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NUMERICAL MATHEMATICS AND SCIENTIFIC COMPUTATION is 
a series designed to provide texts and monographs for graduate students 
and researchers on a wide range of mathematical topics at the interface 
of computational science and numerical analysis.

George Em Karniadakis and Spencer Sherwin

Spectral methods have long been popular in direct and large eddy simulation 
of turbulent flows, but their use in areas with complex-geometry computational
domains has historically been much more limited. More recently the need to find
accurate solutions to the viscous flow equations around complex configurations
has led to the development of high-order discretisation procedures on unstruc-
tured meshes, which are also recognised as more efficient for solution of time-
dependent oscillatory solutions over long time periods. 

Here Karniadakis and Sherwin present a much-updated and expanded version 
of their successful first edition covering the recent and significant progress in
multi-domain spectral methods at both the fundamental and application level.
Containing over 50% new material, including discontinuous Galerkin methods,
non-tensorial nodal spectral element methods in simplex domains, and stabilisa-
tion and filtering techniques, this text aims to introduce a wider audience to the
use of spectral/hp element methods with particular emphasis on their application
to unstructured meshes. It provides a detailed explanation of the key concepts
underlying the methods along with practical examples of their derivation and
application, and is aimed at students, academics and practitioners in computa-
tional fluid mechanics, applied and numerical mathematics, computational
mechanics, aerospace and mechanical engineering and climate/ocean modelling.
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• Incompressible/compressible Solvers 
• Wide range of discretisations: CG/DG, 

Fourier, modal/nodal with 1, 2 and 
3D, embedded manifolds 

• Arbitrary-order curvilinear mesh 
elements for complex domains 

• MPI parallelism and scalable to many 
thousands of cores 

• Modern modular C++ object-oriented 
design with an extensive testing 
framework 

• Cross-platform (Linux, OSX, Windows)
• MIT Licence
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Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.

where U = [⇢, ⇢u, ⇢v, ⇢w, E]> is the vector of conserved vari-
ables in terms of density ⇢, velocity (u1, u2, u3) = (u, v,w), E is
the specific total energy, and

F(U) =
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where p is the pressure. To close the system we need to specify
an equation of state, in this case the ideal gas law p = ⇢RT
where T is the temperature and R is the gas constant. For the
Euler equations, the tensor of viscous forces Fv(U) = 0, and for
Navier-Stokes

Fv(U) =

2
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A = u⌧xx + v⌧xy + w⌧xz + k@xT,
B = u⌧yx + v⌧yy + w⌧yz + k@yT,
C = u⌧zx + v⌧zy + w⌧zz + k@zT

where in tensor notation the stress tensor ⌧xi x j = 2µ(@xi ui +

@xi u j � 1
3@xk uk�i j), µ is the dynamic viscosity calculated using

Sutherland’s law and k is the thermal conductivity.
To discretise these equations in space, we adopt an approach

which allows for the resolution of discontinuities and shocks
that may appear in the solution at transonic and supersonic flow
speeds. We therefore use approximations to our solution com-
prised of functions which are not continuous across element
boundaries. Traditionally, we follow a Galerkin approach by
utilising the variational form of the equations in order to ob-
tain the discontinuous Galerkin method. One of the key fea-
tures of Nektar++ is the ability to select a wide range of nu-
merical options, and to this end we support both discontinuous

Galerkin and flux reconstruction spatial discretisations, which
have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation
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Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.
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Figure 5: Contours of the magnitude of velocity in a periodic hill simulation at
Re = 2800.

for flow over a NACA0012 aerofoil at a farfield Mach number
Ma1 = 0.8 and a 1.5� angle of attack. The transonic mach
number of this flow leads to the development of a strong and
weak shock along the upper and lower surfaces of the wing re-
spectively. This figure shows isocontours of the mach number
where the presence of the shocks are clearly identified. Finally,
In Fig. 4(c), we visualise the temperature field from flow pass-
ing over a T106C low-pressure turbine blade at Re = 80,000
to highlight applications to high Reynolds number flow simula-
tions.

4.2. Transitional turbulent flow dynamics

Transient problems in which turbulence dominates the flow
domain, or in which the transition to turbulence dominates the
simulation, remain some of the most challenging problems to
resolve in computational fluid simulations. Here, accurate nu-
merical schemes and high resolution of the domain is critical.
Moreover, any choice of scheme must be e�cient in order to ob-
tain results in computationally feasible time-scales. Tradition-
ally, highly resolved turbulence simulations, such as the Taylor-
Green vortex problem, lie firmly in the class of spectral meth-
ods. However, spectral methods typically lead to strong geom-
etry restrictions which limits the domain of interest to simple
shapes such as cuboids or cylinders.

Whilst spectral element methods may seem the ideal choice
for such simulations, particularly when the domain of interest
is geometrically complex, they can be more computationally
expensive in comparison to spectral methods. However, when
the domain of interest has a geometrically homogeneous com-
ponent – that is, the domain can be seen to be the tensor prod-
uct of a two-dimensional ‘complex’ part and a one-dimensional
segment – we can combine both the spectral element and tradi-
tional spectral methods to create a highly e�cient and spectrally
accurate technique [4].

We consider the application of this methodology to the prob-
lem of flow over a periodic hill, depicted in Fig. 5, where the
flow is periodic in both streamwise and spanwise directions.
This case is a well-established benchmark problem in the DNS
and LES communities [25], and is challenging to resolve due to
the smooth detachment of the fluid from the surface and recir-
culation region. Here we consider a Reynolds number of 2800,
normalised by the bulk velocity at the hill crest and the height
of the hill, with an appropriate body forcing term to drive the
flow over the periodic hill configuration.

The periodicity of this problem makes it an ideal candidate
for the hybrid technique described above. We therefore con-

struct a two-dimensional mesh of 3626 quadrilateral elements
at polynomial order P = 6, and exploit the domain symmetry
with a Fourier pseudospectral method consisting of 160 collo-
cation points in the spanwise direction to perform the simula-
tion. This yields a resolution of 20.9M degrees of freedom per
field variable and allows us to obtain excellent agreement with
the benchmark statistics.

4.3. Flow stability
In addition to direct numerical simulation of the full

non-linear incompressible Navier-Stokes equations, the
IncNavierStokesSolver supports global flow stability
analysis through the linearised Navier-Stokes equations with
respect to a steady or periodic base flow. This process identifies
whether a steady flow is susceptible to a fundamental change
of state when perturbed by an infinitesimal disturbance. The
linearisation takes the form

@u0

@t
+ (u0 · r)U + (U · r)u0 = �rp0 + ⌫r2u0

r · u0 = 0,

where U is the base flow and u0 is now the infinitesimal pertur-
bation. The time-independent base flow is computed through
evolving Equs. 9 to steady-state with appropriate boundary con-
ditions. For time-period base flows, the flow is sampled at reg-
ular intervals and interpolated.

The linear evolution of a perturbation under Equs. 10 can be
expressed as

u0(t) = A(t)u00

for some initial state u00, and we seek, for some arbitrary time
T, the dominant eigenvalues and eigenmodes of the operator
A(T ), which are solutions to the equation

A(T )ũ j = � jũ j.

The sign of the leading eigenvalues � j are used to establish the
global stability of the flow. An iterative Arnoldi method [26]
is applied to a discretisation M of A(T ). Repeated actions
of M are applied to the initial state u0 using the same time-
integration code as for the non-linear equations [27]. The re-
sulting sequence of vectors spans a Krylov subspace of M and,
through a partial Hessenberg reduction, the leading eigenval-
ues and eigenvectors can be e�ciently determined. The same
approach can be applied to the adjoint form of the linearised
Navier-Stokes evolution operatorA⇤ to examine the receptivity
of the flow and, in combination with the direct mode, identify
the sensitivity of the flow to base flow modification and local
feedback. The direct and adjoint methods can also be combined
to identify convective instabilities over di↵erent time horizons
⌧ in a flow by computing the leading eigenmodes of (A⇤A)(⌧).
This is referred to as transient growth analysis.

To illustrate the linear analysis capabilities of Nektar++, we
use the example of two-dimensional flow past a circular cylin-
der at Re = 42, just below the critical Reynolds number for
the onset of the Bénard-von Kármán vortex street. This is a
well-established test case for which significant analysis is avail-
able in the literature. We show in Fig. 6 the leading eigen-
modes for the direct (A) and adjoint (A⇤) linear operators for
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Figure 6: Linear stability analyses of two-dimensional flow past a circular
cylinder at Re = 42. Illustrative plots of (a) streamwise (left) and transverse
(right) components of velocity for the dominant direct mode, (b) streamwise
(left) and transverse (right) velocity for the dominant adjoint mode and (c)
structural sensitivity to base flow modification (left) and local feedback (right).

both the streamwise and cross-stream components of velocity.
The modes are characterised by the asymmetry in the stream-
wise component and symmetry in the cross-stream component.
We also note the spatial distribution of the modes with the
leading direct modes extending far downstream of the cylin-
der, while the adjoint modes are predominantly localised up-
stream but close to the cylinder. This separation is a result of
the non-normality of the A operator. We also show the struc-
tural sensitivity of the flow to base flow modification and local
feedback. The latter highlights regions where localised forcing
would have greatest impact on the flow.

4.4. Shallow water modelling

The ShallowWaterSolver simulates depth-averaged wave
equations, often referred to as “long-wave” approximations.
These equations are often used for engineering applications
where the vertical dimension of the flow is small compared
to the horizontal. Examples of applications include tidal flow,
river flooding and nearshore phenomena such as wave-induced
circulation and wave disturbances in ports.

The governing equations are derived from potential flow:
the Laplace equation inside the flow domain and appropriate
boundary conditions at the free surface and bottom. The two
key steps are (i) the expansion of the velocity potential with re-
spect to the vertical coordinate and (ii) the integration of the
Laplace equation over the fluid depth. This results in sets of
equations expressed in horizontal dimensions only. Depending
on the order of truncation in nonlinearity and dispersion, nu-
merous long-wave equations with di↵erent kinematic behavior
have been derived over the years [28, 29, 30].

