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Stability of transonic flows over an isolated roughness
element

6. Results

by the hump which is travelling upstream. A possible explanation for the oscillations at
the outflow is the approximative nature of the outflow boundary condition in the solver
of the linearised Navier-Stokes equations. As it is not exact and incorrect under certain
circumstances, numerical noise is observable.

6.3. Two-dimensional transonic flow over a hump with
a TS-wave

Computational setup

The computational domain of the simulation is depicted in Fig. 6.21 and its dimensions are
mainly di↵erent in the streamwise direction from the preceding DNS, whereas the height of
the domain and the location of the hump remain unchanged. The largest hump (Hump C in
Tab. 6.2) of the previous computations was chosen as it caused the strongest destabilisation
of the transonic flow. The mesh comprised 366× 44 elements and each element contained 16
solution points. Similar to the previous 2D DNS, the hump region was refined by using 250×34
elements which leads again to approximately �y

min

= 1.5 ⋅10−6m and �x
min

= 3 ⋅10−6m with
respect to the distance between the closest solution point to the wall and the distance between
two solution points in the streamwise direction, respectively.

Figure 6.21.: Computational domain of the two-dimensional DNS with a TS-wave triggered
upstream of the hump.

A TS-wave is generated inside the boundary layer at x = 0.011m and y = 0.0003m by a
fluctuation in the pressure. This pressure fluctuation is implemented through a body force
which acts at the location mentioned above and is explained for a two-dimensional simulation
in further detail in the following section. Furthermore, an absorption region is introduced at
the outflow in order to prevent reflections of the pressure oscillations caused by the outflow
boundary condition. The absorption region damps the TS wave so that it does not hit the
outflow boundary.
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@t
+r · H(u,ru) = 0

• Advective and diffusive flux tensors
H(u,ru) = HA(u) +HD(u,ru)

DG/FRExplicit

DG = Discontinuous Galerkin (Explicit —> RK, SSPRK, etc)

 Geometrical flexibility   ✔ 
 Parallelization              ✔ 
 Stability                     (✔)
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⇠ = ⇥(x)



Underlying numerics 
DG = Discontinuous Galerkin FR  = Flux Reconstruction

 Define an expansion basis for each element5. 2D Euler and Navier-Stokes system: the numerical discretisation
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Figure 5.5: Two dimensional modal expansions with modified basis with p = q =

4 [67].

that may be conveniently written as

U = BÛ (5.26)

This expression is known as backward transformation as it transforms any variable from

the coefficient space Û to the physical space U. The diagonal matrix that contains

the Gaussian quadrature weights multiplied by the Jacobian at the quadrature points is

defined as

W = [Wm(ij)n(rs)] = [Jijwiwjδmn] (5.27)

where Jij is the value of the Jacobian at the quadrature point ij, the indices i, j correspond

to the directions ξ1 and ξ2, respectively, and m(ij) = n(ij) = i + j · Qp1. Using

∫

Ωe

u(x)dx =

∫

Ωref

u(ξ)|J |dξ (5.28)

88

Up to now they are identical …
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Theory

Overview | Introduction | Theory | Implementation | Application | Summary

• How do properties of the schemes vary with c? [4]

[4] P. E. Vincent, P. Castonguay,  A. Jameson. Insights from von Neumann Analysis of High-Order Flux 
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• Consistent integration of the nonlinearities

• More stable forms of the governing equations 
Skew-symmetric form 
…

• Optimal choice of the quadrature points

Stabilising techniques 
Overview



• Spectral Vanishing Viscosity (SVV)

• Consistent integration of the nonlinearities
+2

2J. Lombard et al. (Joint work between Imperial College and McLaren Racing)

 Transient simulation of a wingtip vortex at Rec = 1.2x106  
 Under Review, AIAA Journal, 2015, 

Stabilising techniques 
Overview



• Consistent integration of the nonlinearities3

3G. Mengaldo D. De Grazia, D. Moxey, P.E. Vincent and S.J. Sherwin 

 Dealiasing techniques for high-order spectral element methods on regular and irregular grids 
 Accepted, Journal of Computational Physics, 2015, 
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Spatially varying geometric factors

