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Introduction  & outline

• Implicit LES  vs. under-resolved DNS

• Why does it work and how to apply it ?

• Understanding the numerics is essential !

• Eigensolution (dispersion-diffusion) analysis

• Upwind DG  vs. CG+SVV

• Numerical experiments with Nektar++

• Focusing on accuracy and robustness



Eigensolution analysis for DG  – linear advection in 1D



Eigensolution analysis for DG  – the 1% rule
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Eigensolution analysis for DG  – the 1% rule

LINEAR ADVECTION

( std. upwinding )



Eigensolution analysis for DG  – tests in Burgers turbul.
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Eigensolution analysis for DG  – tests in Burgers turbul.

MESH REFINEMENT ( p = 4 )



Eigensolution analysis for DG  – tests in Burgers turbul.

INCREASING p (fixed DOFs)
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INCREASING p (fixed DOFs)



Eigensolution analysis for CG  – insights into SVV



Eigensolution analysis for CG  – insights into SVV

spectral vanishing viscosity



Eigensolution analysis for CG  – insights into SVV

spectral vanishing viscosity strictly true for spectral methods



Eigensolution analysis for CG  – insights into SVV

spectral vanishing viscosity strictly true for spectral methods

REGULAR DIFFUSION RECOVERED WHEN                      for all

KERNEL ENTRIES NORMALLY INCREASE FROM ZERO



Eigensolution analysis for CG  – advection+diffusion

p = 3

p = 4



Eigensolution analysis for CG  – advection+diffusion

p = 5

p = 6



Eigensolution analysis for CG  – advection+SVV



Eigensolution analysis for CG  – irregular  features

p = 3

p = 3



Eigensolution analysis for CG  – irregular  features

p = 3

p = 3



Eigensolution analysis for CG  – a Péclet-free  SVV

(optimized SVV kernel to mimic DG)



Numerical experiments with Nektar++  ( inviscid TGV )
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Conclusions  & outlook

• Why does SEM-based iLES/uDNS work ?

• How to follow this approach ?

• 1% rule as estimate of “implicit” filter width

• Favor high-order with coarser meshes

• Stabilizing techniques at high Reynolds

• Avoid simplistic Riemann fluxes with DG

• Employ well-behaved SVV operators with CG



Questions



Questions

MOURA, R.C.; MENGALDO, G.; SHERWIN, S.J.; PEIRÓ, J.: On the eddy-
resolving capability of high-order discontinuous Galerkin approaches to implicit 
LES / under-resolved DNS of Euler turbulence. JCP (under review), 2016.

MOURA, R.C.; SHERWIN, S.J.; PEIRÓ, J.: Eigensolution analysis of spectral/hp 
continuous Galerkin approximations to advection-diffusion problems: insights into 
spectral vanishing viscosity. JCP, v. 307, p. 401-422, 2016. 

MOURA, R.C.; SHERWIN, S.J.; PEIRÓ, J.: Linear dispersion-diffusion analysis 
and its application to under-resolved turbulence simulations using discontinuous 
Galerkin spectral/hp methods. JCP, v. 298, p. 695-710, 2015.

MOURA, R.C.; SHERWIN, S.J.; PEIRÓ, J.: Modified Equation Analysis for the 
Discontinuous Galerkin Formulation. In: ICOSAHOM, 2014 (Lecture Notes in 
Computational Science and Engineering, 2015).


