
m = p + 1	4	5	6	7	8	4	5	6	7	8
	28	23	19	16	14	28	23	X	X	X
nel	39	32	28	23	X	39	32	×	×	X
	56	45	39	X	28	56	45	30	X	28

Conclusions & outlook

- Why does SEM-based iLES/uDNS work ?
- How to follow this approach?
- 1% rule as estimate of "implicit" filter width
- Favor high-order with coarser meshes
- Stabilizing techniques at high Reynolds
- Avoid simplistic Riemann fluxes with DG
- Employ well-behaved SVV operators with CG

Questions

Questions

MOURA, R.C.; MENGALDO, G.; SHERWIN, S.J.; PEIRÓ, J.: On the eddyresolving capability of high-order discontinuous Galerkin approaches to implicit LES / under-resolved DNS of Euler turbulence. JCP (under review), 2016.

MOURA, R.C.; SHERWIN, S.J.; PEIRÓ, J.: Eigensolution analysis of spectral/hp continuous Galerkin approximations to advection-diffusion problems: insights into spectral vanishing viscosity. JCP, v. 307, p. 401-422, 2016.

MOURA, R.C.; SHERWIN, S.J.; PEIRÓ, J.: Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods. JCP, v. 298, p. 695-710, 2015.

MOURA, R.C.; SHERWIN, S.J.; PEIRÓ, J.: *Modified Equation Analysis for the Discontinuous Galerkin Formulation*. In: ICOSAHOM, 2014 (Lecture Notes in Computational Science and Engineering, 2015).