Gabriele Rocco Hugh M. Blackburn, Xuerui Mao, ,Spencer J. Sherwin, Tamer Zaki

Imperial College London

13 March 2013

Imperial College London

Case study

NACA 65 profile.

What we are interested in

- Well resolved D.N.S.
- Direct/adjoint stability analysis

Transient growth

DNS simulation

- Re = 138500
 10400 elements
 7th order GLL-Lagrange/modified polynomial
- Spectral/hp dealiasing
- $\Delta t = 10^{-6}$

Profile of the vorticity

(10 / (S)

Gabriele Rocco Hugh M. Blackburn, Xuerui Mao, ,Spencer J. Sherwin, Tame Flow past a compressor blade

Esemble averaged fields $\bar{U} = \sum_{N} U_{i}$

Flow is periodic on the suction side close to the trailing edge

0.6

Gabriele Rocco Hugh M. Blackburn, Xuerui Mao, ,Spencer J. Sherwin, Tame Flow past a compressor blade

Central frequency

$$\omega = rac{2\pi}{T} \simeq 28.5$$

Phase-averaging (Cantwell, Coles-J.F.M., 1983)

$$s = \bar{s} + s' + \tilde{s}$$

- s' random component
- Global mean $N\bar{s} = \sum_{n=1}^{N} s_n$
- mean at constant phase $N_i < s >= \sum_{\nu=1}^{N_i} s_{\nu}$ ($\nu = 1, \dots, 50$)
- periodic component $\tilde{s} = < s > -\bar{s}$
- $\overline{\tilde{s}} = 0$ the periodic motion has zero mean when averaged over one cycle
- ullet < s' >= 0 random fluctuations at constant phase have zero average
- $\overline{\tilde{s}s'} = 0$ periodic and random motions are uncorrelated

It is possible to derive the momentum equation for the mean flow at constant phase, noticing $\tilde{s} = \langle s \rangle - \bar{s}$.

$$\frac{\partial < \mathbf{u} >}{\partial t} + < \mathbf{u} > \cdot \nabla < \mathbf{u} > = -\nabla +\nu \nabla^2 < \mathbf{u} > -\nabla \cdot < \mathbf{u}' \mathbf{u}' >$$

 \mathbf{u}' is much smaller than \mathbf{u} so the last term can be neglected

Phase averaging over 80 periods

Task

Direct Floquet analysis of the phase-averaged flow

- Simulations still going.
- Results seem to point out an unstable mode with $\sigma \simeq 3 \times 10^{-1}$.

Current and future simulations:

- Adjoint stability analysis
- Transient growth analysis
- "Localised" stability analysis