Many depth-averaged equations can be written in a generic
form as

@U
@t
+ r · F(U) + D(U) = S(U) , (11)

where U = [H ,Hu ,Hv]T is the vector of conserved variables.
The horizontal velocity is denoted by u = [u(x, t) , v(x, t)]T ,
H(x, t) = ⌘(x, t) + d(x) is the total water depth, ⌘ is the free
surface elevation and d the still water depth. The flux vector

F(U) is given as
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, (12)

in which g is the acceleration due to gravity. The source term
S(U) contains forcing due to, for example, Coriolis e↵ects, bed-
slopes and bottom friction. Importantly, D(U) contains all the
dispersive terms. The actual form of the dispersive terms di↵ers
between di↵erent wave equations and the term can be highly
complex with many high-order mixed and spatial derivatives.

At present, the ShallowWaterSolver supports the non-
dispersive shallow-wter equations (SWE) and the weakly dis-
persive Boussinesq equations of Peregrine [28]. The SWE are
recovered if D(U) ⌘ 0 while for the Peregrine equation the ex-
pression is:

D(U) = @t
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(13)

The Boussinesq equations are solved using the wave conti-
nuity approach [31]. The momentum equations are first recast
into a scalar Helmholtz type equation and solved for the aux-
iliary variable z = r · @t (Hu). The conservative variables are
recovered in a subsequent step.

A frequently used test-case for Boussinesq models is the
scattering of a solitary wave impinging a vertical cylinder. Here
a solitary wave with nonlinearity ✏ = 0.1 is propagating over a
still water depth of 1 m (✏ = A/d, where A is the wave ampli-
tude). The initial solitary wave condition is given by Laitone’s
first order solution. The cylinder has a diameter of 4 m, giving
a Keulegan-Carpenter number well below unity and di↵raction
number on the order of 2. Hence, the viscous e↵ects are small
while the di↵raction and scattering are significant.

We compute the solution in the domain x 2 [�25 , 50] me-
ters and y 2 [�19.2 , 19.2] meters, discretized into 552 triangles
using P = 5. Snapshots of the free surface elevation at four
di↵erent times are shown in Fig. 7. In Fig. 7a the solitary wave
reaches its maximum run-up on the cylinder, while in Fig. 7b
the peak of solitary wave has reached the center of the cylin-
der and a depression in the free surface around the cylinder is
clearly visible. The propagation of the scattered, and later re-
flected from the side walls, waves are seen in Figs. 7c and 7d.

4.5. Cardiac electrophysiology
The cardiac electrical system in the heart is the signalling

mechanism used to ensure coordinated contraction and e�cient
pumping of blood. Conduction occurs due to a complex se-
quence of active ion exchanges between intracellular and extra-
cellular spaces, initiated due to a potential di↵erence between
the inside and outside of the cell exceeding a threshold, pro-
ducing an action potential. This causes a potential di↵erence
across boundaries with adjacent cells, resulting in a flow of ions
between cells and triggering an action potential in the adjacent
cell. Disease, age and infarction lead to interruption of this
signalling process and may produce abnormal conduction pat-
terns known as arrhythmias. Clinically this can be treated using
catheter ablation, however acurately selecting the most e↵ective
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(a)

(b)

(c)

(d)

Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;

substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations

�

 

Cm
@u
@t
+ Iion

!

= r · �ru,

where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by
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in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p

A � p

A0
⌘

, � =

p
⇡hE

(1 � ⌫2)A0
(15)

where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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Figure 9: Geometry used for the simulation. Insets show how flow and pressure
vary with time and di↵erent locations in the geometry.

thickness and ⌫ is the Poisson’s ratio. Other more elaborate
pressure - area relationships are currently being implemented
into the framework. Application of Riemann’s method of char-
acteristics to Equations 14 and 15 indicates that velocity and
area are propagated through the system by forward and back-
ward travelling waves. These waves are reflected within the
network by appropriate treatment of interfaces and boundaries
(see for example [34, 35]). The final system of equations are
discretised in the Nektar++ framework using a discontinuous
Galerkin projection.

To illustrate the capabilities of the PulseWaveSolver, a 1D
geometry was created by extracting the centreline directly from
a 3D segmentation of a carotid bifurcation (the extracted cen-
treline with the segmented geometry overlaid is shown in Fig-
ure 9). At the inlet a half-sinusoidal flow profile was applied
during the systolic phase, whist during the diastolic phase a no-
flow condition was applied. Although this profile is not rep-
resentative of the carotid wave, it is useful for demonstrating
essential dynamics of the system e.g. reflection of backward
travelling waves only during the diastolic phase. At the outflow
RCR boundary conditions were utilised [35]. These boundary
conditions take into account the peripheral resistance and com-
pliance of the vasculature. The pressure and flow results are
shown in Figure 9. The insets demonstrate that the pressure
needs about 4 cycles to reach a periodic state.

To conclude this section, we illustrate the flexibility of the
software in combining two solvers to understand mass trans-
port in the aorta. We consider the simulation of blood-flow
through a pair of intercostal branches in the decending aorta.
The three-dimensional geometry is derived from CT scans and
is meshed using a combination of tetraheda and prismatic el-
ements. Prisms are used to better capture the boundary layer
close to the wall, while tetrahedra fill the remaining interior of
the domain. The embedded manifold discretisation code can
be used to compute boundary conditions for three-dimensional
simulations where the complexity of the geometry precludes the
use of analytic conditions.

The flow is modelled using the incompressible Navier-Stokes
equations (see Section 4.1). In this case, the inlet flow profile
f in Equ. 9 is the solution of the Poisson problem, computed
using the ADRSolver, on the two-dimensional inlet boundary

surface for a prescribed body force, as shown in Fig. 10(a).
The resulting profile is imposed on the three-dimensional flow
problem as illustrated. The steady-state velocity field from the
flow simulation at Reynolds number Re = 300 is shown in
Fig. 10(b). A single boundary layer of prismatic elements is
used for this simulation and both the prismatic and tetrahedral
elements use a polynomial expansion order of P = 4. This is
su�cient to capture the boundary layer at the walls.

We now solve the advection-di↵usion equation,

r · (�Drc + cu) = 0,

to model transport of oxygen along the arterial wall. Here, c
is the concentration and u is the steady-state flow solution ob-
tained previously. D = 1/Pe is the di↵usivity of the species
considered (Pe = 7.5 ⇥ 105 for oxygen). For most of the do-
main, the non-dimensional concentration remains constant at
c = 1. However, a particularly high gradient in concentration
forms at the wall. It is this gradient which is of particular inter-
est and needs to be captured accurately. The existing mesh used
for the flow simulation is unable to resolve the gradients close
to the wall. We therefore refine the boundary layer in the wall-
normal direction using element heights following a geometric
progression. To reduce computational cost, we also exploit the
spectral/hp discretisation and reduce the polynomial order of
the prisms in the directions parallel to the wall, since the con-
centration shows negligible variation in these directions. Fur-
thermore, the domain-interior tetrahedra may also be discarded
and a dirichlet c = 1 condition imposed on the resulting interior
prism boundary.

Fig. 10(c) shows the resulting concentration gradient field on
the surface of the arterial wall. Regions of low concentration
gradient are observed upstream of the branches, while high con-
centration gradients are observed downstream. Fig.10(d) shows
close-ups of the branches to illustrate this.

5. Discussion & Future Directions

The Nektar++ framework provides a feature-rich platform
with which to develop numerical methods and solvers in the
context of high-order finite element methods. It has been de-
signed in such a way that the libraries reflect the mathematical
abstractions of the method, to simplify uptake for new users,
as well as being written in a modular way to improve the ro-
bustness of the code, minimise duplication of functionality and
promote sustainability.

Development
The development of a complex and extensive software

project such as Nektar++ necessitates the adoption of certain
development practices to enable developers to easily write new
code for their features without breaking the code for other peo-
ple. The code is managed using the git distributed version
control system [36] due to its performance, enhanced support
for branching, as well as supporting o↵-line development. All
development is performed in branches and only after rigor-
ous multi-architecture testing and internal peer-review is new
code merged into the main codebase, thereby always maintain-
ing a stable distribution. Any new bugs or feature requests
are tracked using the Trac issue-management system, which

12

(a)

(b)

(c)

(d)

Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
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substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations
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where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by
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in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
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where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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• Scalar basis fields (explicitly coupled) 

• Time dependent non-linear solvers 

• Implies scalar boundary conditions



Nektar++ Scope

• Tensor nodal & modal product definition 

• Nodal unstructured through mapping
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Figure 3.1 Construction of a two-dimensional expansion basis from the product of
two one-dimensional expansions of order P = 4. (a) Modal expansions using the
one-dimensional expansion defined in (3.1) (edge and face modes have been scaled
by a factor of 4 and 16 respectively). (b) Nodal expansion using the one-dimensional
Lagrange polynomial defined in (3.2).

We note that the polynomial order of the multi-dimensional expansions may
differ in each coordinate direction as denoted by the use of the bounds P1, P2,
and P3.

Figure 3.1 shows a diagrammatic representation of the tensor product ex-
tension to generate a two-dimensional expansion in the standard quadrilateral
region using both the modal and nodal one-dimensional expansions. The modal
basis shown in figures 3.1(a) was generated using the one-dimensional expansion
φp(ξ) = ψa

p(ξ) [see equation (3.1)] and the nodal basis expansion shown in figure
3.1(b) was generated using the one-dimensional expansion φp(ξ) = hp(ξ) [see
equation (3.2)]. The expansion modes shown in figure 3.1 represent a complete
bi-linear expansion for fourth-order polynomials in both the ξ1 and ξ2 directions.
Note that the modal expansion maintains a hierarchic form where the lower order
expansions are a subset of the higher order expansions. In contrast, each com-
ponent of the two-dimensional nodal expansion maintains the Kronecker delta
form of the Lagrange polynomial where each mode has a unit value at a specified
position within the region.
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differ in each coordinate direction as denoted by the use of the bounds P1, P2,
and P3.

