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NUMERICAL MATHEMATICS AND SCIENTIFIC COMPUTATION is 
a series designed to provide texts and monographs for graduate students 
and researchers on a wide range of mathematical topics at the interface 
of computational science and numerical analysis.

George Em Karniadakis and Spencer Sherwin

Spectral methods have long been popular in direct and large eddy simulation 
of turbulent flows, but their use in areas with complex-geometry computational
domains has historically been much more limited. More recently the need to find
accurate solutions to the viscous flow equations around complex configurations
has led to the development of high-order discretisation procedures on unstruc-
tured meshes, which are also recognised as more efficient for solution of time-
dependent oscillatory solutions over long time periods. 

Here Karniadakis and Sherwin present a much-updated and expanded version 
of their successful first edition covering the recent and significant progress in
multi-domain spectral methods at both the fundamental and application level.
Containing over 50% new material, including discontinuous Galerkin methods,
non-tensorial nodal spectral element methods in simplex domains, and stabilisa-
tion and filtering techniques, this text aims to introduce a wider audience to the
use of spectral/hp element methods with particular emphasis on their application
to unstructured meshes. It provides a detailed explanation of the key concepts
underlying the methods along with practical examples of their derivation and
application, and is aimed at students, academics and practitioners in computa-
tional fluid mechanics, applied and numerical mathematics, computational
mechanics, aerospace and mechanical engineering and climate/ocean modelling.
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•2003 
•Restructure Nektar
•Expand applications
•Allow greater flexibility



Original Scope

• Scalar basis fields (explicitly coupled) 

• Time dependent non-linear solvers 

• Implies scalar boundary conditions



Original Scope

• Tensor nodal & modal product definition 

• Nodal unstructured through mapping
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Figure 3.1 Construction of a two-dimensional expansion basis from the product of
two one-dimensional expansions of order P = 4. (a) Modal expansions using the
one-dimensional expansion defined in (3.1) (edge and face modes have been scaled
by a factor of 4 and 16 respectively). (b) Nodal expansion using the one-dimensional
Lagrange polynomial defined in (3.2).

We note that the polynomial order of the multi-dimensional expansions may
differ in each coordinate direction as denoted by the use of the bounds P1, P2,
and P3.

Figure 3.1 shows a diagrammatic representation of the tensor product ex-
tension to generate a two-dimensional expansion in the standard quadrilateral
region using both the modal and nodal one-dimensional expansions. The modal
basis shown in figures 3.1(a) was generated using the one-dimensional expansion
φp(ξ) = ψa

p(ξ) [see equation (3.1)] and the nodal basis expansion shown in figure
3.1(b) was generated using the one-dimensional expansion φp(ξ) = hp(ξ) [see
equation (3.2)]. The expansion modes shown in figure 3.1 represent a complete
bi-linear expansion for fourth-order polynomials in both the ξ1 and ξ2 directions.
Note that the modal expansion maintains a hierarchic form where the lower order
expansions are a subset of the higher order expansions. In contrast, each com-
ponent of the two-dimensional nodal expansion maintains the Kronecker delta
form of the Lagrange polynomial where each mode has a unit value at a specified
position within the region.
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Figure 3.15 Illustration of the structure of the arrays of modified principal functions
ψa

i (z),ψb
ij(z), and ψc

ijk(z). These arrays are not globally close packed although any
edge, face, or interior region of the array may be treated as such. The interior of the
arrays ψb

ij(z) and ψc
ijk(z) have been shaded to indicate the minimum functions required

for a complete triangular and tetrahedral expansion.
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Figure 3.16 Construction of a fourth-order (P = 4) triangular expansion using the
product of two modified principal functions ψa

p (η1) and ψb
pq(η2). As compared with the

orthogonal expansion shown in figure 3.11, the modes are now decomposed into interior
and boundary contributions where the boundary modes have similar forms along each
edge.

ψa
i (z) into ψb

ij(z). In the three-dimensional expansion an equivalent condition is

ensured by the introduction of ψb
ij(z) into ψc

ijk(z).
The three-dimensional expansions are defined in terms of the principal func-

tions as: Formulation

note: Definition of hi-

erarchical modified C0

expansions in 3D stan-

dard hybrid regions.
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Figure 3.17 The construction of the collapsed Cartesian coordinates system maps
vertex D onto vertex C in plot (a). If we consider the quadrilateral region in plot (a) as
describing a two-dimensional array in p and q then we can imagine an equivalent array
within the triangular region as shown in plot (b).

• Hexahedral expansion: φpqr(ξ1, ξ2, ξ3) = ψa
p(ξ1) ψa

q (ξ2) ψa
r (ξ3)

• Prismatic expansion: φpqr(ξ1, ξ2, ξ3) = ψa
p (η1) ψa

q (ξ2) ψb
pr(ξ3)

• Pyramidic expansion: φpqr(ξ1, ξ2, ξ3) = ψa
p(η1) ψa

q (η2) ψc
pqr(η3)

• Tetrahedral expansion: φpqr(ξ1, ξ2, ξ3) = ψa
p(η1) ψb

pq(η2) ψ
c
pqr(η3)

where

η1 =
2(1 + ξ1)

(−ξ2 − ξ3)
− 1, η1 =

2(1 + ξ1)

(1 − ξ3)
− 1, η2 =

2(1 + ξ2)

(1 − ξ3)
− 1, η3 = ξ3,

are the three-dimensional collapsed coordinates.

3.2.3.3 Construction of Modified Basis from Principal Functions

Unlike the structured expansion in the quadrilateral and hexahedral domains, or
even the orthogonal expansions introduced in section 3.2.2, the modified principal
functions for the unstructured regions are no longer in a close packed form.
That is to say, we cannot consecutively loop over the indices p, q, and r. The
reason for this is that the introduction of the boundary/interior decomposition
destroys the dense packing of the principal functions ψb

pq and ψc
pqr, although

the indices corresponding to a specific edge, face, or interior modes remain close
packed. Even though these arrays are not close packed their definition permits
an intuitive construction of the expansion basis by considering each function to
be part of an array within the local region.

Two-Dimensional Expansions
Implementation

note: Details of how
to construct a complete
2D modified basis from
principal functions.

In section 3.1, we demonstrated how the quadrilateral expansion may be con-
structed by considering the definition of the basis φpq(ξ1, ξ2) as a two-dimensional
array within the standard quadrilateral region with the indices p = 0, q = 0 cor-
responding to the lower left-hand corner as indicated in figure 3.17(a). Using this
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Figure 3.23 Spatial distribution of the Lebesgue function,
∑

0≤i<Nm
|LNm

i (ξ)|, for

(a) equispaced points Nm = 15, (b) Fekete points Nm = 15. The maximum of the
Lebesgue function gives the Lebesgue constant ΛNm . (Courtesy of T.C. Warburton)

≤ (1 + ||INm
||∞)||p⋆ − f ||∞

where we understand that

||INm
||∞ = max

||f ||∞=1
||INm

f ||∞.

The constant ΛNm
= ||INm

||∞ is known as the Lebesgue constant. We observe
that the Lebesgue constant is a measure of how close the approximation, INm

f , is
to the best polynomial approximating polynomial p⋆ in the max norm. Choices
such as equally spaced points (in the square or triangle) are known to have
Lebesgue constants that grow exponentially [448].

If we now represent our polynomial approximation in terms of the Lagrange
interpolation or cardinal function at the nodal points, i.e.

INm
f(ξ) =

Nm∑

i=0

f(ξi)L
Nm

i (ξ)

where
LNm

i (ξj) = δij

and δij is the Kronecker Delta, we observe that

ΛNm
= ||INm

||∞ = max
||f ||∞=1

||INm
f ||∞ = max

ξ∈Ωst

∑

0≤i<Nm

|LNm

i (ξ)|. (3.21)

Therefore, evaluating the Lagrange polynomials throughout the triangular re-
gion, ξ ∈ Ωst allows us to get a graphical interpretation of the Lebesgue function,∑

0≤i<Nm
|LNm

i (ξ)|. The maximum bound of this function over the region leads
to the Lebesgue constant ΛNm

. The Lebesgue function is illustrated in figure
3.23 where we show plots of

∑
0≤i<Nm

|LNm

i (ξ)| for equispaced and Fekete (see
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A further observation that is worthwhile noting for our subsequent discussion
of nodal bases is that when φp(ξ) is a known function, such as the orthogonal
basis of section 3.2.2, then if V [i][j] = φj(ξi) we find that

V

⎡

⎢⎣

L0(ξ)
...

