
IMPROVING I/O
PERFORMANCE IN
NEKTAR++
Rupert Nash (rupert.nash@ed.ac.uk)
EPCC
The University of Edinburgh

Nektar++ Workshop, Imperial College, 7/7/15

ARCHER eCSE programme
•  Funded by EPSRC
• Run by EPCC as part of our national HPC service
• You can get 12 PM of effort from a research software

engineer (not necessarily at EPCC, could be you/your
PDRA)

• Enable you to do more science on ARCHER
•  Lightweight proposal (~10 pages)
•  ~60% success rate
• Call 6 closes on Tuesday 15th September, 2015
• Call 7 closes on Tuesday 19th January, 2016

This talk
• Going to talk about:

• Current situation of I/O in master

•  Two areas where I’m improving Nektar’s I/O:
•  Field I/O
•  Mesh I/O

Current state of I/O
• Entirely XML based
• XML is great!

•  J self-describing
•  J (quasi) human readable
•  J widely used

• XML is horrible!
•  L verbose
•  L no random access
•  L TinyXML* requires parsing whole document
•  L only directly supports string data types
•  L field data stored in a compressed, base64-encoded string

Current state of I/O
• Mesh:

•  Read mesh on rank 0
•  Decompose
•  Write each partition to a new file
•  Each rank reads its partition

•  Field output
•  Communicate IDs to rank 0
•  Rank 0 writes metadata
•  All ranks write data to own file

•  This is a well-known anti-pattern for parallel I/O

Archer write performance – Henty et al.

PARALLEL IO ON ARCHER 11

default striping of 4, we achieve 4 times the serial bandwidth at 2GiB/s on more

than a few hundred processes. With full striping, the bandwidth increases with

process count up to a maximum of 14 GiB/s on 4096 processes (the largest case

tested here). This corresponds to 64 GiB of data being written in under 5 sec-

onds; using serial IO, or parallel IO without striping, takes around 150 seconds.

Figure 2 shows the same basic pattern with serial and unstriped parallel IO

all achieving around 500 MiB/s. However, the effect of striping seems to be

reduced by a factor of two compared to the smaller test case: we achieve 1 GiB/s

and 8 GiB/s for default and full striping respectively. This might be improved

by increasing the stripe size above the default of 1 MiB, although this was not

investigated here.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 4 16 64 256 1024 4096

Gi
B/

s

Processes

Striped parallel
Defstriped parallel
Unstriped parallel

Striped serial
Defstriped serial
Unstriped serial

Figure 1: Write bandwidth for local data volume n3 = 1283

5.2. Collective vs non-collective IO

To investigate the effects of non-collective IO, the call to MPI_File_write_all()

is simply replaced by MPI_File_write(). With the latter form, the MPI-IO li-

brary cannot assume that all processes are performing IO at the same time (al-

though we know in practice that they are), so cannot apply any of the optimisa-

tions described in Section 4.1..

http://www.archer.ac.uk/documentation/white-papers/

Why is collective IO faster?

!

!

!

Compute
Node

MDS

File
Open

Attri
butes

 & File
IDs

OSS OSS

OST OST OST OSTOST OST

WritesWrites

MDT MDT MDT

FieldIO
aorta>	 ls	 -‐lh	 aorta.fld/	
total	 143M	
-‐rw-‐-‐-‐-‐-‐-‐-‐	 1	 rnashnek	 ecse0213	 186K	 Jun	 17	 11:24	 Info.xml	
-‐rw-‐-‐-‐-‐-‐-‐-‐	 1	 rnashnek	 ecse0213	 6.0M	 Jun	 17	 11:24	 P0000000.fld	
-‐rw-‐-‐-‐-‐-‐-‐-‐	 1	 rnashnek	 ecse0213	 5.5M	 Jun	 17	 11:24	 P0000001.fld	
-‐rw-‐-‐-‐-‐-‐-‐-‐	 1	 rnashnek	 ecse0213	 5.8M	 Jun	 17	 11:24	 P0000002.fld	
-‐rw-‐-‐-‐-‐-‐-‐-‐	 1	 rnashnek	 ecse0213	 5.6M	 Jun	 17	 11:24	 P0000003.fld	
-‐rw-‐-‐-‐-‐-‐-‐-‐	 1	 rnashnek	 ecse0213	 5.7M	 Jun	 17	 11:24	 P0000004.fld	
-‐rw-‐-‐-‐-‐-‐-‐-‐	 1	 rnashnek	 ecse0213	 5.6M	 Jun	 17	 11:24	 P0000005.fld	
<SNIP	 />	
-‐rw-‐-‐-‐-‐-‐-‐-‐	 1	 rnashnek	 ecse0213	 6.1M	 Jun	 17	 11:24	 P0000023.fld	
	