Figure 3.1 shows a diagrammatic representation of the tensor product ex-
tension to generate a two-dimensional expansion in the standard quadrilateral
region using both the modal and nodal one-dimensional expansions. The modal
basis shown in figures 3.1(a) was generated using the one-dimensional expansion
φp(ξ) = ψa

p(ξ) [see equation (3.1)] and the nodal basis expansion shown in figure
3.1(b) was generated using the one-dimensional expansion φp(ξ) = hp(ξ) [see
equation (3.2)]. The expansion modes shown in figure 3.1 represent a complete
bi-linear expansion for fourth-order polynomials in both the ξ1 and ξ2 directions.
Note that the modal expansion maintains a hierarchic form where the lower order
expansions are a subset of the higher order expansions. In contrast, each com-
ponent of the two-dimensional nodal expansion maintains the Kronecker delta
form of the Lagrange polynomial where each mode has a unit value at a specified
position within the region.
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Figure 3.15 Illustration of the structure of the arrays of modified principal functions
ψa

i (z),ψb
ij(z), and ψc

ijk(z). These arrays are not globally close packed although any
edge, face, or interior region of the array may be treated as such. The interior of the
arrays ψb

ij(z) and ψc
ijk(z) have been shaded to indicate the minimum functions required

for a complete triangular and tetrahedral expansion.
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Figure 3.16 Construction of a fourth-order (P = 4) triangular expansion using the
product of two modified principal functions ψa

p (η1) and ψb
pq(η2). As compared with the

orthogonal expansion shown in figure 3.11, the modes are now decomposed into interior
and boundary contributions where the boundary modes have similar forms along each
edge.

ψa
i (z) into ψb

ij(z). In the three-dimensional expansion an equivalent condition is

ensured by the introduction of ψb
ij(z) into ψc

ijk(z).
The three-dimensional expansions are defined in terms of the principal func-

tions as: Formulation

note: Definition of hi-

erarchical modified C0

expansions in 3D stan-

dard hybrid regions.
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Figure 3.17 The construction of the collapsed Cartesian coordinates system maps
vertex D onto vertex C in plot (a). If we consider the quadrilateral region in plot (a) as
describing a two-dimensional array in p and q then we can imagine an equivalent array
within the triangular region as shown in plot (b).

• Hexahedral expansion: φpqr(ξ1, ξ2, ξ3) = ψa
p(ξ1) ψa

q (ξ2) ψa
r (ξ3)

• Prismatic expansion: φpqr(ξ1, ξ2, ξ3) = ψa
p (η1) ψa

q (ξ2) ψb
pr(ξ3)

• Pyramidic expansion: φpqr(ξ1, ξ2, ξ3) = ψa
p(η1) ψa

q (η2) ψc
pqr(η3)

• Tetrahedral expansion: φpqr(ξ1, ξ2, ξ3) = ψa
p(η1) ψb

pq(η2) ψ
c
pqr(η3)

where

η1 =
2(1 + ξ1)

(−ξ2 − ξ3)
− 1, η1 =

2(1 + ξ1)

(1 − ξ3)
− 1, η2 =

2(1 + ξ2)

(1 − ξ3)
− 1, η3 = ξ3,

are the three-dimensional collapsed coordinates.

3.2.3.3 Construction of Modified Basis from Principal Functions

Unlike the structured expansion in the quadrilateral and hexahedral domains, or
even the orthogonal expansions introduced in section 3.2.2, the modified principal
functions for the unstructured regions are no longer in a close packed form.
That is to say, we cannot consecutively loop over the indices p, q, and r. The
reason for this is that the introduction of the boundary/interior decomposition
destroys the dense packing of the principal functions ψb

pq and ψc
pqr, although

the indices corresponding to a specific edge, face, or interior modes remain close
packed. Even though these arrays are not close packed their definition permits
an intuitive construction of the expansion basis by considering each function to
be part of an array within the local region.

Two-Dimensional Expansions
Implementation

note: Details of how
to construct a complete
2D modified basis from
principal functions.

In section 3.1, we demonstrated how the quadrilateral expansion may be con-
structed by considering the definition of the basis φpq(ξ1, ξ2) as a two-dimensional
array within the standard quadrilateral region with the indices p = 0, q = 0 cor-
responding to the lower left-hand corner as indicated in figure 3.17(a). Using this
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Figure 3.23 Spatial distribution of the Lebesgue function,
∑

0≤i<Nm
|LNm

i (ξ)|, for

(a) equispaced points Nm = 15, (b) Fekete points Nm = 15. The maximum of the
Lebesgue function gives the Lebesgue constant ΛNm . (Courtesy of T.C. Warburton)

≤ (1 + ||INm
||∞)||p⋆ − f ||∞

where we understand that

||INm
||∞ = max

||f ||∞=1
||INm

f ||∞.

The constant ΛNm
= ||INm

||∞ is known as the Lebesgue constant. We observe
that the Lebesgue constant is a measure of how close the approximation, INm

f , is
to the best polynomial approximating polynomial p⋆ in the max norm. Choices
such as equally spaced points (in the square or triangle) are known to have
Lebesgue constants that grow exponentially [448].

If we now represent our polynomial approximation in terms of the Lagrange
interpolation or cardinal function at the nodal points, i.e.

INm
f(ξ) =

Nm∑

i=0

f(ξi)L
Nm

i (ξ)

where
LNm

i (ξj) = δij

and δij is the Kronecker Delta, we observe that

ΛNm
= ||INm

||∞ = max
||f ||∞=1

||INm
f ||∞ = max

ξ∈Ωst

∑

0≤i<Nm

|LNm

i (ξ)|. (3.21)

Therefore, evaluating the Lagrange polynomials throughout the triangular re-
gion, ξ ∈ Ωst allows us to get a graphical interpretation of the Lebesgue function,∑

0≤i<Nm
|LNm

i (ξ)|. The maximum bound of this function over the region leads
to the Lebesgue constant ΛNm

. The Lebesgue function is illustrated in figure
3.23 where we show plots of

∑
0≤i<Nm

|LNm

i (ξ)| for equispaced and Fekete (see
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A further observation that is worthwhile noting for our subsequent discussion
of nodal bases is that when φp(ξ) is a known function, such as the orthogonal
basis of section 3.2.2, then if V [i][j] = φj(ξi) we find that

V

⎡

⎢⎣

L0(ξ)
...

LNm−1(ξ)

⎤

⎥⎦ =

⎡

⎢⎣

φ0(ξ)
...

φNm−1(ξ)

⎤

⎥⎦ or

⎡

⎢⎣

L0(ξ)
...

LNm−1(ξ)

⎤

⎥⎦ = V −1

⎡

⎢⎣

φ0(ξ)
...

φNm−1(ξ)

⎤

⎥⎦ . (3.22)

Therefore, given a set of points ξj (0 ≤ j < Nm) and polynomial functions

φ0(ξ), . . . ,φNm−1(ξ) we can evaluate LNm

0 (ξ), . . . , LNm

Nm−1(ξ) using equation (3.22).
Further details on constructing the generalised Vandemonde matrix can also be
found in section 4.1.5.3.

3.3.3 Electrostatic Points

As previously discussed in section 2.3.3.2, Stieltjes [439] and Szego [444] showed
the connection between the polynomial (1−ξ)α(1+ξ)βPα,β

P−1 and the minimisation
of the following problem: Assume that (P − 1) unit mass charges with unit
charge, are allowed to move freely inside the interval [−1, 1] between two fixed

unit charges α ∼ (α+1)
2 and β ∼ (β+1)

2 held fixed at ξ1 = ±1. The steady state
position of the charges that minimises the electrostatic energy:

W = −
P−1∑

i=1

⎧
⎪⎪⎨

⎪⎪⎩

(α+ 1)

2
log |ξi + 1| +

(β + 1)

2
log |ξi − 1| +

1

2

P−1∑

j = 1

j ̸= i

log |ξi − ξj |

⎫
⎪⎪⎬

⎪⎪⎭
.

is the distribution of the Gauss-Lobatto points. An analogous minimisation per-
formed without the two fixed end-charges also leads to the zeros of the Ja-
cobi polynomial Pα,β

P−1 or equivalently the Gauss rather then the Gauss-Lobatto

quadrature points. Since the Legendre polynomials LP (ξ) = P 0,0
P (ξ) and their

derivatives L′
P (ξ) = 1

2 (P − 1)P 1,1
P−1(ξ) are widely used in both the modal and

nodal expansion for quadrilateral and hexahedral domains, Hesthaven [231] adopted
a similar approach to that in Stieltjes problem to determine a set of nodal points
in the simplex.

As the electrostatic points in one-dimension can be constructed to comply
with the Gauss-Lobatto-Jacobi quadrature points, a natural requirement for the
distribution of nodes in the triangular region is that the boundary charges are
located at these Gauss-Lobatto-Jacobi quadrature points along each edge. In this
way it is possible to enforce that the nodal basis is aligned with the quadrilateral
nodal basis. Hesthaven [231] assumed the potential from each edge ‘e’ contributed
a potential at a point, ξ, in the triangular region of the form
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Figure 3.9 Planes of constant value of the local collapsed Cartesian coordinate sys-
tems in the hexahedral, prismatic, pyramidic, and tetrahedral domains. In all but the
hexahedral domain, the standard Cartesian coordinates ξ1, ξ2, ξ3 describing the re-
gion have an upper bound which couples the coordinate system as shown in table 3.2.
The local collapsed Cartesian coordinate system η1, η1, η2, η3 represents a system of
non-orthogonal coordinates which are bounded by a constant value within the region.

Therefore l1, l2, and l3 have a unit value at the vertices marked 1, 2 and 3 in figure
3.10(a), respectively. By definition these coordinates satisfy the relationship:

l1 + l2 + l3 = 1,

and they can be expressed in terms of Cartesian coordinates ξ1, ξ2 as:

l1 = 1
2 (1 − ξ1) − 1

2 (1 + ξ2),

l2 = 1
2 (1 + ξ1),

l3 = 1
2 (1 + ξ2).

