Shear stress distributions and Tollmien-Schlichting waves in boundary layers Simulated by Nektar++

Hui Xu

Applied Mathematics & Mathematical Physics Section Department of Mathematics, Imperial College London

13 March 2013

Hui Xu Laminar-Turbulent Transition

Simulated results

- Validations & some coding work
- Cases of flat plate & smooth wavy walls

Simulated results

- Validations & some coding work
- Cases of flat plate & smooth wavy walls

< 合

-∢ ≣ ▶

Simulated results Validations & some coding work Ongoing works Cases of flat plate & smooth wavy

Blasius boundary layer

Basic parameters (20/01/2013):

 $\textit{Re}_{x=1} =$ 400 000. $\Omega = [1, 8] \times [0, 0.2]$. Mesh numbers: 3899 Triangles & 2232 Quadrangles. Modes: 7.

Implement sponge layer

The sponge layer for both nonlinear and linearized NSEs:

$$\begin{cases} \frac{\partial u}{\partial t} - \nu \Delta u + (u \cdot \nabla)u + \nabla p &= -\sigma(x, y)(u - U) + f, & \text{in } \Omega \\ \nabla \cdot u &= 0, & \text{in } \Omega \end{cases}$$

$$\begin{cases} \frac{\partial u'}{\partial t} - \nu \Delta u' + (U \cdot \nabla)u' + (u' \cdot \nabla)U + \nabla p &= -\sigma(x, y)u' + f, & \text{in } \Omega \\ \nabla \cdot u' &= 0, & \text{in } \Omega \end{cases}$$

where $\sigma(x, y)$ is a spatial dependent absorbing strength and u' is a perturbation of the flow around base flow. By the above definition, the sponge layer can be used for both DNS and linearized NSEs.

- Validations & some coding work
- Cases of flat plate & smooth wavy walls

▲ @ ▶ ▲ ⊇ ▶

Imperial College London Simulated results Validations & some coding work Ongoing works Cases of flat plate & smooth wavy walls

Schematic geometry with wavy wall (07/02/1013)

Hui Xu Laminar-Turbulent Transition

Imperial College London

ъ

・ 同 ト ・ ヨ ト ・ ヨ ト

Table: Parameters: $\Omega = [1, 4] \times [0, 0.2]$. $x_s = 1.5$ is the start position of wavy walls. Ref. velocity u=1. $Re = 1/\nu = 400000$. *h* (2 times of wave amplitude) and λ denote the wavy wall depth and wavelength of wavy walls.

с	$Re_{x_{\mathrm{Inlet}}}$	δ_{inlet}	h	λ	k	$4.91 x_s Re_{x_s}^{-1/2}$	4.91 <i>x_sRe_{xs}</i> -5/8
*	400000	0.0078	NA	NA	NA	0.0095	0.0018
1	\mathbf{i}	\mathbf{i}	0.001	0.2	1	\mathbf{i}	\backslash
2	<u>\</u>	<u>\</u>	0.002	0.2	1	<u>\</u>	\
3	×	<u>\</u>	0.003	0.2	1	N	\`

< 🗇 🕨

Wall shear stress distributions

Tollmien-Schlichting waves

Exciters: The excite center position is at $x_{st} = 1.25$ and the shape of the exciter $A(x) = \epsilon A_m(x) \sin(\omega t)$ is defined by

$$A_m = a_1 \left(\frac{x - x_1}{x_{st} - x_1}\right)^5 - a_2 \left(\frac{x - x_1}{x_{st} - x_1}\right)^4 + a_3 \left(\frac{x - x_1}{x_{st} - x_1}\right)^3, \ x_1 \le x \le x_{st},$$

and

$$A_m = -a_1 \left(\frac{x_2 - x}{x_2 - x_{st}}\right)^5 + a_2 \left(\frac{x_2 - x}{x_2 - x_{st}}\right)^4 - a_3 \left(\frac{x_2 - x}{x_2 - x_{st}}\right)^3, \ x_{st} \le x \le x_2,$$

where $x_{st} = \frac{x_1 + x_2}{2}$, $a_1 = 15.1875$, $a_2 = 35.4375$, $a_3 = 20.25$. $\epsilon = 0.0001$ is the amplitude of the exciter. $x_1 = 1.2$ and $x_2 = 1.3$. For all simulations in this part, the sponge regions are used in the range $x \in [3.8, 4]$. The exciter dimensionless frequency $\omega = 0.0689$.

Imperial College

ヘロト ヘアト ヘビト ヘビ

Simulated results Validations & some coding work Ongoing works Cases of flat plate & smooth wavy walls

Tollmien-Schlichting waves

Comparisons of T-S wavs (at y=0.001, $\epsilon = 0.0001$)

Hui Xu Lai

Simulated results Validations & some coding work Ongoing works Cases of flat plate & smooth wavy walls

Tollmien-Schlichting waves

Figure: Horizontal velocity *u* for wavy walls.

Hui Xu Laminar-Turbulent Transition

Imperial College London

- Looking for scaling laws;
- Theoretical analysis on the reduction of T-S waves;
- 2.5D simulations;
-

Enjoy a movie of T-S waves' evolution with a single wave front.