LNm−1(ξ)

⎤

⎥⎦ =

⎡

⎢⎣

φ0(ξ)
...

φNm−1(ξ)

⎤

⎥⎦ or

⎡

⎢⎣

L0(ξ)
...

LNm−1(ξ)

⎤

⎥⎦ = V −1

⎡

⎢⎣

φ0(ξ)
...

φNm−1(ξ)

⎤

⎥⎦ . (3.22)

Therefore, given a set of points ξj (0 ≤ j < Nm) and polynomial functions

φ0(ξ), . . . ,φNm−1(ξ) we can evaluate LNm

0 (ξ), . . . , LNm

Nm−1(ξ) using equation (3.22).
Further details on constructing the generalised Vandemonde matrix can also be
found in section 4.1.5.3.

3.3.3 Electrostatic Points

As previously discussed in section 2.3.3.2, Stieltjes [439] and Szego [444] showed
the connection between the polynomial (1−ξ)α(1+ξ)βPα,β

P−1 and the minimisation
of the following problem: Assume that (P − 1) unit mass charges with unit
charge, are allowed to move freely inside the interval [−1, 1] between two fixed

unit charges α ∼ (α+1)
2 and β ∼ (β+1)

2 held fixed at ξ1 = ±1. The steady state
position of the charges that minimises the electrostatic energy:

W = −
P−1∑

i=1

⎧
⎪⎪⎨

⎪⎪⎩

(α+ 1)

2
log |ξi + 1| +

(β + 1)

2
log |ξi − 1| +

1

2

P−1∑

j = 1

j ̸= i

log |ξi − ξj |

⎫
⎪⎪⎬

⎪⎪⎭
.

is the distribution of the Gauss-Lobatto points. An analogous minimisation per-
formed without the two fixed end-charges also leads to the zeros of the Ja-
cobi polynomial Pα,β

P−1 or equivalently the Gauss rather then the Gauss-Lobatto

quadrature points. Since the Legendre polynomials LP (ξ) = P 0,0
P (ξ) and their

derivatives L′
P (ξ) = 1

2 (P − 1)P 1,1
P−1(ξ) are widely used in both the modal and

nodal expansion for quadrilateral and hexahedral domains, Hesthaven [231] adopted
a similar approach to that in Stieltjes problem to determine a set of nodal points
in the simplex.

As the electrostatic points in one-dimension can be constructed to comply
with the Gauss-Lobatto-Jacobi quadrature points, a natural requirement for the
distribution of nodes in the triangular region is that the boundary charges are
located at these Gauss-Lobatto-Jacobi quadrature points along each edge. In this
way it is possible to enforce that the nodal basis is aligned with the quadrilateral
nodal basis. Hesthaven [231] assumed the potential from each edge ‘e’ contributed
a potential at a point, ξ, in the triangular region of the form
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Figure 3.9 Planes of constant value of the local collapsed Cartesian coordinate sys-
tems in the hexahedral, prismatic, pyramidic, and tetrahedral domains. In all but the
hexahedral domain, the standard Cartesian coordinates ξ1, ξ2, ξ3 describing the re-
gion have an upper bound which couples the coordinate system as shown in table 3.2.
The local collapsed Cartesian coordinate system η1, η1, η2, η3 represents a system of
non-orthogonal coordinates which are bounded by a constant value within the region.

Therefore l1, l2, and l3 have a unit value at the vertices marked 1, 2 and 3 in figure
3.10(a), respectively. By definition these coordinates satisfy the relationship:

l1 + l2 + l3 = 1,

and they can be expressed in terms of Cartesian coordinates ξ1, ξ2 as:

l1 = 1
2 (1 − ξ1) − 1

2 (1 + ξ2),

l2 = 1
2 (1 + ξ1),

l3 = 1
2 (1 + ξ2).

The two-dimensional collapsed coordinate system was defined in sections 3.2.1.1
and 3.2.1.2 as
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Figure 9: Geometry used for the simulation. Insets show how flow and pressure
vary with time and di↵erent locations in the geometry.

thickness and ⌫ is the Poisson’s ratio. Other more elaborate
pressure - area relationships are currently being implemented
into the framework. Application of Riemann’s method of char-
acteristics to Equations 14 and 15 indicates that velocity and
area are propagated through the system by forward and back-
ward travelling waves. These waves are reflected within the
network by appropriate treatment of interfaces and boundaries
(see for example [34, 35]). The final system of equations are
discretised in the Nektar++ framework using a discontinuous
Galerkin projection.

To illustrate the capabilities of the PulseWaveSolver, a 1D
geometry was created by extracting the centreline directly from
a 3D segmentation of a carotid bifurcation (the extracted cen-
treline with the segmented geometry overlaid is shown in Fig-
ure 9). At the inlet a half-sinusoidal flow profile was applied
during the systolic phase, whist during the diastolic phase a no-
flow condition was applied. Although this profile is not rep-
resentative of the carotid wave, it is useful for demonstrating
essential dynamics of the system e.g. reflection of backward
travelling waves only during the diastolic phase. At the outflow
RCR boundary conditions were utilised [35]. These boundary
conditions take into account the peripheral resistance and com-
pliance of the vasculature. The pressure and flow results are
shown in Figure 9. The insets demonstrate that the pressure
needs about 4 cycles to reach a periodic state.

To conclude this section, we illustrate the flexibility of the
software in combining two solvers to understand mass trans-
port in the aorta. We consider the simulation of blood-flow
through a pair of intercostal branches in the decending aorta.
The three-dimensional geometry is derived from CT scans and
is meshed using a combination of tetraheda and prismatic el-
ements. Prisms are used to better capture the boundary layer
close to the wall, while tetrahedra fill the remaining interior of
the domain. The embedded manifold discretisation code can
be used to compute boundary conditions for three-dimensional
simulations where the complexity of the geometry precludes the
use of analytic conditions.

The flow is modelled using the incompressible Navier-Stokes
equations (see Section 4.1). In this case, the inlet flow profile
f in Equ. 9 is the solution of the Poisson problem, computed
using the ADRSolver, on the two-dimensional inlet boundary

surface for a prescribed body force, as shown in Fig. 10(a).
The resulting profile is imposed on the three-dimensional flow
problem as illustrated. The steady-state velocity field from the
flow simulation at Reynolds number Re = 300 is shown in
Fig. 10(b). A single boundary layer of prismatic elements is
used for this simulation and both the prismatic and tetrahedral
elements use a polynomial expansion order of P = 4. This is
su�cient to capture the boundary layer at the walls.

We now solve the advection-di↵usion equation,

r · (�Drc + cu) = 0,

to model transport of oxygen along the arterial wall. Here, c
is the concentration and u is the steady-state flow solution ob-
tained previously. D = 1/Pe is the di↵usivity of the species
considered (Pe = 7.5 ⇥ 105 for oxygen). For most of the do-
main, the non-dimensional concentration remains constant at
c = 1. However, a particularly high gradient in concentration
forms at the wall. It is this gradient which is of particular inter-
est and needs to be captured accurately. The existing mesh used
for the flow simulation is unable to resolve the gradients close
to the wall. We therefore refine the boundary layer in the wall-
normal direction using element heights following a geometric
progression. To reduce computational cost, we also exploit the
spectral/hp discretisation and reduce the polynomial order of
the prisms in the directions parallel to the wall, since the con-
centration shows negligible variation in these directions. Fur-
thermore, the domain-interior tetrahedra may also be discarded
and a dirichlet c = 1 condition imposed on the resulting interior
prism boundary.

Fig. 10(c) shows the resulting concentration gradient field on
the surface of the arterial wall. Regions of low concentration
gradient are observed upstream of the branches, while high con-
centration gradients are observed downstream. Fig.10(d) shows
close-ups of the branches to illustrate this.

5. Discussion & Future Directions

The Nektar++ framework provides a feature-rich platform
with which to develop numerical methods and solvers in the
context of high-order finite element methods. It has been de-
signed in such a way that the libraries reflect the mathematical
abstractions of the method, to simplify uptake for new users,
as well as being written in a modular way to improve the ro-
bustness of the code, minimise duplication of functionality and
promote sustainability.