The two-dimensional collapsed coordinate system was defined in sections 3.2.1.1
and 3.2.1.2 as
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Therefore l1, l2, and l3 have a unit value at the vertices marked 1, 2 and 3 in figure
3.10(a), respectively. By definition these coordinates satisfy the relationship:

l1 + l2 + l3 = 1,

and they can be expressed in terms of Cartesian coordinates ξ1, ξ2 as:

l1 = 1
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The two-dimensional collapsed coordinate system was defined in sections 3.2.1.1
and 3.2.1.2 as
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Figure 9: Geometry used for the simulation. Insets show how flow and pressure
vary with time and di↵erent locations in the geometry.

thickness and ⌫ is the Poisson’s ratio. Other more elaborate
pressure - area relationships are currently being implemented
into the framework. Application of Riemann’s method of char-
acteristics to Equations 14 and 15 indicates that velocity and
area are propagated through the system by forward and back-
ward travelling waves. These waves are reflected within the
network by appropriate treatment of interfaces and boundaries
(see for example [34, 35]). The final system of equations are
discretised in the Nektar++ framework using a discontinuous
Galerkin projection.

To illustrate the capabilities of the PulseWaveSolver, a 1D
geometry was created by extracting the centreline directly from
a 3D segmentation of a carotid bifurcation (the extracted cen-
treline with the segmented geometry overlaid is shown in Fig-
ure 9). At the inlet a half-sinusoidal flow profile was applied
during the systolic phase, whist during the diastolic phase a no-
flow condition was applied. Although this profile is not rep-
resentative of the carotid wave, it is useful for demonstrating
essential dynamics of the system e.g. reflection of backward
travelling waves only during the diastolic phase. At the outflow
RCR boundary conditions were utilised [35]. These boundary
conditions take into account the peripheral resistance and com-
pliance of the vasculature. The pressure and flow results are
shown in Figure 9. The insets demonstrate that the pressure
needs about 4 cycles to reach a periodic state.

To conclude this section, we illustrate the flexibility of the
software in combining two solvers to understand mass trans-
port in the aorta. We consider the simulation of blood-flow
through a pair of intercostal branches in the decending aorta.
The three-dimensional geometry is derived from CT scans and
is meshed using a combination of tetraheda and prismatic el-
ements. Prisms are used to better capture the boundary layer
close to the wall, while tetrahedra fill the remaining interior of
the domain. The embedded manifold discretisation code can
be used to compute boundary conditions for three-dimensional
simulations where the complexity of the geometry precludes the
use of analytic conditions.

The flow is modelled using the incompressible Navier-Stokes
equations (see Section 4.1). In this case, the inlet flow profile
f in Equ. 9 is the solution of the Poisson problem, computed
using the ADRSolver, on the two-dimensional inlet boundary

surface for a prescribed body force, as shown in Fig. 10(a).
The resulting profile is imposed on the three-dimensional flow
problem as illustrated. The steady-state velocity field from the
flow simulation at Reynolds number Re = 300 is shown in
Fig. 10(b). A single boundary layer of prismatic elements is
used for this simulation and both the prismatic and tetrahedral
elements use a polynomial expansion order of P = 4. This is
su�cient to capture the boundary layer at the walls.

We now solve the advection-di↵usion equation,

r · (�Drc + cu) = 0,

to model transport of oxygen along the arterial wall. Here, c
is the concentration and u is the steady-state flow solution ob-
tained previously. D = 1/Pe is the di↵usivity of the species
considered (Pe = 7.5 ⇥ 105 for oxygen). For most of the do-
main, the non-dimensional concentration remains constant at
c = 1. However, a particularly high gradient in concentration
forms at the wall. It is this gradient which is of particular inter-
est and needs to be captured accurately. The existing mesh used
for the flow simulation is unable to resolve the gradients close
to the wall. We therefore refine the boundary layer in the wall-
normal direction using element heights following a geometric
progression. To reduce computational cost, we also exploit the
spectral/hp discretisation and reduce the polynomial order of
the prisms in the directions parallel to the wall, since the con-
centration shows negligible variation in these directions. Fur-
thermore, the domain-interior tetrahedra may also be discarded
and a dirichlet c = 1 condition imposed on the resulting interior
prism boundary.

Fig. 10(c) shows the resulting concentration gradient field on
the surface of the arterial wall. Regions of low concentration
gradient are observed upstream of the branches, while high con-
centration gradients are observed downstream. Fig.10(d) shows
close-ups of the branches to illustrate this.

5. Discussion & Future Directions

The Nektar++ framework provides a feature-rich platform
with which to develop numerical methods and solvers in the
context of high-order finite element methods. It has been de-
signed in such a way that the libraries reflect the mathematical
abstractions of the method, to simplify uptake for new users,
as well as being written in a modular way to improve the ro-
bustness of the code, minimise duplication of functionality and
promote sustainability.

Development
The development of a complex and extensive software

project such as Nektar++ necessitates the adoption of certain
development practices to enable developers to easily write new
code for their features without breaking the code for other peo-
ple. The code is managed using the git distributed version
control system [36] due to its performance, enhanced support
for branching, as well as supporting o↵-line development. All
development is performed in branches and only after rigor-
ous multi-architecture testing and internal peer-review is new
code merged into the main codebase, thereby always maintain-
ing a stable distribution. Any new bugs or feature requests
are tracked using the Trac issue-management system, which
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(a) (b)

(c)

Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.

where U = [⇢, ⇢u, ⇢v, ⇢w, E]> is the vector of conserved vari-
ables in terms of density ⇢, velocity (u1, u2, u3) = (u, v,w), E is
the specific total energy, and

F(U) =
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where p is the pressure. To close the system we need to specify
an equation of state, in this case the ideal gas law p = ⇢RT
where T is the temperature and R is the gas constant. For the
Euler equations, the tensor of viscous forces Fv(U) = 0, and for
Navier-Stokes

Fv(U) =
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A = u⌧xx + v⌧xy + w⌧xz + k@xT,
B = u⌧yx + v⌧yy + w⌧yz + k@yT,
C = u⌧zx + v⌧zy + w⌧zz + k@zT

where in tensor notation the stress tensor ⌧xi x j = 2µ(@xi ui +

@xi u j � 1
3@xk uk�i j), µ is the dynamic viscosity calculated using

Sutherland’s law and k is the thermal conductivity.
To discretise these equations in space, we adopt an approach

which allows for the resolution of discontinuities and shocks
that may appear in the solution at transonic and supersonic flow
speeds. We therefore use approximations to our solution com-
prised of functions which are not continuous across element
boundaries. Traditionally, we follow a Galerkin approach by
utilising the variational form of the equations in order to ob-
tain the discontinuous Galerkin method. One of the key fea-
tures of Nektar++ is the ability to select a wide range of nu-
merical options, and to this end we support both discontinuous

Galerkin and flux reconstruction spatial discretisations, which
have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation

8
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Element 2

Figure 4.12 Illustration of the construction of a C0 global expansion from two local
modal expansions of order P1 = P2 = 4. To ensure C0 continuity the boundary modes of
similar shape need to be matched. Depending on the orientation of the local coordinate
systems the modes of odd order may also need to be negated.

edge at the centre point of the edge. If we follow a similar convention when
numbering the global modes, as shown in the right-hand side of figure 4.13, the
modes of similar polynomial order (which we need to match) will have the same
global number and so we are just left with the issue of sign reversal. In this
example, the mode of cubic order needs to have its sign reversed in one element
as the local coordinate system has an opposite direction along the intersecting
edge. By convention, we assume that the element with the lowest number has
precedence and therefore mode 14 in triangle 1 will be negated. Therefore, when
assembling the array sign[e][i] we require that sign[1][11] = −1.

In general, we need an automatic procedure to identify which edges need to
have odd modes negated. Such a procedure may be constructed by considering
the sign of the inner product between two vectors representing the global co-
ordinate direction of an edge. Since we always know the vertices which define
an element, we let ∆xe

edg denote a vector parallel to an edge in an element “e”
oriented according to the local coordinate direction of ξ1 or ξ2. For example,
along the bottom edge where (ξ2 = −1) we have

∆xe
edg =

[
χ1(1,−1) − χ1(−1,−1)
χ2(1,−1) − χ2(−1,−1)

]
, x1 = χ1(ξ1, ξ2), x2 = χ2(ξ1, ξ2)

or along the edge where ξ1 = −1

Nektar++ Scope
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a)

Local top vertex

b)

Figure 4.17 To ensure that the modal expansion can be assembled to form a C0

expansion, the collapsed coordinate system in the triangular faces must be aligned as
shown in plot (a). Connection of two faces where the local coordinate system is oriented,
as shown in plot (b), is not permitted.

want to match face modes of similar shape. For modal expansions the use of the
collapsed Cartesian system means that triangular faces have a local coordinate
system which is not rotationally symmetric. This point is illustrated in figure 4.17
where we see the two tetrahedral regions marked with their surface coordinate
lines. To be able to match modes within a triangular face we require that these
coordinate lines are orientated as shown in figure 4.17(a) but not as shown in
figure 4.17(b). This would appear to be rather constraining. We are, however,
free to specify how the local coordinate systems within an element are orientated.
For an arbitrary conforming tetrahedral mesh, it is possible to orient all the local
coordinate system so that the coordinate lines are consistent. Referring to the
two vertices where the coordinates system degenerates as the local base vertex
(ξ1 = −1, ξ2 = 1, ξ3 = −1) and the local top vertex (ξ1 = −1, ξ2 = −1, ξ3 = 1)
an orientation algorithm suggested by Warburton [485] is:
assuming that every global vertex has a unique number then for every element
we have four vertices with unique global numbers:

(i) Place the local top vertex at the global vertex with the lowest global number
(ii) Place the local base vertex at the global vertex with the second lowest global

number
(iii) Orient the last two vertices to be consistent with the local rotation of the

element (typically anti-clockwise).
This algorithm is local to each element and can be implemented at a pre-

processing stage. Although it is possible to guarantee this connectivity for tetra-
hedral meshes, it is not possible for a general mesh using tetrahedrons, prisms,
and pyramids. Nevertheless, enough permutations of connectivity still exist to
provide a wide range of flexibility even when using all the three-dimensional
hybrid elements [485].