FieldIO – Info.xml
aorta>	 cat	 -‐lh	 aorta.fld/Info.xml	
<?xml	 version="1.0"	 encoding="utf-‐8"	 ?>	
<NEKTAR>	
	 	 	 	 <Metadata>	
	 	 	 	 	 	 	 	 <Provenance>	 <SNIP	 />	 </Provenance>	
	 	 	 	 	 	 	 	 <Kinvis>0.0033333333333333335</Kinvis>	
	 	 	 	 	 	 	 	 <Time>0</Time>	
	 	 	 	 	 	 	 	 <TimeStep>0.00050000000000000001</TimeStep>	
	 	 	 	 </Metadata>	
	 	 	 	 <Partition	 FileName="P0000000.fld”>	
	 	 	 	 	 	 	 	 Long	 list	 of	 element	 IDs	 in	 the	 file	
	 	 	 	 </Partition>	
	 	 	 	 <ETC	 />	
</NEKTAR>	

FieldIO – per-rank file
aorta>	 cat	 -‐lh	 aorta.fld/P0000000.fld	
<?xml	 version="1.0"	 encoding="utf-‐8"	 ?>	
<NEKTAR>	
	 	 	 	 <Metadata></Metadata>	
	 	 	 	 <ELEMENTS	 FIELDS="u,v,w,p"	 SHAPE="Tetrahedron"	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 BASIS="Modified_A,Modified_B,Modified_C"	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 NUMMODESPERDIR="UNIORDER:5,5,5"	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 ID="LONG	 LIST	 OF	 IDS">	
	 	 	 	 	 	 	 	 base64EncodedDoubles9eJwsm3cg1e8Xx+0VsgnZe...	
	 	 	 	 </ELEMENTS>	
	 	 	 	 <ETC	 />	
</NEKTAR>	

Alternative to XML
• HDF5 - Hierarchical Data Format www.hdfgroup.org

XML HDF
Self describing Yes Yes
Human-readable Yes… No
Widely used Yes In HPC…
Random access No Yes
Binary data No Yes
Parallel IO No Yes

New format – step 1
• Exactly the same structure (for now):

But format of per-process file is HDF

Aorta.fld

Info.xml P0.fld … PN.fld

Implementation

• Standard Factory pattern
• Creates the necessary subclass of FieldIO
•  Tried to share as much code as possible

FieldIO

FieldIOXml FieldIOHdf5

Write performance

0

0.1

0.2

0.3

0.4

0.5

10 100 1000 10000

XML
HDF

Read performance

0

0.1

0.2

0.3

0.4

0.5

10 100 1000 10000

XML
HDF

How to try it out
•  >	 git	 checkout	 feature/hdf5	

• Configure with NEKTAR_USE_HDF5=ON

•  >	 make	 –j	 $NCORES	 install	

• Make tea…

How to try it out – default solvers
•  To write HDF, in your conditions.xml add:
<NEKTAR>	
	 	 	 	 <CONDITIONS>	
	 	 	 	 	 	 	 	 <SOLVERINFO>	
	 	 	 	 	 	 	 	 	 	 	 	 <I	 PROPERTY="FieldIO_Format"	 VALUE="Hdf5"	 />	
	 	 	 	 	 	 	 	 </SOLVERINFO>	
	 	 	 	 </CONDTIONS>	
</NEKTAR>	

• No changes needed to read HDF	

How to try it out – custom solvers
• Construct FieldIO objects using one of two factory

methods

• Output:
•  LibUtilities::MakeDefaultFieldIO(session)	
•  (Uses the property from previous slide)

•  Input:
•  LibUtilities::MakeFieldIOForFile(session,	 filename);	
•  (It will figure out what file type you’ve given it)

Plan for FieldIO
• Add collective IO (i.e. all ranks write to the same file)

• Aim to get this done by mid Aug (I’ve done the
groundwork)

