Suitability of Artificial Viscosity Discontinuous Galerkin Method for Compressible Turbulence

Jian Yu

School of Aeronautics Science and Engineering Beihang University

June 7th, 2016, Imperial College, UK

I Motivation

Complex Configuration & Complex Flow Sturctures

Motivation

- Implicit LES frequently employed when DG is considered for LES-type problems
 - ✓ Quantification of numerical dissipation to be addressed
 - ✓ Most work in the literature focus on flows with no shocks

比京航空

- Dealiasing for under-resolved solutions
- Shock capturing methods
 - ✓ Sub-cell resolution ability
 - ✓ Effects on broadband accuracy
 - ✓ Effects on aliasing effects
- Performance relative to high order finite difference methods remains to be further addressed

Method

- Compressible Flow Solver within the Nektar++ framework
- Govening equations
 - ✓ EulerADCFE
 - NavierStokesADCFE (Added through mimicking EulerADCFE and NavierStokesCFE)
- Element type: Quad, Hex
- Discretization: Weak DG
- Numerical flux: HLLC
- Time integration: ClassicalRungeKutta4

Method

- Shock capturing: NonSmooth
- Modal Sensor- Persson and Peraire's AIAA Paper, 2006

$$\mu_{\mathrm{av}} = \varepsilon_0 \begin{cases} 0 & S_e < S_0 - \kappa \\ \frac{1}{2} \left(1 + \sin\left(\frac{\pi \left(S_e - S_0\right)}{2\kappa}\right) \right) & , \quad S_0 - \kappa \leq S_e \leq s_0 + \kappa \\ 1 & S_e > S_0 + \kappa \end{cases}$$

$$S_{e} = \log_{10}\left(\frac{\left\langle q_{h} - \overline{q}_{h}, q_{h} - \overline{q}_{h} \right\rangle_{e}}{\left\langle q_{h}, q_{h} \right\rangle_{e}}\right), \qquad \overline{q}_{h} = \sum_{n=1}^{N(O-1)} \hat{u}_{n,e}(t)\varphi_{n}(\mathbf{x})$$

- \mathcal{E}_0 governs the vaule of the artificial viscosity, while S_0 determines the action range of the artificial viscosity
- ε_0 and s_0 remain constant for each test case unless specified otherwise

- Ma=0.8, α=1.25
- Shock-dominated inviscid flows

Enlarged mesh (Taken from tutorials)

Validation with different orders

*Ref taken from Luo et al, JCP,2007

Higher order schemes generate lower entropy production as expected

- Density
- Contours

Artificial

Viscosity

Inviscid Supersonic Tube Flow

北京航空航天大学

- Inflow Mach number: 1.9
- Shock-dominated inviscid flows
- Constant DOFs

I Inviscid Supersonic Tube Flow

Inviscid Supersonic Tube Flow

Fifth order AVDG
 The empirical parameters
 for the shock capturing are
 kept the same as those on
 the baseline resolution

北京航空航

Taylor Green Vortex Flow

- Undergoes transition to fully turbulence
- Mach number: 0.1
- Reynolds number: 1600
- Artificial viscosity applied
- Initial conditions:

$$u_{1} = V_{0} \sin\left(\frac{x}{L}\right) \cos\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$
$$u_{2} = -V_{0} \cos\left(\frac{x}{L}\right) \sin\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$
$$u_{3} = 0.0$$
$$p = P_{0} + \frac{\rho_{0}V_{0}^{2}}{16} \left[\cos\left(\frac{2x}{L}\right) + \cos\left(\frac{2y}{L}\right)\right] \left[\cos\left(\frac{2z}{L}\right) + 2w\right]$$

Effect of <u>artificial viscosity</u> on broadband accuracy

- Fourth order AVDG,DOFs:64³
- Less elements are polluted by the artificial viscosity with a

larger \mathcal{E}_0 as expected

Percentage of elements where artificial viscosity is non-zero

🙆 北京航空航天大学

Detrimental effect of artificial dissipation noticeable
Little difference between different non-zero \mathcal{E}_0

Effect of artificial viscosity on broadband accuracy

北京航空航天大學

ε₀=5.0

Oscillatory behavior due to numerical dissipation

Effect of artificial dissipation biased towards higher wave numbers

Effect of <u>artificial viscosity</u> for underresovled instability

- The eighth order DG method would blow up due to aliasing effects
- With the artificial viscosity model,
 the computations run properly
 over the entire period of simulation

Effect of order and resolution on broadband accuracy () 北京航空航天

- AVDG for eighth order, DG for others
- Discrepancy of enstrophy more obvious
- Eighth order AVDG over fourth order DG

Effect of order and resolution on broadband accuracy 🚳 北京航空航天

 For incompressible flow, the enstrophy is directly related to the kinetic energy dissipation rate through a constant, i.e.

Effect of order and resolution on broadband accuracy 🚳 北京航空航天大学

 Ingredients of the total dissipation rate are then decomposed as following*

$$\frac{dK}{dt} = \frac{d}{dt} \left\langle \frac{1}{2} \rho u_i u_i \right\rangle = -(\varepsilon_{\rm d} + \varepsilon_{\rm s})$$

$$\boldsymbol{\varepsilon}_{s} = \left\langle 2 \boldsymbol{\mu} \boldsymbol{S}_{i,j} \boldsymbol{S}_{i,j} \right\rangle$$
 : solenoidal dissipation

 $\varepsilon_{\rm d}$: numerical dissipation

*Bull, J. R., and Jameson, A., "Simulation of the Compressible Taylor Green Vortex using High-Order Flux Reconstruction Schemes," AIAA Paper 2014-3210, Jun. 2014.