The orientation criteria simplify the numbering and sign evaluation process
in a triangular face as all faces have a similar orientation. Therefore, for a hi-
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Figure 5: Contours of the magnitude of velocity in a periodic hill simulation at
Re = 2800.

for flow over a NACA0012 aerofoil at a farfield Mach number
Ma1 = 0.8 and a 1.5� angle of attack. The transonic mach
number of this flow leads to the development of a strong and
weak shock along the upper and lower surfaces of the wing re-
spectively. This figure shows isocontours of the mach number
where the presence of the shocks are clearly identified. Finally,
In Fig. 4(c), we visualise the temperature field from flow pass-
ing over a T106C low-pressure turbine blade at Re = 80,000
to highlight applications to high Reynolds number flow simula-
tions.

4.2. Transitional turbulent flow dynamics

Transient problems in which turbulence dominates the flow
domain, or in which the transition to turbulence dominates the
simulation, remain some of the most challenging problems to
resolve in computational fluid simulations. Here, accurate nu-
merical schemes and high resolution of the domain is critical.
Moreover, any choice of scheme must be e�cient in order to ob-
tain results in computationally feasible time-scales. Tradition-
ally, highly resolved turbulence simulations, such as the Taylor-
Green vortex problem, lie firmly in the class of spectral meth-
ods. However, spectral methods typically lead to strong geom-
etry restrictions which limits the domain of interest to simple
shapes such as cuboids or cylinders.

Whilst spectral element methods may seem the ideal choice
for such simulations, particularly when the domain of interest
is geometrically complex, they can be more computationally
expensive in comparison to spectral methods. However, when
the domain of interest has a geometrically homogeneous com-
ponent – that is, the domain can be seen to be the tensor prod-
uct of a two-dimensional ‘complex’ part and a one-dimensional
segment – we can combine both the spectral element and tradi-
tional spectral methods to create a highly e�cient and spectrally
accurate technique [4].

We consider the application of this methodology to the prob-
lem of flow over a periodic hill, depicted in Fig. 5, where the
flow is periodic in both streamwise and spanwise directions.
This case is a well-established benchmark problem in the DNS
and LES communities [25], and is challenging to resolve due to
the smooth detachment of the fluid from the surface and recir-
culation region. Here we consider a Reynolds number of 2800,
normalised by the bulk velocity at the hill crest and the height
of the hill, with an appropriate body forcing term to drive the
flow over the periodic hill configuration.

The periodicity of this problem makes it an ideal candidate
for the hybrid technique described above. We therefore con-

struct a two-dimensional mesh of 3626 quadrilateral elements
at polynomial order P = 6, and exploit the domain symmetry
with a Fourier pseudospectral method consisting of 160 collo-
cation points in the spanwise direction to perform the simula-
tion. This yields a resolution of 20.9M degrees of freedom per
field variable and allows us to obtain excellent agreement with
the benchmark statistics.

4.3. Flow stability
In addition to direct numerical simulation of the full

non-linear incompressible Navier-Stokes equations, the
IncNavierStokesSolver supports global flow stability
analysis through the linearised Navier-Stokes equations with
respect to a steady or periodic base flow. This process identifies
whether a steady flow is susceptible to a fundamental change
of state when perturbed by an infinitesimal disturbance. The
linearisation takes the form

@u0

@t
+ (u0 · r)U + (U · r)u0 = �rp0 + ⌫r2u0

r · u0 = 0,

where U is the base flow and u0 is now the infinitesimal pertur-
bation. The time-independent base flow is computed through
evolving Equs. 9 to steady-state with appropriate boundary con-
ditions. For time-period base flows, the flow is sampled at reg-
ular intervals and interpolated.

The linear evolution of a perturbation under Equs. 10 can be
expressed as

u0(t) = A(t)u00

for some initial state u00, and we seek, for some arbitrary time
T, the dominant eigenvalues and eigenmodes of the operator
A(T ), which are solutions to the equation

A(T )ũ j = � jũ j.

The sign of the leading eigenvalues � j are used to establish the
global stability of the flow. An iterative Arnoldi method [26]
is applied to a discretisation M of A(T ). Repeated actions
of M are applied to the initial state u0 using the same time-
integration code as for the non-linear equations [27]. The re-
sulting sequence of vectors spans a Krylov subspace of M and,
through a partial Hessenberg reduction, the leading eigenval-
ues and eigenvectors can be e�ciently determined. The same
approach can be applied to the adjoint form of the linearised
Navier-Stokes evolution operatorA⇤ to examine the receptivity
of the flow and, in combination with the direct mode, identify
the sensitivity of the flow to base flow modification and local
feedback. The direct and adjoint methods can also be combined
to identify convective instabilities over di↵erent time horizons
⌧ in a flow by computing the leading eigenmodes of (A⇤A)(⌧).
This is referred to as transient growth analysis.

To illustrate the linear analysis capabilities of Nektar++, we
use the example of two-dimensional flow past a circular cylin-
der at Re = 42, just below the critical Reynolds number for
the onset of the Bénard-von Kármán vortex street. This is a
well-established test case for which significant analysis is avail-
able in the literature. We show in Fig. 6 the leading eigen-
modes for the direct (A) and adjoint (A⇤) linear operators for
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Recent Developmentsa Fourier expansion, leading to a more e�cient solution that can compensate
for the extra computational costs of solving the Navier-Stokes in the general
coordinates. This idea is illustrated in figure 1, which shows how we can ob-
tain a simpler representation of a complex geometry by changing the coordinate
system.

(a) Cartesian system (b) Transformed system

Figure 1: Example of how a complex geometry in the physical Cartesian coordinate system

can be mapped into a simpler geometry in a di↵erent coordinate system.

Although being able to employ the Spectral/hp Methods in general coordi-
nates would be desirable, the Velocity-Correction Scheme (Karniadakis et al.,
1991; Guermond and Shen, 2003), a common choice for the time discretization
of the incompressible Navier-Stokes equations in this method, has not been ex-
tended to account to general coordinate transformations. As far as the authors
are aware, only specialised situations have been considered, like the constant-
Jacobian time-dependent transformation of Newman and Karniadakis (1997),
and the constant-Jacobian time-independent mappings of Darekar and Sherwin
(2001). However, no extensions have been proposed for cases where the Jacobian
of the transformation is not constant.

Considering other approximations of the Navier-Stokes equations, Carlson
et al. (1995) proposed a method for accounting for general coordinate transfor-
mations in the context of pseudo-spectral methods, using iterative procedures
to solve for the pressure and velocity fields. Although this method leads to the
appropriate equations that can be used with the Velocity-Correction Scheme, it
does not provide the required high-order pressure boundary conditions that are
essential to the accuracy of this time-integration scheme.

The paper proposes two methods for including coordinate transformations in
the Velocity-Correction Scheme. The first one is a generalization of the approach
of Darekar and Sherwin (2001) and Newman and Karniadakis (1997), with the
mapping being treated explicitly. On the other hand, the second method is a
modified version of the iterative procedure employed by Carlson et al. (1995),
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Figure 2: Diagramatic representation of each amalgamation scheme. Four quadrilateral elements with P
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= 3 are considered for the backward transform operator.

can be used for the tetrahedron and prism, although it is typically less e�cient than the
hexahedron due to the inter-dependency of the p, q and r indices. With a little more work,
we can again use linear algebra packages by rewriting the summation as a series of matrix-
matrix operations, ⇣

(Û>
[P

1

]

B>
1

)>
[Q

2

]

B>
2

⌘>

[Q
3

]

B>
3

, (4)

where Û
[P

1

]

is
:
,
:::
for

::::::::::
example,

::::::::
denotes

:
the reinterpretation of the vector û as a P

1

⇥P
2

P
3

matrix
stored in column-major format. The parentheses also highlight where temporary storage is
required to store intermediate steps. Whilst intuition may point towards sum-factorisation
being the quickest way to evaluate these operators due to the reduction in operator count,
our previous work demonstrates that the fastest technique depends heavily on polynomial
order, element type and the

:::::
type

::
of

:
operator under consideration. This points towards there

being the need for a number of di↵erent amalgamation schemes in order to attain optimal
performance.

2.3. Amalgamation schemes

Our earlier studies applied the strategies of the previous section by iterating over each
element, evaluating the operator and measuring the total execution time for the entire mesh.
However, in the context of memory e�ciency and using the CPU cache e↵ectively, this
approach may not prove to be the most optimal if matrices are not stored contiguously in
memory. Additionally, since local matrices must be generated for each element, there is a
large cost incurred in moving them from main memory to the processor.

The purpose of this work is therefore to reformulate these strategies in the context of
multiple elements. We aim to remove local matrices wherever possible, thereby reducing
data movement and increasing data locality. We will leverage both the tensor-product de-
composition of the spectral/hp element method and the use of a standard region, on which
we can define an operator for many elements simultaneously. Then, through grouping local
elemental storage of the coe�cient and physical spaces, we aim to apply standard level-3
BLAS operations such as dgemm for matrix multiplication wherever possible. These routines,

7
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24 Chapter 3 XML Session File

These attributes allow, for example, a two-dimensional surface to be embedded in a
three-dimensional space.

Note
The attribute PARTITION may also appear in a partitioned mesh. However,
this attribute should not be explicitly specified by the user.

Each of the VERTEX , EDGE , FACE , ELEMENT and CURVED sections may optionally be
compressed and stored in base64-encoded gzipped binary form, using either little-endian or
big-endian ordering, as specified by the COMPRESSED attribute to these sections. Currently
supported values are:

• B64Z-LittleEndian : Base64 Gzip compressed using little-endian ordering.

• B64Z-BigEndian : Base64 Gzip compressed using big-endian ordering.

Note
The description below explains how the GEOMETRY section is laid out in un-
compressed ascii format. From Jan 2016 the distribution uses the compressed
format for each of the above sections. To convert a compressed xml file into
ascii format use

NekMesh file.msh newfile.xml:xml:uncompress

3.1.1 Vertices

Vertices have three coordinates. Each has a unique vertex ID. In uncompressed form,
they are defined within VERTEX subsection as follows:

1 <V ID="0"> 0.0 0.0 0.0 </V> ...