•  Improve FieldConvert performance by extracting elements
of interest only

• Write some regression tests

Mesh IO
<GEOMETRY	 DIM="3"	 SPACE="3">	
	 	 <VERTEX>	
	 	 	 	 <V	 ID="0">1.16423749e+01	 3.93585456e+00	 8.39724408e+00</V>	
	 	 </VERTEX>	
	 	 <EDGE>	
	 	 	 	 <E	 ID="0">	 	 	 	 0	 	 1	 	 	 </E>	
	 	 </EDGE>	
	 	 <FACE>	
	 	 	 	 <Q	 ID="0">	 	 	 	 	 	 	 	 	 0	 	 	 	 	 	 	 	 	 1	 	 	 	 	 	 	 	 	 2	 	 	 	 	 	 	 	 	 3</Q>	
	 	 	 	 <T	 ID="1">	 	 	 	 	 	 	 	 	 0	 	 	 	 	 	 	 	 	 5	 	 	 	 	 	 	 	 	 4</T>	
	 	 </FACE>	
	 	 <ELEMENT>	
	 	 	 	 <R	 ID="0">	 	 	 	 0	 	 	 	 	 1	 	 	 	 	 2	 	 	 	 	 3	 	 	 	 	 4	 </R>	
	 	 </ELEMENT>	
	 	 <CURVED>	
	 	 	 	 <E	 ID="0"	 EDGEID="15274"	 NUMPOINTS="7"	 TYPE="GaussLobattoLegendre">	 1.15975286e+01	 	 ...	 </E>	
	 	 </CURVED>	
	 	 <COMPOSITE>	
	 	 	 	 <C	 ID="0">	 R[0-‐21563]	 </C>	
	 	 </COMPOSITE>	
	 	 <DOMAIN>	 C[0,1]	 </DOMAIN>	
</GEOMETRY>	

File sizes
Count Min size XML size

Vertices 24,095 500 kB 1.6 MB
Edges 108,684 900 kB 4.7MB
Faces 147,032 1.9 MB 8.9 MB
Elements 62,441 1 MB 3.5 MB

XML is flexible but verbose

Loading time
Cores Time / s Cost
24 22 < 1p
192 Still queuing!
1536 249 106 core-hours / 90 p

Aorta dataset, 100 k elements, 4 fields (u, v, w, p)

Some maths – a Hasse diagramme

Credit: Michael Lange et al, arXiv:1505.04633v1

2.1 Fluidity
The primary user application in our work is Fluidity, an
open source unstructured finite element code that uses mesh
adaptivity to accurately represent a wide range of scales in
a single numerical simulation without the need for nested
grids. Fluidity is used in a number of di↵erent scientific areas
including geophysical fluid dynamics, computational fluid
dynamics, ocean modelling and mantle convection. Fluidity
implements various finite element and finite volume discreti-
sation methods and is capable of solving solving the Navier-
Stokes equation and accompanying field equations in one,
two and three dimensions.

Previous optimisation e↵orts have highlighted that file I/O,
in particular during model initialisation, presents a severe
performance bottleneck when running on large numbers of
processes [11]. The primary reasons for this are a o↵-line
domain partitioning and the need to store each partition
using a file-per-process strategy.

2.2 DMPlex
PETSc’s ability to handle unstructured meshes is centred
around DMPlex, a data management object that encapsu-
lates the topology of unstructured grids to provide a range of
functionalities common to many scientific applications. As
shown in Figure 1, DMPlex stores the connectivity of the
associated mesh as a layered directed acyclic graph (DAG),
where each layer (stratum) represents a class of topological
entities [14, 16]. This flexible yet e�cient representation pro-
vides an abstract interface for the implementation of mesh
management and manipulation algorithms using dimension-
independent programming.

2 3

4

1

9

14
12

11
10

13

Vertex and edge numbering

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

Topological connectivity

Figure 1: DAG-based representation of a single tetrahedron
in DMPlex.

DMPlex stores data by associating data with points in the
DAG, allowing an arbitrary data size for each point. This
can be e�ciently encoded using the same AIJ data structure
used for sparse matrices. This scheme is general enough
to encompass any discrete data layout over a mesh. The
association with points also means that data can be moved
using the same set of scalable primitives that are used for
mesh distribution.

DMPlex’s internal representation of mesh topology also pro-
vides an abstraction layer that decouples the mesh from the
underlying file format and thus allows support for multi-
ple mesh file formats to be added generically. At the time
of writing DMPlex is capable of reading input meshes in
Exodus II, CGNS, Gmsh, Fluent-Case and MED formats.
Moreover, DMPlex provides output routines that generate

solution output in HDF5-based XDMF format, while also
storing the DMPlex DAG connectivity alongside the visual-
isable solution data to facilitate checkpointing [3].