⇠ = ⇥(x)
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Compressible Navier-Stokes equations - NACA 4412
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Stabilising techniques 
Flow applications

Cylinder - Density 
Mach = 0.2, Re = 3900 
Local dealiasing

T106C blade - Temperature 
Mach = 0.2, Re = 200 

Local dealiasing



• Consistent integration improves robustness 

• Local/global dealiasing techniques can be equally applied to DG and FR  

• Local approach enhance efficiency 

• Additional details3

Stabilising techniques 
Summary

3G. Mengaldo D. De Grazia, D. Moxey, P.E. Vincent and S.J. Sherwin 

 Dealiasing techniques for high-order spectral element methods on regular and irregular grids 
 Accepted, Journal of Computational Physics, 2015, 
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Flight experiments
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Numerical solution of the governing equations (DNS/LES)

Wind tunnel experiments

Reduced models (triple-deck theory)

Boundary-layer instabilities and separation
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Case 1 0.50 216.29 K [0.05, 0.10, 0.15] 4x105 0.72
Case 2 0.87 258.0 K [0.05, 0.10, 0.15] 4x105 0.72

Twall hr Re =
⇢U1L

µ
M =

U1
c1

Pr =
Cpµ



�99

�99

Idealised small imperfections at leading-edge 

Subsonic/transonic applications 
Model problem

Stewartson & Williams (1969), Stewartson (1969), Messiter (1970) and Sychev (1972), while

the transonic version was first formulated by Bodonyi & Kluwick (1977), Bodonyi (1979),

Bodonyi & Kluwick (1982) and Bodonyi & Kluwick (1998). In our calculations we employed

the special regime described by Timoshin (1990) and Bowles & Smith (1993).

Concerning the DNS, we solved the two-dimensional compressible Navier-Stokes equations

presented in chapter 3 by means of the DGSEM method with lumped mass matrix in space

(thoroughly investigated in chapter 4 and chapter 5) and an explicit 4th-order Runge-Kutta

scheme in time.

6.2 Model problem

The model problem considered to compare the DNS and the triple-deck theory is shown in

figure 6.1 and consists of a two-dimensional flat plate equipped with an isolated roughness

element.
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Figure 6.1: Model problem.

The shape of the roughness element is given by the following equation

F (x) = h

r

e

� (L�x)2

�

2
, (6.1)

where L is the distance from the leading edge of the flat plate to the centre of the roughness

element, h

r

is the height of the roughness element and � is a parameter which controls the

shape of the roughness element.

The Reynolds number Re was set equal to to 400,000 for all the simulations performed

and is defined as follows:

Re =
⇢1u1L

µ1
, (6.2)

where ⇢1 denotes the free-stream density, U1 is the free-stream velocity and µ1 refers to the
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was most distorted, Hump C, the maximum di↵erence between the compressible similarity

solution and the flow calculated by the compressible Navier-Stokes solver in proximity to the

boundaries was less than 0.03% (normalised with respect to the free-stream values).
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Figure 6.2: Sketch of the process adopted to perform the direct numerical simulations.

The final embedded mesh was constituted by 500 ⇥ 66 elements where we employed a

stretching technique in both the wall-normal and the streamwise directions. As already

mentioned, we used a solution polynomial of order three within each element and, therefore,

the number of solutions points in the wall-normal direction was equal to 264 (220 of which

contained within the boundary layer at the roughness location) while in the streamwise

direction was equal to 2000. The minimum �y in proximity to the wall was equal to 2⇥10�6
m.