The VERTEX subsection has optional attributes which can be used to apply a transforma-
tion to the mesh:
XSCALE , YSCALE , ZSCALE , XMOVE , YMOVE , ZMOVE

They specify scaling factors (centred at the origin) and translations to the vertex coordi-
nates. For example, the following snippet

1 <VERTEX XSCALE="5">
2 <V ID="0"> 0.0 0.0 0.0 </V>
3 <V ID="1"> 1.0 2.0 0.0 </V>
4 </VERTEX>

defines two vertices with coordinates (0.0, 0.0, 0.0), (1.0, 2.0, 0.0).

Compressed I/O

--io-format Hdf5HDF 5

Threading
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a b

c d

Fig. 5. Application of the mesh deformation analogy to a prototype boundary layer mesh. The high order elements are highlighted with dark lines, and interior quadrature
points with light lines. (a) Original linear mesh; (b) deformation after 10 steps; (c) mesh after 50 steps; (d) final deformed mesh at 100 steps.

a b

Fig. 6. Test case used to illustrate the effect of thermal stresses: (a) The computational domain is a square plate with a circular hole and the points in the circle are rotated
about its centre by an angle ✓ ; (b) Initial mesh consisting of 1 031 high-order triangles (thicker outline) with interior points shown (thin outline).

5.2. Effect of thermal stresses in two dimensions

To illustrate the effect of the additional thermal stresses in the
validity and quality of the mesh we use a simple geometry that
consists of a square plate [�1, 1]2 with circular hole of radius
r = 0.1 which is depicted in Fig. 6. The points in the boundary
of the circular hole are rotated anti-clockwise around its centre
by a small angle ✓ , whereas the points along the boundary of the
square remain stationary. This rotation is then repeatedly applied.

Our objective is to determine the maximum value ✓
m

of the angle
that we can impose before the appearance of the first invalid
element, i.e. one with a zero or negative Jacobian. Given that we
are solving the linear elasticity equations which are only valid for
small deformations, the rotation is applied in small angular steps
with ✓ = 1�.

We now consider the two thermal stress terms discussed in
Section 3: an isotropic formulation based on the Jacobian of the
elemental mapping and an anisotropic tensor that utilizes the

D. Moxey et al. / Computer-Aided Design 72 (2016) 130–139 135

a b

Fig. 7. Isotropic thermal stresses: (a) The maximum rotation angle ✓
m

as a function of the scaling coefficient � for polynomial orders P = 4, 6, 8; (b) Enlargement near the
circular hole of the mesh and iso-contours of thermal stresses at ✓

m

= 130� for P = 6.

a b

Fig. 8. Histograms showing the number of elements N with scaled Jacobian J

s

after a rotation of 75� at polynomial order P = 6 and � = 25. (a) No temperature term; (b)
with isotropic thermal stresses.

eigenvalues of the metric tensor of the mapping to account for
anisotropy in the deformation of the mesh.

5.2.1. Isotropic case

First we consider an isotropic tensor of thermal stresses of the
form

S
t

= �JI (7)

where J is the Jacobian of the elemental mapping of the element, �
is a scaling factor and I is the identity tensor.

The value of ✓
m

as a function of � is shown in Fig. 7(a). We also
consider three polynomial orders P = 4, 6 and 8 to demonstrate
how thermal stresses affect both high- and low-order element
types.

The value � = 0 corresponds to the absence of thermal terms
for which ✓

m

⇡ 80� almost independently of the polynomial order.
The inclusion of thermal stresses clearly improves the performance
of themeshdeformation algorithm. It allowshigher values of ✓

m

for
� > 0 and the best values for ✓

m

are obtained in the approximate
range 20  �  25 with corresponding best values of maximum
angle in the range 120�  ✓

m

 130� which is a significant im-
provement with respect to the non-heated case. There is, however,
a clear sensitivity to the polynomial order in these results. The de-
formed mesh and iso-contours of temperature for ✓

m

= 130� in
the case where P = 6 are shown in Fig. 7(b).

Tomeasure the effect of the isotropic temperature terms on the
solution field, for each element we calculate the scaled Jacobian

J

s

= min J(⇠)

max J(⇠)
,

where ⇠ denotes a coordinate inside the reference element⌦e

s

, J(⇠)
is the Jacobian of themappingM evaluated at ⇠ and themaximum
orminimum is evaluated at a tensor product of (P+1)n quadrature
points within ⌦e

s

.
This is a straightforward measure of quality which is one for

all straight-sided elements. Whilst this measure of quality is not
necessarily ideal in all circumstances, for this application we note
that values of J

s

which differ significantly from one indicate badly
conditioned elements. We measure the distribution of the scaled
Jacobians in the mesh at a fixed rotation angle of 75�. Fig. 8 shows
the difference in distributions when no thermal stresses are used
and when the isotropic thermal stress is applied with � = 25 at
P = 6. We clearly see that the thermal stress has a positive impact
on the quality of the elements, with the entire distribution shifting
to the right and the lowest value of the scaled Jacobian significantly
increased, demonstrating a notable improvement in the quality of
the elements at this rotation angle.

5.2.2. Anisotropic case

The pseudo-thermal stress term proposed in this section is
based on an eigenvalue decomposition of the metric tensor, G, of
the elemental mapping M? given by Eq. (4). The metric tensor is
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The third step involves performing a projection of the nonlinear term onto
the original set of points. To do so we use a Galerkin projection (GP).
Similar to the first step, we split this operation into two sequential sub-
operations as shown in Figure 3. First (Figure 3(a)) we perform a Galerkin
projection in direction ⇠2 and successively (Figure 3(b)) we perform a
Galerkin projection in direction ⇠1.

(⇠1` , ⇠2m)

GP

⇠2m !⇠2s

(⇠1` , ⇠2s)

Monday, 14 July 14
(a) Galerkin projection along ⇠2

(⇠1` , ⇠2s) (⇠1r , ⇠2s)

GP

⇠1`
!⇠1r

Monday, 14 July 14

(b) Galerkin projection along ⇠1

Figure 3: Galerkin projection for 2D tensor-product elements

In Figure 4 we show an overview of the steps above for the 2D/3D tensor-
product case.

(⇠1r , ⇠2s) (⇠1` , ⇠2s) (⇠1` , ⇠2m)

(⇠1r , ⇠2s) (⇠1` , ⇠2s) (⇠1` , ⇠2m)

I

⇠1r !⇠1`
I

⇠2s !⇠2m

GP

⇠1`
!⇠1r

GP

⇠2m !⇠2s

O(Q ⇥ P

2) O(Q2 ⇥ P )

f

Q(⇠1` , ⇠2m) =

= u(⇠1` , ⇠2m) · u(⇠1` , ⇠2m)

Monday, 14 July 14

Figure 4: Conceptual flow chart of the Local dealiasing approach for the 2D/3D tensor-product
case

A similar tensor-product based approach can also be used for triangles in 2D
as well as prismatic and tetrahedral elements in 3D as reported in Appendix C.
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ticular, we note that the Jacobian for both cases is e↵ectively of fourth order,
but in the case of Figure 9(a) we have nonzero modes only in the x-direction
up to the fifth coe�cient whereas in the case of Figure 9(b) the nonzero modes
span both x� and y� directions again up to the fifth coe�cient. The sixth
coe�cient in both directions is zero, showing adequate support for the Jacobian
determinant expansion.

(a) Top edge curved (b) Top and left edges curved

Figure 8: Examples of 4th order meshes employed to investigate geometrical aliasing
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Figure 9: Coe�cients in an orthonormal expansion basis for the 4th order meshes showed in
Fig.(8)

The test case we consider is identical to that of Eq. (38), aside from the use of
spatially-constant advection velocities

a

x

= ⇡

2 g(t), a

y

= �⇡

2 g(t), (43)

where g(t) is defined in Eq. (39). We choose a period T = 0.5 and a final time
40T . For the time-integration we used a 2nd-order Runge-Kutta scheme while
the polynomial order was P = 14 in order to have a su�ciently resolved problem.
The initial condition was applied using a collocation projection. Throughout
the results in this subsection, we used a Global dealiasing technique in order to
target the geometrical aliasing.
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∫ +1

−1
! ′

2(η)ℓ j (η) dη =
P∑

k=0

[
wk!

′
2(ηk)ℓ j (ηk)

]
= ℓ j (1)

∫ +1

−1
! ′

3(ξ)ℓi (ξ) dξ =
P∑

k=0

[
wk!

′
3(ξk)ℓi (ξk)

]
= −ℓi (−1) (25)

because the derivatives of the correction functions in vector form evaluated at the (P + 1)×
(P + 1) GLL points are the following:

! ′
0(η) = ! ′

3(ξ) =
[
− 1
w0

, 0, . . . , 0
]
, ! ′

1(ξ) = ! ′
2(η) =

[
0, . . . , 0,

1
wP

]
. (26)

The boundary term of FRHU scheme is equal to the boundary term of the DGSEM scheme
with lumped mass matrix and therefore the two schemes are equivalent.

Remark Note that this equivalence holds true only for GLL points.

3 Numerical Experiments

In this section we present the numerical results obtained for both linear and nonlinear prob-
lems. We used two different mesh configurations: a single-element mesh (also referred as
Mesh A) whose Jacobian determinant is shown in Fig. 1 and a multi-element mesh (also
referred as Mesh B) whose Jacobian determinants are depicted in Fig. 2. The curved edges
in Mesh A are described through a parabolic function f1, which, defined within a one-
dimensional reference element, is

Fig. 1 Mesh A. Single-element mesh configuration

Fig. 2 Mesh B. Multi-element mesh configuration

123
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Table 1 Connections between different types of DG and FR schemes derived in this work for elements with
a spatially varying Jacobian

DGSEM-GLL DGSEM DG(Q>P)

Lumped mass matrix Exact mass matrix Exact mass matrix

Flux type Linear Nonlinear Linear Nonlinear Linear Nonlinear

FRHU !∗ !∗ ✗ ✗ ✗ ✗

FRDG ✗ ✗ ! ! ✗ ✗

FRDG(Q>P) ✗ ✗ ✗ ✗ ! !