Development
The development of a complex and extensive software

project such as Nektar++ necessitates the adoption of certain
development practices to enable developers to easily write new
code for their features without breaking the code for other peo-
ple. The code is managed using the git distributed version
control system [36] due to its performance, enhanced support
for branching, as well as supporting o↵-line development. All
development is performed in branches and only after rigor-
ous multi-architecture testing and internal peer-review is new
code merged into the main codebase, thereby always maintain-
ing a stable distribution. Any new bugs or feature requests
are tracked using the Trac issue-management system, which
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(a) (b)

(c)

Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.

where U = [⇢, ⇢u, ⇢v, ⇢w, E]> is the vector of conserved vari-
ables in terms of density ⇢, velocity (u1, u2, u3) = (u, v,w), E is
the specific total energy, and
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where p is the pressure. To close the system we need to specify
an equation of state, in this case the ideal gas law p = ⇢RT
where T is the temperature and R is the gas constant. For the
Euler equations, the tensor of viscous forces Fv(U) = 0, and for
Navier-Stokes

Fv(U) =
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A = u⌧xx + v⌧xy + w⌧xz + k@xT,
B = u⌧yx + v⌧yy + w⌧yz + k@yT,
C = u⌧zx + v⌧zy + w⌧zz + k@zT

where in tensor notation the stress tensor ⌧xi x j = 2µ(@xi ui +

@xi u j � 1
3@xk uk�i j), µ is the dynamic viscosity calculated using

Sutherland’s law and k is the thermal conductivity.
To discretise these equations in space, we adopt an approach

which allows for the resolution of discontinuities and shocks
that may appear in the solution at transonic and supersonic flow
speeds. We therefore use approximations to our solution com-
prised of functions which are not continuous across element
boundaries. Traditionally, we follow a Galerkin approach by
utilising the variational form of the equations in order to ob-
tain the discontinuous Galerkin method. One of the key fea-
tures of Nektar++ is the ability to select a wide range of nu-
merical options, and to this end we support both discontinuous

Galerkin and flux reconstruction spatial discretisations, which
have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation

8



Ch. 4 Multi-dimensional Formulation 185

ξ1

ξ 1

ξ 2

ξ2

+ +

+

+

+

−

Element 1

Element 2

Figure 4.12 Illustration of the construction of a C0 global expansion from two local
modal expansions of order P1 = P2 = 4. To ensure C0 continuity the boundary modes of
similar shape need to be matched. Depending on the orientation of the local coordinate
systems the modes of odd order may also need to be negated.

edge at the centre point of the edge. If we follow a similar convention when
numbering the global modes, as shown in the right-hand side of figure 4.13, the
modes of similar polynomial order (which we need to match) will have the same
global number and so we are just left with the issue of sign reversal. In this
example, the mode of cubic order needs to have its sign reversed in one element
as the local coordinate system has an opposite direction along the intersecting
edge. By convention, we assume that the element with the lowest number has
precedence and therefore mode 14 in triangle 1 will be negated. Therefore, when
assembling the array sign[e][i] we require that sign[1][11] = −1.

In general, we need an automatic procedure to identify which edges need to
have odd modes negated. Such a procedure may be constructed by considering
the sign of the inner product between two vectors representing the global co-
ordinate direction of an edge. Since we always know the vertices which define
an element, we let ∆xe

edg denote a vector parallel to an edge in an element “e”
oriented according to the local coordinate direction of ξ1 or ξ2. For example,
along the bottom edge where (ξ2 = −1) we have

∆xe
edg =

[
χ1(1,−1) − χ1(−1,−1)
χ2(1,−1) − χ2(−1,−1)

]
, x1 = χ1(ξ1, ξ2), x2 = χ2(ξ1, ξ2)

or along the edge where ξ1 = −1

Original Scope
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a)

Local top vertex

b)

Figure 4.17 To ensure that the modal expansion can be assembled to form a C0

expansion, the collapsed coordinate system in the triangular faces must be aligned as
shown in plot (a). Connection of two faces where the local coordinate system is oriented,
as shown in plot (b), is not permitted.

want to match face modes of similar shape. For modal expansions the use of the
collapsed Cartesian system means that triangular faces have a local coordinate
system which is not rotationally symmetric. This point is illustrated in figure 4.17
where we see the two tetrahedral regions marked with their surface coordinate
lines. To be able to match modes within a triangular face we require that these
coordinate lines are orientated as shown in figure 4.17(a) but not as shown in
figure 4.17(b). This would appear to be rather constraining. We are, however,
free to specify how the local coordinate systems within an element are orientated.
For an arbitrary conforming tetrahedral mesh, it is possible to orient all the local
coordinate system so that the coordinate lines are consistent. Referring to the
two vertices where the coordinates system degenerates as the local base vertex
(ξ1 = −1, ξ2 = 1, ξ3 = −1) and the local top vertex (ξ1 = −1, ξ2 = −1, ξ3 = 1)
an orientation algorithm suggested by Warburton [485] is:
assuming that every global vertex has a unique number then for every element
we have four vertices with unique global numbers:

(i) Place the local top vertex at the global vertex with the lowest global number
(ii) Place the local base vertex at the global vertex with the second lowest global

number
(iii) Orient the last two vertices to be consistent with the local rotation of the

element (typically anti-clockwise).
This algorithm is local to each element and can be implemented at a pre-

processing stage. Although it is possible to guarantee this connectivity for tetra-
hedral meshes, it is not possible for a general mesh using tetrahedrons, prisms,
and pyramids. Nevertheless, enough permutations of connectivity still exist to
provide a wide range of flexibility even when using all the three-dimensional
hybrid elements [485].

The orientation criteria simplify the numbering and sign evaluation process
in a triangular face as all faces have a similar orientation. Therefore, for a hi-



Original Scope

• Homogeneous expansions 
• Parallel hybrid discretisation 

Figure 5: Contours of the magnitude of velocity in a periodic hill simulation at
Re = 2800.

for flow over a NACA0012 aerofoil at a farfield Mach number
Ma1 = 0.8 and a 1.5� angle of attack. The transonic mach
number of this flow leads to the development of a strong and
weak shock along the upper and lower surfaces of the wing re-
spectively. This figure shows isocontours of the mach number
where the presence of the shocks are clearly identified. Finally,
In Fig. 4(c), we visualise the temperature field from flow pass-
ing over a T106C low-pressure turbine blade at Re = 80,000
to highlight applications to high Reynolds number flow simula-
tions.

4.2. Transitional turbulent flow dynamics

Transient problems in which turbulence dominates the flow
domain, or in which the transition to turbulence dominates the
simulation, remain some of the most challenging problems to
resolve in computational fluid simulations. Here, accurate nu-
merical schemes and high resolution of the domain is critical.
Moreover, any choice of scheme must be e�cient in order to ob-
tain results in computationally feasible time-scales. Tradition-
ally, highly resolved turbulence simulations, such as the Taylor-
Green vortex problem, lie firmly in the class of spectral meth-
ods. However, spectral methods typically lead to strong geom-
etry restrictions which limits the domain of interest to simple
shapes such as cuboids or cylinders.

Whilst spectral element methods may seem the ideal choice
for such simulations, particularly when the domain of interest
is geometrically complex, they can be more computationally
expensive in comparison to spectral methods. However, when
the domain of interest has a geometrically homogeneous com-
ponent – that is, the domain can be seen to be the tensor prod-
uct of a two-dimensional ‘complex’ part and a one-dimensional
segment – we can combine both the spectral element and tradi-
tional spectral methods to create a highly e�cient and spectrally
accurate technique [4].

We consider the application of this methodology to the prob-
lem of flow over a periodic hill, depicted in Fig. 5, where the
flow is periodic in both streamwise and spanwise directions.
This case is a well-established benchmark problem in the DNS
and LES communities [25], and is challenging to resolve due to
the smooth detachment of the fluid from the surface and recir-
culation region. Here we consider a Reynolds number of 2800,
normalised by the bulk velocity at the hill crest and the height
of the hill, with an appropriate body forcing term to drive the
flow over the periodic hill configuration.

The periodicity of this problem makes it an ideal candidate
for the hybrid technique described above. We therefore con-

struct a two-dimensional mesh of 3626 quadrilateral elements
at polynomial order P = 6, and exploit the domain symmetry
with a Fourier pseudospectral method consisting of 160 collo-
cation points in the spanwise direction to perform the simula-
tion. This yields a resolution of 20.9M degrees of freedom per
field variable and allows us to obtain excellent agreement with
the benchmark statistics.