In the streamwise direction the maximum resolution near the roughness element was equal to

1⇥10�5
m. The description of the roughness element geometry was obtained using a 5th-order

spline to achieve an accurate representation.
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Subsonic/transonic applications 
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4G. Mengaldo, M. Kravtsova, A.I. Ruban, and S.J. Sherwin 

 Triple-deck and direct numerical simulation analyses of high-speed subsonic flows past a roughness element 
 Journal of Fluid Mechanics, 2015, Volume 774



hr = 0.15 𝜹99

0.045 0.05 0.055

ï6

ï4

ï2

0

2

x 106 Twall = 258.0 K; Mach = 0.87

x [m]

dp
/d

x 
[P

a/
m

]

 

 

15% DNS
15% Triple Deck 0.049 0.05 0.051

ï6

ï4

ï2

0

2
x 106

0.045 0.05 0.055

0

20

40

60

80

100
Twall = 258.0 K; Mach = 0.87

x [m]

o xy
 [P

a]

 

 
15% DNS
15% Triple Deck

0.049 0.05 0.051
0

20

40

60

80

100

• Differences increase with hump height 

Subsonic/transonic applications 
Triple-deck4

4G. Mengaldo, M. Kravtsova, A.I. Ruban, and S.J. Sherwin 

 Triple-deck and direct numerical simulation analyses of high-speed subsonic flows past a roughness element 
 Journal of Fluid Mechanics, 2015, Volume 774



Wall-normal pressure gradient

Grey lines = iso-contours of pressure

Subsonic/transonic applications 
Triple-deck



sharper and higher peaks in DNS 
different flow acceleration/deceleration 
noticeable difference in the reattachment point
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Stability of transonic flows over roughness elements

5. Transition prediction approach based on DNS and PSE-method

5. Transition prediction approach based on
DNS and PSE-method

In order to study the e↵ects of a roughness element on the stability of transonic flows, the
DNS solution is processed by a numerical tool, which was developed in the course of this
thesis, to extract the base flow in a format that can be read by the PSE codes. Additionally,
the process to create a grid for the DNS and to set up simulations was optimised with the aim
of achieving steady state solutions for the base flow over the hump in a shorter computational
time.

5.1. Basic concept

The approach, that was used for the stability studies of the flow over a roughness element,
is summarised in Fig. 5.1. Firstly, a MATLAB script is employed to automatically generate
a two-dimensional structured mesh for the open-source finite element grid generator Gmsh.
The MATLAB script allows a mesh refinement in proximity to the hump and close to the
wall as the script divides the domain into multiple blocks.

Figure 5.1.: Overview of the basic process used to perform stability calculations and transi-
tion prediction

Secondly, the generated mesh-file is used by Nektar++ to compute a steady-state solution
of the flow over a hump. More details on the DNS process, the structure of the mesh and
the imposed boundary conditions are discussed in Sec. 5.2. The steady-state solution is
subsequently processed by a numerical interface tool that marches along the streamwise
direction and extracts the boundary layer profiles and several other quantities, such as the
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Flow configuration

Stability of transonic flows over roughness elements

6. Results

by the hump which is travelling upstream. A possible explanation for the oscillations at the
outflow is the approximative nature of the outflow boundary condition. As it is not exact
and incorrect under certain circumstances, numerical noise is observable.

6.3. Two-dimensional transonic flow over a hump with
a TS-wave

Computational setup

The computational domain of the simulation is depicted in Fig. 6.21 and its dimensions are
mainly di↵erent in the streamwise direction from the preceding DNS, whereas the height of
the domain and the location of the hump remain unchanged. The largest hump (Hump C in
Tab. 6.2) of the previous computations was chosen, as it caused the strongest destabilisation
of the transonic flow. The mesh comprised 366× 44 elements and each element contained 16
solution points. Similar to the previous 2D DNS, the hump region was refined by using 250×34
elements which leads again to approximately �y

min

= 1.5 ⋅10−6m and �x
min

= 3 ⋅10−6m with
respect the distance between the closest solution point to the wall and the distance between
two solution points in the streamwise direction, respectively.

Figure 6.21.: Computational domain of the two-dimensional DNS with a TS-wave triggered
upstream of the hump.