! indicates that the schemes are equivalent, whereas ✗ indicates differences between the schemes
∗ The equivalence holds true for Gauss–Lobatto–Legendre points only

matrix (LMM) and the FRHU scheme introduced in [7] (also referred to as FRg2) as well
as the equivalences between the DGSEM scheme with exact mass matrix (EMM)2 and the
FRDG scheme (also presented in [7]) hold true for irregular tensor-product meshes (i.e.
deformed/curved tensor-product grids). These equivalences are complemented with some
numerical experiments on regular (used as a baseline) and irregular grids for linear and
nonlinear problems.

We also show numerically that, using Q > P , where Q is the number of quadrature points
and P are the Lagrange interpolants inside each element, further extends the equivalences
between DG and FRDG. Specifically, we found that DG(Q> P) and FRDG(Q>P) are identi-
cal when using Q > P for linear and nonlinear flux functions as well as for regular and
irregular tensor-product meshes3. This indicates that polynomial aliasing sources for these
two schemes are identical and can therefore be addressed using equivalent strategies, such as
the consistent integration (through additional quadrature points) of the nonlinearities arising
either from the equations themselves or from the geometry [11,12].

We finally present some results related to the computational time required by the FR and
DG schemes.

This paper is organised as follows. In Sect. 2 we prove theoretically the connections in
the first four columns of Table 1, in Sect. 3 we further assess the theoretical work with some
numerical experiments for both linear and nonlinear problems and we show numerically how
DG(Q> P) and FRDG(Q> P) are identical and, finally, in Sect. 4 we draw the conclusions.

2 Theory

We describe the DG and FR schemes in the context of a 2D scalar conservation law. We
assume that the quadrilateral elements are deformed/curved (i.e. possess spatially varying
Jacobians) and we prove that the FRDG scheme and DGSEM method with an exact mass
matrix evaluation are equivalent on irregular grids (i.e. spatially varying Jacobians) when the
same polynomial approximation of the geometry is employed. We also demonstrate that the
FRHU scheme and the DGSEM method with lumped mass matrix are equivalent on irregular
quadrilateral grids.

2 The terms ‘lumped’ and ‘exact’ refer to the mass matrix when solving a linear problem.
3 In this introduction P indicates the Lagrange interpolant. This allows to maintain a compact notation for the
DG(Q > P) and FRDG(Q > P) schemes. Note however that in the rest of the paper P indicates the order of
the Lagrange polynomials.
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Fig. 4. Dispersion curves for pure advection with CG for P = 3, . . . , 6 (top to bottom). The plots on the left show all the eigencurves and those on the right 
show only the primary curves and the exact behaviour (dashed line). Primary curves are also highlighted (in blue colour) on the left-hand side plots.

R.C. Moura et al. / Journal of Computational Physics 307 (2016) 401–422 411

Fig. 7. Dispersion–diffusion eigencurves for P = 3 for the advection–diffusion problem with Pe∗ = 102, Pe∗ = 103, Pe∗ = 1 and Pe∗ = 10−1 (top to bottom). 
The thick highlighted branches (in blue colour) represent primary eigencurves while dashed curves indicate the exact behaviour.

diffusion-dominated problems, as shown in the plots on the lower half of Fig. 7, where case P = 3 is considered with Pe∗ = 1
and Pe∗ = 10−1. Such results raise a question on the suitability of high-order spectral/hp CG formulations for under-resolved 
simulations of problems dominated by either advection or diffusion. We acknowledge that within the context of high-order 



Recent Papers

•  Yakovlev S, Moxey D, Kirby RM, Sherwin SJ, 2016, To CG or to HDG: A 
Comparative Study in 3D, J. Scientific Computing, 67,192-220, 

0 500 1000 1500 2000 2500 3000 3500
Nproc

0

20

40

60

80

100

120

140

160

Sp
ee

du
p

P = 4, CG
P = 4, HDG
Ideal

Figure 6: Strong scaling of time-dependent di↵usion problem between 1 and 128 processors
at polynomial order P = 4 for both CG and HDG (right) on a unstructured mesh of a rabbit
aortic arch (left).

that in terms of strong scaling, HDG has some benefits over CG where the communication
cost is high – either from a low number of elements per process at high order, or a large
number of unstructured tetrahedra per process at low order. Furthermore we note that many
common CG preconditioning strategies rely on the solution of the coarse linear space at each
iteration of the PCG algorithm, particularly when solving Poisson-type problems occuring in
for example CFD applications, which further hinder strong scaling of the method [22]. If
HDG preconditioning strategies can be developed which avoid this then the di↵erence in
scalability for real-world flow problems may be far more pronounced.

6 Conclusions

In this paper, we have presented a comprehensive overview of the performance properties of
both statically-condensed CG and HDG methods both in serial and in parallel with di↵erent
solver strategies, and across a range of test problems which have been deliberately chosen
to indicate performance in a variety of theoretically interesting and practically relevant
problems. The field of potential categories and problem types one may use for numerical
method comparison is vast and by no means does this work claim to cover them all. However,
where the problem of interest is time-dependent and does not involve the reconstruction of
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Figure 2: Ratio of HDG to CG local matrix sizes for hexahedral and tetrahedral with (right)
and without (left) postprocessing taken into account. The dotted line indicates where matrix
dimensions are equal.

can achieve. We clearly see that when compared at equivalent order, HDG local matrices
are always larger than the equivalent boundary-condensed CG matrices. This e↵ect is most
prohibitive for tetrahedral elements, where even at polynomial order 10 tetrahedral elements
still have a dimension ratio of around 4

3
. When HDG postprocessing is used, hexahedral

matrices are marginally smaller than their CG counterparts, but tetrahedral elements still
have a significant overhead.

There is, therefore, a balance to be struck between the possible increase in performance
from HDG communication versus the larger matrix sizes which occur in the HDG formulation.
It is also clear that for problems that do not permit superconvergence, HDG will su↵er
from far larger elemental matrices than its CG counterparts, particularly at low polynomial
orders. We will investigate these properties by performing a series of numerical experiments
to determine the weak and strong scalability of each method in the following section.

5 Numerical Results

In this section we compare the performance of the CG and HDG methods using elliptic PDE
in three dimensions as a test case. We will start by comparing numerical errors for both
methods while solving the steady-state Helmholtz equation (postprocessing is employed in
HDG case). Next, we will discuss the serial implementation performance and its dependence
on the choice of the direct linear system solver, using the steady-state Helmholtz problem
as well as the time-dependent heat equation as a benchmark. We will make a few remarks
regarding the performance of the preconditioned conjugate gradient (PCG) linear system
solver for both numerical methods. Finally, we will conclude the results section by the parallel
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Finally, results were expressed as hydraulic resistance,
RWALL ¼ 1/Lp.

2.3. Microscopy and image processing
2.3.1. Fixation at pressure and embedding
The aortic bifurcations were fixed and dehydrated while
maintaining the transmural pressure used for the final Lp

measurement and without removing the vessel from the stereo-
tactic apparatus. The lumen and abluminal surface of the
bifurcation were briefly rinsed with TSS and the abluminal
bath was replaced with formal sublimate (6% HgCl2, 15% formal-
dehyde) for 30 min. Mercuric chloride acted rapidly (order of
seconds) [20] and also prevented elastic recoil of the vessel
when it was released from the apparatus. The vessel was post-
fixed in 15% formaldehyde overnight, dehydrated with a
graded ethanol series (50%, 70%, 90%, 95% and 100%) and
embedded in epoxy resin (EPON 812, TAAB) as described
previously [11].

2.3.2. Confocal microscopy
The lateral walls of vessels fixed at each pressure were imaged in
three dimension at a position 2 mm proximal to the apex of the
bifurcation (for full details, see Comerford et al. [11]). Briefly,
embedded arteries were cut in the frontal plane so that the cut
face showed a longitudinal section. The cut face was imaged
using an inverted laser scanning confocal microscope (Leica,
TCS SP5) with the z-axis of the z-stack aligned perpendicular

to the cut face. Rhodamine fluorescence was excited at 575 nm;
emission was imaged at 585–595 nm.

2.3.3. Image processing
Five cuboidal blocks (figure 3) were extracted from images
of three pieces of tissue fixed at each pressure within the physio-
logical range (80, 100 and 120 mmHg.). Additionally, two
blocks were extracted from a single tissue specimen fixed at
40 mmHg. Image processing, to correct for intensity attenuation
with depth, was performed using Fiji [21] as described pre-
viously [11], but with the addition of three image volume
rotations to align the imaging axes to the cylindrical coordinates
of the aorta.

2.4. Effective permeability
Effective permeability refers to the permeability of a hypotheti-
cal, uniform region of tissue that exhibits the same overall fluid
mechanical properties as a real region of tissue with a non-uni-
form microstructure. To determine the effective permeability of
a porous medium, the flow field must be determined. Flow
around solid objects embedded in a porous matrix is described
by Brinkman’s equation (see Wang & Tarbell [7], Huang &
Tarbell [8], Comerford et al. [11]). In the arterial media, the
solid objects are the SMCs1 and the surrounding medium is
the porous ECM. In this study, the ECM was assigned an
isotropic permeability based on previous models of porous
media, which have been validated against experimental
data [24,25]; the chosen value, kECM ¼ 1.32 ! 10218 m2,
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Figure 1. Flowchart of computational/experimental determination of arterial wall transport properties.
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Figure 1. (i-iii) Representative mapping of a left atrium 
derived from AF patient to a two-dimensional surface 
representation. The left superior (blue), left inferior (red), 
right superior (green) and right inferior (yellow) 
pulmonary veins and the left atrial appendage are 
indicated on the MRI-derived geometries. (iv-v) 
Schematic representation of S2 stimuli on the 3D LA 
surface, as they were distributed on the posterior (iv) and 
anterior (v) walls for the performance of a set of twenty 
simulations. 
 
potential wavefronts with fewer degrees of freedom than 
conventional linear finite element methods. The 
monodomain model for describing electrical propagation 
in cardiac tissue and the Courtemanche-Ramirez-Nattel 
(CRN) human atrial cell model [17] were used. The CRN 
model includes modifications representative of the effects 
of AF on human action potential properties, for 
biophysically accurate cellular dynamics. 