4.3. Flow stability
In addition to direct numerical simulation of the full

non-linear incompressible Navier-Stokes equations, the
IncNavierStokesSolver supports global flow stability
analysis through the linearised Navier-Stokes equations with
respect to a steady or periodic base flow. This process identifies
whether a steady flow is susceptible to a fundamental change
of state when perturbed by an infinitesimal disturbance. The
linearisation takes the form

@u0

@t
+ (u0 · r)U + (U · r)u0 = �rp0 + ⌫r2u0

r · u0 = 0,

where U is the base flow and u0 is now the infinitesimal pertur-
bation. The time-independent base flow is computed through
evolving Equs. 9 to steady-state with appropriate boundary con-
ditions. For time-period base flows, the flow is sampled at reg-
ular intervals and interpolated.

The linear evolution of a perturbation under Equs. 10 can be
expressed as

u0(t) = A(t)u00

for some initial state u00, and we seek, for some arbitrary time
T, the dominant eigenvalues and eigenmodes of the operator
A(T ), which are solutions to the equation

A(T )ũ j = � jũ j.

The sign of the leading eigenvalues � j are used to establish the
global stability of the flow. An iterative Arnoldi method [26]
is applied to a discretisation M of A(T ). Repeated actions
of M are applied to the initial state u0 using the same time-
integration code as for the non-linear equations [27]. The re-
sulting sequence of vectors spans a Krylov subspace of M and,
through a partial Hessenberg reduction, the leading eigenval-
ues and eigenvectors can be e�ciently determined. The same
approach can be applied to the adjoint form of the linearised
Navier-Stokes evolution operatorA⇤ to examine the receptivity
of the flow and, in combination with the direct mode, identify
the sensitivity of the flow to base flow modification and local
feedback. The direct and adjoint methods can also be combined
to identify convective instabilities over di↵erent time horizons
⌧ in a flow by computing the leading eigenmodes of (A⇤A)(⌧).
This is referred to as transient growth analysis.

To illustrate the linear analysis capabilities of Nektar++, we
use the example of two-dimensional flow past a circular cylin-
der at Re = 42, just below the critical Reynolds number for
the onset of the Bénard-von Kármán vortex street. This is a
well-established test case for which significant analysis is avail-
able in the literature. We show in Fig. 6 the leading eigen-
modes for the direct (A) and adjoint (A⇤) linear operators for

9

PARALLELISATION STRATEGIES

combinations of parallelisation approaches can extend the limit in the number of pro-

cessors that can be adopted. In fact the total bottleneck of the combined techniques is

Btot = BtranBdec. In Fig. 4.5 we can appreciate how the same initial domain can be de-

composed using the modal parallelisation approach (FFT Transposition ), the elemental

parallelisation approach (Mesh Decomposition) or both of them at the same time (Hybrid).

(a) Domain (b) FFT Transposition

(c) Mesh Decomposition (d) Hybrid

Figure 4.5: Parallelisation strategies visualisation over four processes. The Fourier spectral/hp

element domain reported in (a) can be decomposed according to the Fourier modes (b) or as an

arbitrary decomposition of the 2D mesh (c). A third option is a combined approach (d).
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Ongoing developments

a Fourier expansion, leading to a more e�cient solution that can compensate
for the extra computational costs of solving the Navier-Stokes in the general
coordinates. This idea is illustrated in figure 1, which shows how we can ob-
tain a simpler representation of a complex geometry by changing the coordinate
system.

(a) Cartesian system (b) Transformed system

Figure 1: Example of how a complex geometry in the physical Cartesian coordinate system

can be mapped into a simpler geometry in a di↵erent coordinate system.

Although being able to employ the Spectral/hp Methods in general coordi-
nates would be desirable, the Velocity-Correction Scheme (Karniadakis et al.,
1991; Guermond and Shen, 2003), a common choice for the time discretization
of the incompressible Navier-Stokes equations in this method, has not been ex-
tended to account to general coordinate transformations. As far as the authors
are aware, only specialised situations have been considered, like the constant-
Jacobian time-dependent transformation of Newman and Karniadakis (1997),
and the constant-Jacobian time-independent mappings of Darekar and Sherwin
(2001). However, no extensions have been proposed for cases where the Jacobian
of the transformation is not constant.

Considering other approximations of the Navier-Stokes equations, Carlson
et al. (1995) proposed a method for accounting for general coordinate transfor-
mations in the context of pseudo-spectral methods, using iterative procedures
to solve for the pressure and velocity fields. Although this method leads to the
appropriate equations that can be used with the Velocity-Correction Scheme, it
does not provide the required high-order pressure boundary conditions that are
essential to the accuracy of this time-integration scheme.

The paper proposes two methods for including coordinate transformations in
the Velocity-Correction Scheme. The first one is a generalization of the approach
of Darekar and Sherwin (2001) and Newman and Karniadakis (1997), with the
mapping being treated explicitly. On the other hand, the second method is a
modified version of the iterative procedure employed by Carlson et al. (1995),
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where ✏ is viscosity amplitude, Q is the viscosity kernal, which is only activated at high wave
numbers. In the framework of Nektar++, this term is incorporated into the velocity splitting scheme
of the incompressible Navier-Stokes equations. For more details of the SVV technique, we refer the
reader to [34].

The riser has an aspect ratio of L
c

/D=32⇡ (=100.53) and a mass ratio of ⇢
c

/⇢=1.17, which is
typical value of that can be encountered in the context of ocean engineering. It is pinned at both ends
and free to vibrate in both the cross-flow and in-line directions. The structural properties are set out
as follows: the tension and the bending stiffness are set equal to 600 and 20.8, respectively, which
give the riser and beam phase velocities of 22.645 and 4.216, respectively. The structural damping
coefficient is set to be c=0.022. The spanwise thickness of the strip is chosen to be L

z

= ⇡D. This
size corresponds to the size of the streamwise vortex structures for the fixed cylinder flow and has
been used in most of the literature. A total of 48 planes (24 complex modes) are used in the spanwise
resolution of the finite strip. The resolution with the similar level is commonly used in the numerical
simulations of fixed cylinders in the published literature [35]. The same mesh of the previous section
is adopted in the simulations, but the polynomial order for the element basis expansion is increased
to 7. We run the VIV simulation from a fully developed flow field of a stationary case at the identical
Reynolds number.

The total number of strips used is 8, 16 and 32, respectively. Fig. 11 shows the time histories
of hydrodynamic force coefficients and riser’s displacements for the strip corresponding to the
solution points on the riser with coordinate of z/L

c

=75.398, on which the maximum crossflow
vibration occurs. A quite strong oscillation in the hydrodynamic forces with significant amplitudes
is demonstrated in Fig. 11a, as compared to the fixed cylinder flow at the same Reynolds number. A
periodic inline vibration with the frequency twice of the crossflow vibration is obviously observed in
Fig. 11b. The maximum vibration of the riser reaches a value of ⌘/D=1.083. We show the temporal
evolution of vibration shapes and their envelopes in Figs. 12 and 13. Consistent convergence
of the VIV responses is obtained with increase of the number of strips both in streamwise and
crossflow vibrations. It can be seen from Fig. 12 that a half sinusoidal wave is amplified gradually
as a deflection of the riser along the streamwise direction, and the peak displacement occurs at
the midpoint of the riser. The riser’s vibration in the crossflow direction is involved primarily in
the second harmonic mode with the wavelength equal to the riser’s length. The vibration shape
illustrated in the envelop is almost symmetric in the transverse direction, but this is not the case
along the spanwise direction. This phenomenon is probably caused by the interaction of inline and
transverse responses, and the formation of a symmetric shape might need much longer simulation
times.

(a) (b)

Figure 10. (a) The distribution of the thick strip along the axial direction of the riser and (b) 2D spectral-
element mesh with the 7th polynomial degree
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Figure 6: Strong scaling of time-dependent di↵usion problem between 1 and 128 processors
at polynomial order P = 4 for both CG and HDG (right) on a unstructured mesh of a rabbit
aortic arch (left).

The strong scaling of each method for the intercostal pair is shown in Figure 4. The
speedup quoted on the vertical axis is relative to the time taken on a single 32-processor
node. At high polynomial order we clearly see that both methods scale well. Even at 4,096
processors, where each process contains only two or three tetrahedra, e�ciency remains high.
At times the scaling is seen to be super-linear; whilst counterintuitive, this is commonly seen
on modern multi-core hardware [31] due to resource contention. At lower numbers of nodes,
the matrix-vector multiplication used in the iterative solve requires intensive memory access,
meaning that much of the processor time is spent fetching data from the main memory store,
where the limiting factor is memory bandwidth. As the problem size decreases however,
matrices are able to be stored on processor cache which is far quicker to access, meaning that
per-processor execution time is greatly reduced and super-linear scaling can be observed.