A TS-wave is generated inside the boundary layer at x = 0.011m and y = 0.0003m by a
fluctuation in the pressure. This pressure fluctuation is implemented through a body force
which acts at the location mentioned above and is explained for a two-dimensional simulation
in further detail in the following section. Furthermore, an absorption region is introduced at
the outflow in order to prevent reflections of the pressure oscillations caused by the outflow
boundary condition. The absorption region damps the TS wave so that it does not hit the
outflow boundary.
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where U = [⇢ ⇢u ⇢v E
t

]T denotes the solution vector in the two-dimensional case and ∇Fi

and ∇Fv are the inviscid and viscid flux vectors, respectively. In the previous equation, the
divergence of the body force was calculated according to

∇FBF = ∇Fi,BF −∇Fv,BF , (6.6)

where ∇Fi,BF in a two-dimensional flow is defined as

∇Fi,BF = @A

@x
+ @B

@y
, (6.7)

with

A =
�����������

⇢∞u∞
⇢∞u2∞ + p∞
⇢∞u∞v∞(E

t,BF

+ p∞)u∞

�����������
, B =

�����������
⇢∞v∞

⇢∞u∞v∞
⇢∞v2∞ + p∞(E
t,BF

+ p∞)v∞

�����������
.

Note that only the total energy E
t,BF

is depending on x and y in the last row of A and B.
Furthermore, the divergence of the viscous flux of the body force is ∇Fi,BF = 0 as all the
derivatives of the mean flow variables, e.g. @u∞�@x, @u∞�@y, @v∞�@x, @v∞�@y, @T∞�@x and
@T∞�@y, vanish.
Finally, the following expression for the divergence of the body force is obtained

∇FBF = ∇Fi,BF =������������

0

0

0

C p∞
�−1 exp (−�(Lx

− x)2) exp (−�(L
y

− y)2)sin(!t)�2u∞�(Lx

− x) + 2v∞�(Ly

− y)�

������������
,

which can be set in the solver settings of Nektar++.

DNS results

The DNS results of the two-dimensional simulation with a pressure perturbation of �p
pert

� =
0.005 p∞ and frequency of f = 32kHz are depicted in Fig. 6.23, Fig. 6.24 and Fig. 6.25.

Figure 6.23.: Instantaneous field of streamwise velocity u(x, y) with superimposed two-
dimensional TS-wave (�p

pert

� = 0.005 p∞, f = 32kHz).
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Some preliminary results
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Figure 6.10.: Velocity profiles at di↵erent positions at the surface of the hump; x =
0.05008 m, x = 0.0502 m, x = 0.051 m, x = 0.053 m.
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Figure 6.11.: Comparison of the N -factors of the three hump cases and a flat plate; Flat
plate, Hump A, Hump B, Hump C.

The smallest hump only has a minor impact on the N -factor which is almost similar to
the N -factor curve of the flat plate. The medium-height hump leads to a destabilisation of
the flow in the hump region and a small region of stabilisation downstream of the hump.
However, the overall destabilisation of the flow at the end of the domain is only slightly larger
compared to the N -factor of the flat plate. The largest hump exhibits a significant deviation
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N-factors - linear PSE Comparison PSE-DNS
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FIG. 6. Neutral curve of the highest hump compared to the neutral curve of a flat plate.
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FIG. 7. Comparison of the N -factor computed by DNS, linear PSE and non-linear PSE for a

frequency of f = 32kHz in the case of the highest hump.
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Summary 

• Robust (and efficient) numerical framework for compressible flows 
Euler equations 
Navier-Stokes 

• Implementation of both DG and FR (FR for 1D and 2D quad only) 

• Implementation of both local and global dealiasing techniques 

• Successfully applied to high-Reynolds number aeronautical problems 

• Boundary conditions? —>  
 G. Mengaldo et al. 

 A Guide to the Implementation of Boundary Conditions in Compact  
 High-Order Methods for Compressible Aerodynamics, 2014, AIAA Aviation 



Thank you! 

≈

≈

≈

Shock-capturing / P-adaption / adjoint formulation are also included! 
—> Next presentation by Dirk Ekelschot!

≈