For the purpose of this study, fibre architecture was 
ignored. The tissue architecture was prescribed as 
isotropic with a fixed conductivity of 0.13342 S/m. 
Evolution of spiral waves was investigated through an 
ensemble of twenty simulations, paced at uniformly 
distributed locations throughout each model. These initial 
stimulus locations were placed both around the PVs and 
throughout the anteroposterior area. For each pacing 
location, an S1-S2 extra stimulus protocol was applied. A 
wide-area S1 stimulus of 50µΑ/mm3 was followed 315 
ms later by a second smaller S2 stimulus of strength 
100µΑ/mm3 on the boundary of the S1 stimulus to initiate 
two counter-rotating spiral waves. The area of the S1  

 
 
Figure 2. Illustration of a representative pair of phase 
singularity trajectories (i) and its analogue according to 
the chirality of phase singularities (ii) for two rotors 
generated from the same pair of S1-S2 stimuli. The 
colour code reflects the time point when a phase 
singularity was detected. 

 
 

stimulus was chosen sufficiently large to ensure the rotors 
were self-sustaining. 

 
2.3       Phase mapping 
 

The three-dimensional LA surface was unwrapped into 
a two-dimensional representation [18] as illustrated in 
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the introduction of appropriate solution-dependent dissipative
terms. We use the discontinuity sensor proposed in [23] which
identifies the presence of a shock by quantifying the smoothness
of the solution within an element through comparison of solutions
at two different polynomial orders. Large differences between
these are interpreted as high-frequency oscillations triggered by
the approximation of the shock, a discontinuity in inviscid flow,
via polynomial functions that are continuous within the element.
The sensor is defined, for a generic variable ui, as

Se ¼ log10

kuP
i;e " uP"1

i;e kL2
kuP

i;ekL2
ð64Þ

Here we have used the density as the sensing variable, i.e. ui ¼ q.
The discontinuity sensor is used to selectively apply the dissipative
terms that dump numerical oscillations by effectively lowering the
polynomial order approximation in those elements affected by the
shock.

To assess the performance of the p-adaptive method in this con-
text, we perform two simulations using constant order polynomi-
als P ¼ 3 and P ¼ 6, and two p-adaptive simulations with
polynomial orders in the range 3 6 P 6 6. In the first p-adaptive
simulation we apply the adaptation criterion as before in the whole

Fig. 8. The solutions to the governing (8a) and adjoint (8b) equations for transonic inviscid flow past a NACA 0012 (Ma ¼ 0:8; a ¼ 1:25%).

Fig. 9. Comparison between the polynomial distributions obtained for the inviscid transonic flow case using the goal-based error indicator with restriction of the polynomial
order to P ¼ 3 at shocks (9b) and without (9a).

Table 3
Comparison of the error in lift coefficient using goal-based p-adaptation for transonic
inviscid flow. The error is calculated with respect to the value crefl ¼ 0:35619
evaluated in Refs. [24,25].

P ¼ 3 3 6 P & 6 3 6 P & 6 (shock filter) P ¼ 6

NQ 168920 193460 189798 472976
tCPU 0:65 0:72 0:70 1
cl 0.333 0.336 0.334 0.336
!cl 0:0232 0:0202 0:0222 0:0202

Fig. 10. The tetrahedral mesh around an ellipsoid of revolution shown here with
the degrees of freedom corresponding to a constant polynomial order P ¼ 4.

D. Ekelschot et al. / Computers and Structures xxx (2016) xxx–xxx 11

Please cite this article in press as: Ekelschot D et al. A p-adaptation method for compressible flow problems using a goal-based error indicator. Comput
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Incident Amax

h (X) Transmitted Amax

h (X)

Figure 2. Schematic illustration of transmitted T-S waves when a base flow is distorted by a
hump.

be constant. Under these conditions the value then becomes the so-called transmission
coe�cient T

h,i

(1), which was introduced in Wu & Hogg (2006). The value of T
h,i

(1)
can be defined by the ratio of right limit and left limit of Amax

h

(X) at the discontinuity
point as is illustrated in figure 2.

To investigate the ĥ-dependence of T
h,i

(X), it is convenient to introduce the closely
related quantity T ⇤

h,i

(x)

T ⇤
h,i

(x) = T
h,i

(x)� 1. (2.14)

Similarly, in order to investigate the shear stress distribution around local surface
imperfections, we introduce the shear stress notations

⌧

f

(X), ⌧
h

(X), ⌧
i

(X), (2.15)

where the subscript f, h and i again refer to flat-plate, hump and indentation, respectively.
We note that shear is evaluated using the strain rate @ũ/@y in a direction normal to the
flat-plate in both the theoretical and computational evaluations. The following quantities
are also useful in presenting the ĥ-dependence of the shear stress around the hump and
indentation as compared to the flat-plate conditions:

⌧

⇤
h

(X) = ⌧

h

(X)/⌧
f

(X)� 1, ⌧

⇤
i

(X) = ⌧

i

(X)/⌧
f

(X)� 1. (2.16)

The values ⌧⇤
h,i

can be interpreted as the deviation from one of the shear stresses of the
hump/indentation relative to the flat-plate shear stress.

In the subsequent calculations, the rescaled width (d̂) and height (ĥ) are defined by

d̂ = d/(x
c

Re

�3/8) and ĥ = h/(x
c

Re

�5/8). (2.17)

3. Direct numerical simulations

In this work the base flows were generated by means of direct numerical simulations
(DNS) of the two-dimensional nonlinear Navier-Stokes equations (NSEs), where we used
as initial and boundary conditions calculated through the Blasius boundary-layer equa-
tions. The base flows were subsequently used in the two-dimensional linearised Navier-
Stokes equation (LNSEs) to calculate the T-S wave behaviour. Both the NSEs and the
LNSEs make use of a spectral/hp element discretisation in space (for additional details
the interested reader can refer to Karniadaks & Sherwin (2005)). The geometry of the
humps/indentations was described by using high-order curved elements. In particular
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Figure 5. Schematic illustration of the computational domain and the mesh around a hump:
(a) the computational domain with a smooth hump on the lower boundary. h and d denote the
height and width of the hump, respectively; (b) low-order background mesh around the hump;
(c) high-order body fitted mesh around the hump. (ĥ = 1, d̂ = 1)

mentioned previously, the hump was constructed using a seventh-order polynomial rep-
resentation of the geometry. The background coarse mesh employed for a specific hump
simulations is shown in figure 5(b), while figure 5(c) illustrates the solution points within
each element of the mesh. We used a polynomial of order seven within each element of
the mesh in order to achieve a consistent approximation between the geometry and the
equations.

The mesh configuration and the polynomial order adopted for each simulation were
based on P -refinement independence where the L2 relative error of the shear stress along
the solid wall was of order O(10�5) in all cases.

3.2. Inflow perturbations for the LNSEs

It is well-known that under a parallel flow assumption, the non-zero solutions of the
eigenvalue problem for the O-S equation with ! 6= 0, are usually T-S waves.

In our computations, because the position where we wish to enforce an incoming T-S
wave when solving the LNSEs is within the domain of the base flow calculation, the
LNSEs are solved in a smaller domain than that used for the base flow simulations. In
the smaller domains, only the inlet position was changed to guarantee that the inlet
displacement Reynolds number is in the unstable regime of the neutral stability diagram
(or at the neutral position of the lower branch of the neutral curve). So, when the inlet
displacement Reynolds number Re

�⇤ lies in the unstable regime for a given real frequency
!, the normal velocity at the inlet is defined by the most unstable eigenfunction of the
discrete spectrum. With the aid of the divergence-free condition, we can obtain the
streamwise component ũ(y) corresponding to equation (2.7). Mathematically, the inlet
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a Fourier expansion, leading to a more e�cient solution that can compensate
for the extra computational costs of solving the Navier-Stokes in the general
coordinates. This idea is illustrated in figure 1, which shows how we can ob-
tain a simpler representation of a complex geometry by changing the coordinate
system.

(a) Cartesian system (b) Transformed system

Figure 1: Example of how a complex geometry in the physical Cartesian coordinate system

can be mapped into a simpler geometry in a di↵erent coordinate system.

Although being able to employ the Spectral/hp Methods in general coordi-
nates would be desirable, the Velocity-Correction Scheme (Karniadakis et al.,
1991; Guermond and Shen, 2003), a common choice for the time discretization
of the incompressible Navier-Stokes equations in this method, has not been ex-
tended to account to general coordinate transformations. As far as the authors
are aware, only specialised situations have been considered, like the constant-
Jacobian time-dependent transformation of Newman and Karniadakis (1997),
and the constant-Jacobian time-independent mappings of Darekar and Sherwin
(2001). However, no extensions have been proposed for cases where the Jacobian
of the transformation is not constant.

Considering other approximations of the Navier-Stokes equations, Carlson
et al. (1995) proposed a method for accounting for general coordinate transfor-
mations in the context of pseudo-spectral methods, using iterative procedures
to solve for the pressure and velocity fields. Although this method leads to the
appropriate equations that can be used with the Velocity-Correction Scheme, it
does not provide the required high-order pressure boundary conditions that are
essential to the accuracy of this time-integration scheme.

The paper proposes two methods for including coordinate transformations in
the Velocity-Correction Scheme. The first one is a generalization of the approach
of Darekar and Sherwin (2001) and Newman and Karniadakis (1997), with the
mapping being treated explicitly. On the other hand, the second method is a
modified version of the iterative procedure employed by Carlson et al. (1995),

2

Computational domain

Physical domain

t=t0

t=t0+T/2



The basic steps of the adaptive procedure are: 
1)  Advance the equation for steps 

2)  Estimate the spatial resolution error in each element by 

3) Modify the polynomial order in each element using the following rule 
● If S_e > ε_u and P<P_max, increase P by 1 
● If S_e < ε_l  and P>P_min, decrease P by 1 
● Maintain P if none of the above is true 

4)  Project the solution to the new polynomial space 

5)  Repeat the procedure for nruns

Se=
| |uP−uP−1 | |2 ,e

2

| |uP | |2 ,e
2

Adaptive Polynomial Order



● Example: Naca0012 with Re=50,000 and alpha=15 (Pmin = 2, Pmax = 9)

Adaptive Polynomial Order
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