To validate this e↵ect is not specific to HECToR, we have performed a replica experiment
on ARCHER, the successor to HECToR. ARCHER is a Cray XC30 system, with each
node possessing two 2.7 GHz 12-core E5-2697v2 processors, with an improved interconnect.
Figure 5 shows that a similar and indeed more exaggerated behaviour occurs when scaling
up to 128 nodes (3,072 cores).

The main observation that can be drawn from Figures 4 and 5 however is that the HDG
method generally outperforms the CG method in terms of strong scalability. We note that for
the intercostal mesh, the average vertex valency is 12 and maximum valency 44. When the
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(a) (b)

(c)

Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.

where U = [⇢, ⇢u, ⇢v, ⇢w, E]> is the vector of conserved vari-
ables in terms of density ⇢, velocity (u1, u2, u3) = (u, v,w), E is
the specific total energy, and

F(U) =
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where p is the pressure. To close the system we need to specify
an equation of state, in this case the ideal gas law p = ⇢RT
where T is the temperature and R is the gas constant. For the
Euler equations, the tensor of viscous forces Fv(U) = 0, and for
Navier-Stokes
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A = u⌧xx + v⌧xy + w⌧xz + k@xT,
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C = u⌧zx + v⌧zy + w⌧zz + k@zT

where in tensor notation the stress tensor ⌧xi x j = 2µ(@xi ui +

@xi u j � 1
3@xk uk�i j), µ is the dynamic viscosity calculated using

Sutherland’s law and k is the thermal conductivity.
To discretise these equations in space, we adopt an approach

which allows for the resolution of discontinuities and shocks
that may appear in the solution at transonic and supersonic flow
speeds. We therefore use approximations to our solution com-
prised of functions which are not continuous across element
boundaries. Traditionally, we follow a Galerkin approach by
utilising the variational form of the equations in order to ob-
tain the discontinuous Galerkin method. One of the key fea-
tures of Nektar++ is the ability to select a wide range of nu-
merical options, and to this end we support both discontinuous

Galerkin and flux reconstruction spatial discretisations, which
have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation
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(a) (b)
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Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.
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utilising the variational form of the equations in order to ob-
tain the discontinuous Galerkin method. One of the key fea-
tures of Nektar++ is the ability to select a wide range of nu-
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Galerkin and flux reconstruction spatial discretisations, which
have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation
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Figure 5: Contours of the magnitude of velocity in a periodic hill simulation at
Re = 2800.

for flow over a NACA0012 aerofoil at a farfield Mach number
Ma1 = 0.8 and a 1.5� angle of attack. The transonic mach
number of this flow leads to the development of a strong and
weak shock along the upper and lower surfaces of the wing re-
spectively. This figure shows isocontours of the mach number
where the presence of the shocks are clearly identified. Finally,
In Fig. 4(c), we visualise the temperature field from flow pass-
ing over a T106C low-pressure turbine blade at Re = 80,000
to highlight applications to high Reynolds number flow simula-
tions.

4.2. Transitional turbulent flow dynamics

Transient problems in which turbulence dominates the flow
domain, or in which the transition to turbulence dominates the
simulation, remain some of the most challenging problems to
resolve in computational fluid simulations. Here, accurate nu-
merical schemes and high resolution of the domain is critical.
Moreover, any choice of scheme must be e�cient in order to ob-
tain results in computationally feasible time-scales. Tradition-
ally, highly resolved turbulence simulations, such as the Taylor-
Green vortex problem, lie firmly in the class of spectral meth-
ods. However, spectral methods typically lead to strong geom-
etry restrictions which limits the domain of interest to simple
shapes such as cuboids or cylinders.

Whilst spectral element methods may seem the ideal choice
for such simulations, particularly when the domain of interest
is geometrically complex, they can be more computationally
expensive in comparison to spectral methods. However, when
the domain of interest has a geometrically homogeneous com-
ponent – that is, the domain can be seen to be the tensor prod-
uct of a two-dimensional ‘complex’ part and a one-dimensional
segment – we can combine both the spectral element and tradi-
tional spectral methods to create a highly e�cient and spectrally
accurate technique [4].

We consider the application of this methodology to the prob-
lem of flow over a periodic hill, depicted in Fig. 5, where the
flow is periodic in both streamwise and spanwise directions.
This case is a well-established benchmark problem in the DNS
and LES communities [25], and is challenging to resolve due to
the smooth detachment of the fluid from the surface and recir-
culation region. Here we consider a Reynolds number of 2800,
normalised by the bulk velocity at the hill crest and the height
of the hill, with an appropriate body forcing term to drive the
flow over the periodic hill configuration.

The periodicity of this problem makes it an ideal candidate
for the hybrid technique described above. We therefore con-

struct a two-dimensional mesh of 3626 quadrilateral elements
at polynomial order P = 6, and exploit the domain symmetry
with a Fourier pseudospectral method consisting of 160 collo-
cation points in the spanwise direction to perform the simula-
tion. This yields a resolution of 20.9M degrees of freedom per
field variable and allows us to obtain excellent agreement with
the benchmark statistics.

4.3. Flow stability
In addition to direct numerical simulation of the full

non-linear incompressible Navier-Stokes equations, the
IncNavierStokesSolver supports global flow stability
analysis through the linearised Navier-Stokes equations with
respect to a steady or periodic base flow. This process identifies
whether a steady flow is susceptible to a fundamental change
of state when perturbed by an infinitesimal disturbance. The
linearisation takes the form

@u0

@t
+ (u0 · r)U + (U · r)u0 = �rp0 + ⌫r2u0

r · u0 = 0,

where U is the base flow and u0 is now the infinitesimal pertur-
bation. The time-independent base flow is computed through
evolving Equs. 9 to steady-state with appropriate boundary con-
ditions. For time-period base flows, the flow is sampled at reg-
ular intervals and interpolated.

The linear evolution of a perturbation under Equs. 10 can be
expressed as

u0(t) = A(t)u00

for some initial state u00, and we seek, for some arbitrary time
T, the dominant eigenvalues and eigenmodes of the operator
A(T ), which are solutions to the equation

A(T )ũ j = � jũ j.

The sign of the leading eigenvalues � j are used to establish the
global stability of the flow. An iterative Arnoldi method [26]
is applied to a discretisation M of A(T ). Repeated actions
of M are applied to the initial state u0 using the same time-
integration code as for the non-linear equations [27]. The re-
sulting sequence of vectors spans a Krylov subspace of M and,
through a partial Hessenberg reduction, the leading eigenval-
ues and eigenvectors can be e�ciently determined. The same
approach can be applied to the adjoint form of the linearised
Navier-Stokes evolution operatorA⇤ to examine the receptivity
of the flow and, in combination with the direct mode, identify
the sensitivity of the flow to base flow modification and local
feedback. The direct and adjoint methods can also be combined
to identify convective instabilities over di↵erent time horizons
⌧ in a flow by computing the leading eigenmodes of (A⇤A)(⌧).
This is referred to as transient growth analysis.

To illustrate the linear analysis capabilities of Nektar++, we
use the example of two-dimensional flow past a circular cylin-
der at Re = 42, just below the critical Reynolds number for
the onset of the Bénard-von Kármán vortex street. This is a
well-established test case for which significant analysis is avail-
able in the literature. We show in Fig. 6 the leading eigen-
modes for the direct (A) and adjoint (A⇤) linear operators for
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Figure 6: Linear stability analyses of two-dimensional flow past a circular
cylinder at Re = 42. Illustrative plots of (a) streamwise (left) and transverse
(right) components of velocity for the dominant direct mode, (b) streamwise
(left) and transverse (right) velocity for the dominant adjoint mode and (c)
structural sensitivity to base flow modification (left) and local feedback (right).

both the streamwise and cross-stream components of velocity.
The modes are characterised by the asymmetry in the stream-
wise component and symmetry in the cross-stream component.
We also note the spatial distribution of the modes with the
leading direct modes extending far downstream of the cylin-
der, while the adjoint modes are predominantly localised up-
stream but close to the cylinder. This separation is a result of
the non-normality of the A operator. We also show the struc-
tural sensitivity of the flow to base flow modification and local
feedback. The latter highlights regions where localised forcing
would have greatest impact on the flow.

4.4. Shallow water modelling

The ShallowWaterSolver simulates depth-averaged wave
equations, often referred to as “long-wave” approximations.
These equations are often used for engineering applications
where the vertical dimension of the flow is small compared
to the horizontal. Examples of applications include tidal flow,
river flooding and nearshore phenomena such as wave-induced
circulation and wave disturbances in ports.