Effect of order and resolution on broadband accuracy

北京航空航天

Compressible Isotropic Decaying Turbulence

•
$$Ma_{t,0} = 0.6$$
 $Re_{\lambda,0} = 100$

Initial energy spectrum*

$$E(k) = u_{rms,0}^2 16 \sqrt{\frac{2}{\pi}} \frac{k^4}{k_0^5} \exp\left(-\frac{2k^2}{k_0^2}\right)$$

 Pose demanding requirements for numerical methods, i.e. resolve multi-scale fluctuations and suppress spurious oscillations simultaneously.

*Johnsen, E., et al, "Assessment of High-Resolution Methods for Numerical Simulations of Compressible Turbulence with Shock Waves," Journal of Computational Physics, Vol. 229, No. 4. 2010, pp. 1213–1237..

Effect of artificial viscosity on broadband accuracy

Effect of order and resolution on broadband accuracy (例) 北京航空航天大学

Effect of order and resolution on broadband accuracy 🚳 北京航空航天大学

• Energy spectrum at $t = 4\tau$ $E_{u,\text{compensate}}(k) = \frac{E_u(k)}{E}$ 10^{-1} 10^{-2} 10^{-3} 1.6 DOFs64³_O2 1.4 DOFs64³ O4 **DOFs64³ 08** Ref. 0 1.2 **DOFs32³ 08** 10^{-5} DOFs64³ O2 $\mathbf{E}_{\mathbf{u}, \mathbf{compensated}}$ $DOFs64^{3}O4$ 10^{-6} **DOFs64³ 08 DOFs128³ O8** 0.6 10^{-7} 10^{1} 10^{2} 10^{0} k 0.4 Non-monotonic behavior attributed 0.2 to the joint effect of the dissipation 0ò 0.5 1.5 k/k_{max} and the aliasing error pile-up 28

Methods	AVDG2	AVDG4	AVDG8	WENO7	Sixth-order compact scheme with artificial viscosity	WENO5/CD6
$k_{c=0.25}/k_{\max}$	0.18	0.4	0.73	0.25	0.44	0.84
$k_{c=0.4}/k_{\max}$	0.22	0.54	1.23	0.33	0.62	0.91

- Fourth order AVDG is superior to the seventh order WENO, and comparable to the sixth order compact difference scheme with an artificial viscosity model.
- Eighth order AVDG is comparable to the WENO/central difference hybrid scheme

Effect of order and resolution on broadband accuracy 🚳 北京航空航天大学

Discrepancy relatively small compared with each other

Effect of order and resolution on broadband accuracy 🝻 北京航空航天大学

 Similar to the TGV case, ingredients of the total dissipation rate can be decomposed as

$$\frac{dK}{dt} = \frac{d}{dt} \left\langle \frac{1}{2} \rho u_i u_i \right\rangle = -\left(\varepsilon_{\rm d} + \varepsilon_{\rm s} + \varepsilon_{\rm c} - \left\langle p\theta \right\rangle\right)$$

$$\varepsilon_{s} = \langle \mu \omega_{i} \omega_{i} \rangle$$
 : solenoidal dissipation

$$\varepsilon_{\rm c} = \left\langle \frac{4}{3} \ \mu \theta^2 \right\rangle$$

: dilatational dissipation

 $-\left\langle p heta
ight
angle$

 \mathcal{E}_{d}

- : pressure-dilatation transfer
- : numerical dissipation

Effect of order and resolution on broadband accuracy (例) 北京航空航天大学

For shock capturing

• The superior accuracy of higher order discretization for shocks is well retained with the artificial viscosity model.

For under-resolved instability(aliasing effect)

- Able to enhance stability with detrimental effects for energy
- Retain higher order accuracy property for vortical motions compared with the case with no artificial viscosity

For broadband accuracy

 The artificial viscosity model tends to affect scales of higher wavenumbers

Conclusions

For broadband accuracy (ctd)

- The effective bandwidth of the fourth order AVDG method is superior to the seventh order WENO, and comparable with the sixth-order compact method with artificial viscosity
- The eighth order AVDG yields a very high value of bandwidth similar to the fifth-order WENO/sixth-order central difference hybrid method
- Numerical dissipation of the high order AVDG method is able to provide appropriate compensation for the turbulent kinetic energy on moderately coarse meshes, indicating its being a good candidate for implicit LES.

Future Plans

- Developing more accurate and robust shock capturing methods
 - ✓ Localized artificial diffusivity
 - ✓ Entropy viscosity method
- Effects of approximate Riemann flux on broadband accuracy
- Performing implicit LES for more complex flows
 - ✓ Transonic cylinder flows

Thank you for your attention!

Questions & Suggestions?

4th High Order Workshop, Heraklion, Greece

Global results Error on measured dissipation : resolution

4th High Order Workshop, Heraklion, Greece

Global results Error on enstrophy dissipation : resolution