The governing equations are derived from potential flow:
the Laplace equation inside the flow domain and appropriate
boundary conditions at the free surface and bottom. The two
key steps are (i) the expansion of the velocity potential with re-
spect to the vertical coordinate and (ii) the integration of the
Laplace equation over the fluid depth. This results in sets of
equations expressed in horizontal dimensions only. Depending
on the order of truncation in nonlinearity and dispersion, nu-
merous long-wave equations with di↵erent kinematic behavior
have been derived over the years [28, 29, 30].

Many depth-averaged equations can be written in a generic
form as

@U
@t
+ r · F(U) + D(U) = S(U) , (11)

where U = [H ,Hu ,Hv]T is the vector of conserved variables.
The horizontal velocity is denoted by u = [u(x, t) , v(x, t)]T ,
H(x, t) = ⌘(x, t) + d(x) is the total water depth, ⌘ is the free
surface elevation and d the still water depth. The flux vector

F(U) is given as
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, (12)

in which g is the acceleration due to gravity. The source term
S(U) contains forcing due to, for example, Coriolis e↵ects, bed-
slopes and bottom friction. Importantly, D(U) contains all the
dispersive terms. The actual form of the dispersive terms di↵ers
between di↵erent wave equations and the term can be highly
complex with many high-order mixed and spatial derivatives.

At present, the ShallowWaterSolver supports the non-
dispersive shallow-wter equations (SWE) and the weakly dis-
persive Boussinesq equations of Peregrine [28]. The SWE are
recovered if D(U) ⌘ 0 while for the Peregrine equation the ex-
pression is:

D(U) = @t
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(13)

The Boussinesq equations are solved using the wave conti-
nuity approach [31]. The momentum equations are first recast
into a scalar Helmholtz type equation and solved for the aux-
iliary variable z = r · @t (Hu). The conservative variables are
recovered in a subsequent step.

A frequently used test-case for Boussinesq models is the
scattering of a solitary wave impinging a vertical cylinder. Here
a solitary wave with nonlinearity ✏ = 0.1 is propagating over a
still water depth of 1 m (✏ = A/d, where A is the wave ampli-
tude). The initial solitary wave condition is given by Laitone’s
first order solution. The cylinder has a diameter of 4 m, giving
a Keulegan-Carpenter number well below unity and di↵raction
number on the order of 2. Hence, the viscous e↵ects are small
while the di↵raction and scattering are significant.

We compute the solution in the domain x 2 [�25 , 50] me-
ters and y 2 [�19.2 , 19.2] meters, discretized into 552 triangles
using P = 5. Snapshots of the free surface elevation at four
di↵erent times are shown in Fig. 7. In Fig. 7a the solitary wave
reaches its maximum run-up on the cylinder, while in Fig. 7b
the peak of solitary wave has reached the center of the cylin-
der and a depression in the free surface around the cylinder is
clearly visible. The propagation of the scattered, and later re-
flected from the side walls, waves are seen in Figs. 7c and 7d.

4.5. Cardiac electrophysiology
The cardiac electrical system in the heart is the signalling

mechanism used to ensure coordinated contraction and e�cient
pumping of blood. Conduction occurs due to a complex se-
quence of active ion exchanges between intracellular and extra-
cellular spaces, initiated due to a potential di↵erence between
the inside and outside of the cell exceeding a threshold, pro-
ducing an action potential. This causes a potential di↵erence
across boundaries with adjacent cells, resulting in a flow of ions
between cells and triggering an action potential in the adjacent
cell. Disease, age and infarction lead to interruption of this
signalling process and may produce abnormal conduction pat-
terns known as arrhythmias. Clinically this can be treated using
catheter ablation, however acurately selecting the most e↵ective
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Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;

substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations

�

 

Cm
@u
@t
+ Iion

!

= r · �ru,

where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by

@U
@t
+H@U
@x
= S (14)
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#

in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p

A � p

A0
⌘

, � =

p
⇡hE

(1 � ⌫2)A0
(15)

where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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Figure 9: Geometry used for the simulation. Insets show how flow and pressure
vary with time and di↵erent locations in the geometry.

thickness and ⌫ is the Poisson’s ratio. Other more elaborate
pressure - area relationships are currently being implemented
into the framework. Application of Riemann’s method of char-
acteristics to Equations 14 and 15 indicates that velocity and
area are propagated through the system by forward and back-
ward travelling waves. These waves are reflected within the
network by appropriate treatment of interfaces and boundaries
(see for example [34, 35]). The final system of equations are
discretised in the Nektar++ framework using a discontinuous
Galerkin projection.

To illustrate the capabilities of the PulseWaveSolver, a 1D
geometry was created by extracting the centreline directly from
a 3D segmentation of a carotid bifurcation (the extracted cen-
treline with the segmented geometry overlaid is shown in Fig-
ure 9). At the inlet a half-sinusoidal flow profile was applied
during the systolic phase, whist during the diastolic phase a no-
flow condition was applied. Although this profile is not rep-
resentative of the carotid wave, it is useful for demonstrating
essential dynamics of the system e.g. reflection of backward
travelling waves only during the diastolic phase. At the outflow
RCR boundary conditions were utilised [35]. These boundary
conditions take into account the peripheral resistance and com-
pliance of the vasculature. The pressure and flow results are
shown in Figure 9. The insets demonstrate that the pressure
needs about 4 cycles to reach a periodic state.

To conclude this section, we illustrate the flexibility of the
software in combining two solvers to understand mass trans-
port in the aorta. We consider the simulation of blood-flow
through a pair of intercostal branches in the decending aorta.
The three-dimensional geometry is derived from CT scans and
is meshed using a combination of tetraheda and prismatic el-
ements. Prisms are used to better capture the boundary layer
close to the wall, while tetrahedra fill the remaining interior of
the domain. The embedded manifold discretisation code can
be used to compute boundary conditions for three-dimensional
simulations where the complexity of the geometry precludes the
use of analytic conditions.

The flow is modelled using the incompressible Navier-Stokes
equations (see Section 4.1). In this case, the inlet flow profile
f in Equ. 9 is the solution of the Poisson problem, computed
using the ADRSolver, on the two-dimensional inlet boundary

surface for a prescribed body force, as shown in Fig. 10(a).
The resulting profile is imposed on the three-dimensional flow
problem as illustrated. The steady-state velocity field from the
flow simulation at Reynolds number Re = 300 is shown in
Fig. 10(b). A single boundary layer of prismatic elements is
used for this simulation and both the prismatic and tetrahedral
elements use a polynomial expansion order of P = 4. This is
su�cient to capture the boundary layer at the walls.

We now solve the advection-di↵usion equation,

r · (�Drc + cu) = 0,

to model transport of oxygen along the arterial wall. Here, c
is the concentration and u is the steady-state flow solution ob-
tained previously. D = 1/Pe is the di↵usivity of the species
considered (Pe = 7.5 ⇥ 105 for oxygen). For most of the do-
main, the non-dimensional concentration remains constant at
c = 1. However, a particularly high gradient in concentration
forms at the wall. It is this gradient which is of particular inter-
est and needs to be captured accurately. The existing mesh used
for the flow simulation is unable to resolve the gradients close
to the wall. We therefore refine the boundary layer in the wall-
normal direction using element heights following a geometric
progression. To reduce computational cost, we also exploit the
spectral/hp discretisation and reduce the polynomial order of
the prisms in the directions parallel to the wall, since the con-
centration shows negligible variation in these directions. Fur-
thermore, the domain-interior tetrahedra may also be discarded
and a dirichlet c = 1 condition imposed on the resulting interior
prism boundary.

Fig. 10(c) shows the resulting concentration gradient field on
the surface of the arterial wall. Regions of low concentration
gradient are observed upstream of the branches, while high con-
centration gradients are observed downstream. Fig.10(d) shows
close-ups of the branches to illustrate this.

5. Discussion & Future Directions

The Nektar++ framework provides a feature-rich platform
with which to develop numerical methods and solvers in the
context of high-order finite element methods. It has been de-
signed in such a way that the libraries reflect the mathematical
abstractions of the method, to simplify uptake for new users,
as well as being written in a modular way to improve the ro-
bustness of the code, minimise duplication of functionality and
promote sustainability.

Development
The development of a complex and extensive software

project such as Nektar++ necessitates the adoption of certain
development practices to enable developers to easily write new
code for their features without breaking the code for other peo-
ple. The code is managed using the git distributed version
control system [36] due to its performance, enhanced support
for branching, as well as supporting o↵-line development. All
development is performed in branches and only after rigor-
ous multi-architecture testing and internal peer-review is new
code merged into the main codebase, thereby always maintain-
ing a stable distribution. Any new bugs or feature requests
are tracked using the Trac issue-management system, which
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Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;

substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations
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where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by

@U
@t
+H@U
@x
= S (14)
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#
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#

in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p

A � p

A0
⌘

, � =

p
⇡hE

(1 � ⌫2)A0
(15)

where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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CHAPTER 5. SUPPRESSION OF VORTEX SHEDDING VIA
SURFACE BLEED

Figure 5.27: Three-dimensional perspective of the adjoint mode.

sensitivity does not show a pronounced variation in the spanwise direction
as figure (5.29) shows.
This last result suggests that two-dimensional structural perturbations are
more relevant than the spanwise ones to suppress the absolute instability.
This leads us to ask the actual reason behind the high e�ciency of the
three-dimensional methods. A reasonable explanation relies on the struc-
tural sensitivity to base flow modifications. A structural perturbation in the
flow produces a force proportional and parallel to the local velocity (spatial
localised feedback), but it acts also on the steady base flow and its time-
varying disturbance. The eigenvalue drift is then induced by two separate
mechanisms: the feedback of the velocity perturbation onto itself and the
perturbation induced by a modification of the base flow (Luchini & Bottaro,
2014). It is the combination of these two e�ects which describes properly
the dynamics of the system. The structural sensitivity can be thought as
the sensitivity of the frequency to a structural perturbation acting on the
time-varying disturbance, leaving the base flow unperturbed. This is a theo-
retical approach to identify the wavemaker region, but it does not complete
the discussion on the e�ects of our control strategy. The structural sensitiv-
ity to base flow modification permits us to understand how the introduction
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(a) A = 0 (b) A = 0.005

(c) A = 0.008 (d) A = 0.15.

Figure 5.21: Topology of the eigemodes for four di�erent amplitudes.

ure (5.21d)), then no significant change in the shape of the mode was de-
tected as A was increased further.
The eigenmodes can be used to study the non-linear behaviour of the tran-
sition. We can analyse this behaviour starting from the Landau equation
(5.12), which describes the time evolution of the amplitude A of a small
perturbation4:

4A in this case represents the amplitude of the perturbations and should not be confused
with the amplitude of forcing introduced in §5.4
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Figure 6: Linear stability analyses of two-dimensional flow past a circular
cylinder at Re = 42. Illustrative plots of (a) streamwise (left) and transverse
(right) components of velocity for the dominant direct mode, (b) streamwise
(left) and transverse (right) velocity for the dominant adjoint mode and (c)
structural sensitivity to base flow modification (left) and local feedback (right).

both the streamwise and cross-stream components of velocity.
The modes are characterised by the asymmetry in the stream-
wise component and symmetry in the cross-stream component.
We also note the spatial distribution of the modes with the
leading direct modes extending far downstream of the cylin-
der, while the adjoint modes are predominantly localised up-
stream but close to the cylinder. This separation is a result of
the non-normality of the A operator. We also show the struc-
tural sensitivity of the flow to base flow modification and local
feedback. The latter highlights regions where localised forcing
would have greatest impact on the flow.

4.4. Shallow water modelling

The ShallowWaterSolver simulates depth-averaged wave
equations, often referred to as “long-wave” approximations.
These equations are often used for engineering applications
where the vertical dimension of the flow is small compared
to the horizontal. Examples of applications include tidal flow,
river flooding and nearshore phenomena such as wave-induced
circulation and wave disturbances in ports.

The governing equations are derived from potential flow:
the Laplace equation inside the flow domain and appropriate
boundary conditions at the free surface and bottom. The two
key steps are (i) the expansion of the velocity potential with re-
spect to the vertical coordinate and (ii) the integration of the
Laplace equation over the fluid depth. This results in sets of
equations expressed in horizontal dimensions only. Depending
on the order of truncation in nonlinearity and dispersion, nu-
merous long-wave equations with di↵erent kinematic behavior
have been derived over the years [28, 29, 30].

Many depth-averaged equations can be written in a generic
form as

@U
@t
+ r · F(U) + D(U) = S(U) , (11)

where U = [H ,Hu ,Hv]T is the vector of conserved variables.
The horizontal velocity is denoted by u = [u(x, t) , v(x, t)]T ,
H(x, t) = ⌘(x, t) + d(x) is the total water depth, ⌘ is the free
surface elevation and d the still water depth. The flux vector
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in which g is the acceleration due to gravity. The source term
S(U) contains forcing due to, for example, Coriolis e↵ects, bed-
slopes and bottom friction. Importantly, D(U) contains all the
dispersive terms. The actual form of the dispersive terms di↵ers
between di↵erent wave equations and the term can be highly
complex with many high-order mixed and spatial derivatives.

At present, the ShallowWaterSolver supports the non-
dispersive shallow-wter equations (SWE) and the weakly dis-
persive Boussinesq equations of Peregrine [28]. The SWE are
recovered if D(U) ⌘ 0 while for the Peregrine equation the ex-
pression is:
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(13)

The Boussinesq equations are solved using the wave conti-
nuity approach [31]. The momentum equations are first recast
into a scalar Helmholtz type equation and solved for the aux-
iliary variable z = r · @t (Hu). The conservative variables are
recovered in a subsequent step.

A frequently used test-case for Boussinesq models is the
scattering of a solitary wave impinging a vertical cylinder. Here
a solitary wave with nonlinearity ✏ = 0.1 is propagating over a
still water depth of 1 m (✏ = A/d, where A is the wave ampli-
tude). The initial solitary wave condition is given by Laitone’s
first order solution. The cylinder has a diameter of 4 m, giving
a Keulegan-Carpenter number well below unity and di↵raction
number on the order of 2. Hence, the viscous e↵ects are small
while the di↵raction and scattering are significant.

We compute the solution in the domain x 2 [�25 , 50] me-
ters and y 2 [�19.2 , 19.2] meters, discretized into 552 triangles
using P = 5. Snapshots of the free surface elevation at four
di↵erent times are shown in Fig. 7. In Fig. 7a the solitary wave
reaches its maximum run-up on the cylinder, while in Fig. 7b
the peak of solitary wave has reached the center of the cylin-
der and a depression in the free surface around the cylinder is
clearly visible. The propagation of the scattered, and later re-
flected from the side walls, waves are seen in Figs. 7c and 7d.

4.5. Cardiac electrophysiology
The cardiac electrical system in the heart is the signalling

mechanism used to ensure coordinated contraction and e�cient
pumping of blood. Conduction occurs due to a complex se-
quence of active ion exchanges between intracellular and extra-
cellular spaces, initiated due to a potential di↵erence between
the inside and outside of the cell exceeding a threshold, pro-
ducing an action potential. This causes a potential di↵erence
across boundaries with adjacent cells, resulting in a flow of ions
between cells and triggering an action potential in the adjacent
cell. Disease, age and infarction lead to interruption of this
signalling process and may produce abnormal conduction pat-
terns known as arrhythmias. Clinically this can be treated using
catheter ablation, however acurately selecting the most e↵ective

10

Direct Stability Analysis



Direct

stability

analysis

(Biglobal)

Figure 6: Linear stability analyses of two-dimensional flow past a circular
cylinder at Re = 42. Illustrative plots of (a) streamwise (left) and transverse
(right) components of velocity for the dominant direct mode, (b) streamwise
(left) and transverse (right) velocity for the dominant adjoint mode and (c)
structural sensitivity to base flow modification (left) and local feedback (right).

both the streamwise and cross-stream components of velocity.
The modes are characterised by the asymmetry in the stream-
wise component and symmetry in the cross-stream component.
We also note the spatial distribution of the modes with the
leading direct modes extending far downstream of the cylin-
der, while the adjoint modes are predominantly localised up-
stream but close to the cylinder. This separation is a result of
the non-normality of the A operator. We also show the struc-
tural sensitivity of the flow to base flow modification and local
feedback. The latter highlights regions where localised forcing
would have greatest impact on the flow.

4.4. Shallow water modelling

The ShallowWaterSolver simulates depth-averaged wave
equations, often referred to as “long-wave” approximations.
These equations are often used for engineering applications
where the vertical dimension of the flow is small compared
to the horizontal. Examples of applications include tidal flow,
river flooding and nearshore phenomena such as wave-induced
circulation and wave disturbances in ports.

The governing equations are derived from potential flow:
the Laplace equation inside the flow domain and appropriate
boundary conditions at the free surface and bottom. The two
key steps are (i) the expansion of the velocity potential with re-
spect to the vertical coordinate and (ii) the integration of the
Laplace equation over the fluid depth. This results in sets of
equations expressed in horizontal dimensions only. Depending
on the order of truncation in nonlinearity and dispersion, nu-
merous long-wave equations with di↵erent kinematic behavior
have been derived over the years [28, 29, 30].

Many depth-averaged equations can be written in a generic
form as
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+ r · F(U) + D(U) = S(U) , (11)

where U = [H ,Hu ,Hv]T is the vector of conserved variables.
The horizontal velocity is denoted by u = [u(x, t) , v(x, t)]T ,
H(x, t) = ⌘(x, t) + d(x) is the total water depth, ⌘ is the free
surface elevation and d the still water depth. The flux vector
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in which g is the acceleration due to gravity. The source term
S(U) contains forcing due to, for example, Coriolis e↵ects, bed-
slopes and bottom friction. Importantly, D(U) contains all the
dispersive terms. The actual form of the dispersive terms di↵ers
between di↵erent wave equations and the term can be highly
complex with many high-order mixed and spatial derivatives.

At present, the ShallowWaterSolver supports the non-
dispersive shallow-wter equations (SWE) and the weakly dis-
persive Boussinesq equations of Peregrine [28]. The SWE are
recovered if D(U) ⌘ 0 while for the Peregrine equation the ex-
pression is:
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The Boussinesq equations are solved using the wave conti-
nuity approach [31]. The momentum equations are first recast
into a scalar Helmholtz type equation and solved for the aux-
iliary variable z = r · @t (Hu). The conservative variables are
recovered in a subsequent step.

A frequently used test-case for Boussinesq models is the
scattering of a solitary wave impinging a vertical cylinder. Here
a solitary wave with nonlinearity ✏ = 0.1 is propagating over a
still water depth of 1 m (✏ = A/d, where A is the wave ampli-
tude). The initial solitary wave condition is given by Laitone’s
first order solution. The cylinder has a diameter of 4 m, giving
a Keulegan-Carpenter number well below unity and di↵raction
number on the order of 2. Hence, the viscous e↵ects are small
while the di↵raction and scattering are significant.

We compute the solution in the domain x 2 [�25 , 50] me-
ters and y 2 [�19.2 , 19.2] meters, discretized into 552 triangles
using P = 5. Snapshots of the free surface elevation at four
di↵erent times are shown in Fig. 7. In Fig. 7a the solitary wave
reaches its maximum run-up on the cylinder, while in Fig. 7b
the peak of solitary wave has reached the center of the cylin-
der and a depression in the free surface around the cylinder is
clearly visible. The propagation of the scattered, and later re-
flected from the side walls, waves are seen in Figs. 7c and 7d.

4.5. Cardiac electrophysiology
The cardiac electrical system in the heart is the signalling

mechanism used to ensure coordinated contraction and e�cient
pumping of blood. Conduction occurs due to a complex se-
quence of active ion exchanges between intracellular and extra-
cellular spaces, initiated due to a potential di↵erence between
the inside and outside of the cell exceeding a threshold, pro-
ducing an action potential. This causes a potential di↵erence
across boundaries with adjacent cells, resulting in a flow of ions
between cells and triggering an action potential in the adjacent
cell. Disease, age and infarction lead to interruption of this
signalling process and may produce abnormal conduction pat-
terns known as arrhythmias. Clinically this can be treated using
catheter ablation, however acurately selecting the most e↵ective
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FIG. 9. Vorticity of the steady-state of the incompressible
flow past a two-dimensional ellipse at Re = 150 with an angle
of attack of 30�.

(u, v) = (1, 0) are set at the left, top and bottom edges.
An outflow boundary condition is defined at the right
edge of the domain. The initial conditions are such that
(u

0

, v

0

) = (0, 0). A polynomial order of 7 is used and
the time-step is �t = 0.0025.

Nothing is assumed about the stability properties of
the flow. We only know that the flow is unstable at
this Reynolds number because if DNS simulation is com-
puted, we can observe formation of vortex streets. The
initial parameters are randomly chosen to be �

init

= 1
and �

init

= 1 and the modified Arnoldi iteration method
is executed every T = 50 time units. With these set-
tings, the adaptive SFD method calls the stability anal-
ysis method twice and converges in a total of 577 time
units (including 82 Arnoldi steps). The steady-state so-
lution obtained is shown on Fig. 9.

Note that the second approximation of the domi-
nant eigenvalue (computed using a “partially converged”
steady-state when ||q� q̄||

inf

< 10�2) is �̃
2

= 0.169 and
f̃

2

= 1.287, which is very similar to the dominant eigen-
value computed using the true steady base flow (when
||q� q̄||

inf

< 10�8) where � = 0.168 and f = 1.283.
This test case shows that an adaptive SFD method can

easily converge towards an unstable steady flow with no
axial symmetry and without any a priori knowledge of
the dominant eigenvalue.

D. Incompressible flow past a rotating cylinder at
Re = 100

In this section we aim to find the steady-state solution
of an other flow that can not be studied with the help
of symmetry planes. This test case is the incompressible
two-dimensional flow past a rotating cylinder at Re =
100. The rotation of the cylinder impacts the stability of
the flow. As shown by Pralits et. al14, for a rotation rate
0 6 ↵ . 1.8, the flow is unstable and von Kármán vortex
streets are present. They become weaker as ↵ increases.
This instability is called shedding mode I. If the rotation
rate is in the range 1.8 . ↵ 6 4.85, the flow becomes
stable. If the rotation rate is increased again, a second
unstable mode appears (called shedding mode II) for a
range 4.85 6 ↵ 6 5.17. And eventually, for rotation rates

above 5.17, the flow is stable. Note that this behaviour
is only true in two-dimensions. In three-dimensions the
presence of shedding mode I and the range of shedding
mode II depend on the spanwise wave number15.
Here we are interested in finding a steady-state solu-

tion of the unstable mode II, hence we consider a ro-
tation rate ↵ = 5. The computational domain consid-
ered is composed of 1044 elements and its dimensions
are �15  x  45 and �25  y  25. The mesh is made
of structured curved quadrilaterals close to the cylinder
boundary and triangles elsewhere. The mesh is fine close
to the cylinder boundary because its rotation induces a
strong velocity gradient. Also, the region on the right of
the cylinder and for 0  y  8 is refined because that is
where the shedding vortices appear when a DNS simula-
tion is executed. Slip boundary conditions are imposed
at the cylinder surface such that u·t = ↵ and u·n = 0,
where u is the velocity vector, t and n are the tangential
and normal vectors to the surface respectively. Dirichlet
boundary conditions (u, v) = (1, 0) are set at the left,
top and bottom edges. An outflow boundary condition
is defined at the right edge of the domain. The initial
conditions are such that (u

0

, v

0

) = (0, 0). A polynomial
order of 7 is used and the time-step is �t = 0.0005.

To compute the adaptive method presented in Sec. V,
the initial control coe�cient of the SFD method is ran-
domly chosen to be �

init

= 1. However some care is taken
to the selection of the initial filter width. When DNS
simulation is executed, we observe that the frequency of
the shedding mode II is very low. Thus the initial filter
width of the SFD method must be chosen to be quite
high, e.g. �

init

= 5. Larger filter widths enable us to
control instabilities that arise on a larger time scale, but
may require an impractically long time to converge. The
SFD method is well suited to obtain steady-state solu-
tions of flows with high unstable frequencies. Hence the
flow past a cylinder at the unstable shedding mode II
is challenging for the SFD method. For this test case
the initial filter width is carefully chosen, but nothing is
assumed about the dominant eigenvalue of the flow.

As a long time is necessary for the flow to be estab-
lished, a relatively large time T = 300 is chosen. This
means that the stability analysis method is executed
for the first time after 300 time units. With these set-
tings, the adaptive SFD method calls the stability anal-
ysis method twice, and converges in a total of 907 time
units (including 145 Arnoldi steps). The steady-state
solution obtained is shown on Fig. 10. Note that if
a shorter time T is chosen, the stability analysis using
a “partially converged” base flow does not capture rele-
vant features of the flow. Hence the approximation of the
dominant eigenvalue is not good enough and the corre-
sponding SFD parameters only enable a slow convergence
towards the steady-state.

The second approximation of the dominant eigenvalue
(computed using a “partially converged” steady-state
when ||q � q̄||

inf

< 10�2) is �̃

2

= 0.039 and f̃

2

= 0.239,
which is very similar to the dominant eigenvalue com-
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