In addition to a range of I/O capabilities DMPlex also pro-
vides parallel data marshalling through automated paral-
lel distribution of the DMPlex [15] and the pre-allocation
of parallel matrix and vector data structures. Mesh par-
titioning is provided via internal interfaces to several par-
titioner libraries (Chaco, Metis/ParMetis) and data migra-
tion is based on PETSc’s internal Star Forest communica-
tion abstraction (PetscSF) [3]. Additionally, DMPlex is de-
signed to provide the connectivity data and grid hierarchies
required by sophisticated preconditioners, such as geomet-
ric multigrid methods and “Fieldsplit” preconditioning for
multi-physics problems, to speed up the solution process [4,
6].

2.3 Mesh Reordering
Mesh reordering techniques represent a powerful performance
optimisation that can be utilised to increase cache coherency
of the matrices required during the solution process [10, 12,
21]. The well-known Reverse Cuthill-McKee (RCM) algo-
rithm, which can be used to reduce the bandwidth of CSR
matrices, is implemented in PETSc allowing DMPlex to
compute the required permutation of mesh entities directly
from the domain topology DAG. The resulting permutation
can then be applied to any discretisation derived from the
stored mesh topology to improve the cache coherency of the
associated CSR matrices.

3. FLUIDITY-DMPLEX INTEGRATION
Initial mesh input has been a scalability bottleneck in Flu-
idity due to the o↵-line mesh partitioning step. As illus-
trated in Figure 2a, the current preprocessor module uses
Zoltan [8], which use ParMetis [13] for graph partitioning,
to partition and distribute the initial simulation state to the
desired number of processes before writing the partitioned
mesh and data to disk, allowing the main simulation to read
the pre-partitioned data in a parallel fashion.

Fluidity’s parallel mesh initialisation routines, however, rely
on a file-per-process I/O strategy that require large num-
bers of individual files when running the application at scale.
This has been shown to put significant pressure on the meta-
data servers in distributed filesystems, such as Lustre or
PVFS, which ultimately has a detrimental e↵ect on scala-
bility when using su�ciently large numbers of processes [11].

3.1 Parallel Simulation Start-up
One of the objectives of this work, in addition to enhacing
functionality and usability, is to alleviate Fluidity’s start-up
bottleneck by utilising DMPlex’s mesh distribution capa-
bilities to perform mesh partitioning at run-time. For this
purpose, as shown in Figure 2b, a DMPlex topology ob-
ject is created from the initial input mesh and immediately
partitioned and distributed to all participating processes, al-
lowing Fluidity’s initial coordinate field to be derived from
the DMPlex object in parallel. From the initial coordinate
mesh all further discretisations and fields in the simulation
state are then derived using existing functionality.

Some maths – a Hasse diagramme

Credit: Michael Lange et al, arXiv:1505.04633v1

• Doesn’t care about the dimension
• Can represent any mesh

DMPlex mesh management in Firedrake 3

2 3

4

1

9

14
12

11
10

13

(a) Vertex and edge numbering

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(b) Connectivity of entities in a DAG

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(c) cone(5) =
{9, 10, 11}

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(d) closure(5) =
{1, 2, 3, 9, 10, 11}

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(e) support(4) =
{12, 13, 14}

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(f) star(4) =
{0, 6, 7, 8, 12, 13, 14}

Fig. 1: Example entity numbering for a single tetrahedron and the corresponding
internal DAG. Entities are numbered accross stratified layers (dimensions) with a
consecutive numbering in each stratum.

techniques exist that aim to increase the cache coherency of local data, either through
cache-aware or cache-oblivious reordering [22, 11, 12]. Cache-oblivious techniques aim
to reduce the bandwidth of the resulting sparse matrix and thus lower the number of
cache misses incurred when traversing local data regardless of the underlying caching
architecture.

The Reverse Cuthill-McKee (RCM) algorithm [7, 9] represents a classic exam-
ple of a cache-oblivious mesh reordering. RCM is based on a variant of a simplex
breadth-first search of the mesh connectivity graph and yields a fixed-size n tuple
that represents the new ordering permutation. Alternative methods, such as space
filling curve numberings, may be used to create similar permutations from a given
mesh topology graph in order to further increase cache coherency.

Cone (X) = those objects
that directly make up X

Some maths – a Hasse diagramme

Credit: Michael Lange et al, arXiv:1505.04633v1

• Doesn’t care about the dimension
• Can represent any mesh

Support (X) = those
objects that directly use
me X

DMPlex mesh management in Firedrake 3

2 3

4

1

9

14
12

11
10

13

(a) Vertex and edge numbering

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(b) Connectivity of entities in a DAG

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(c) cone(5) =
{9, 10, 11}

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(d) closure(5) =
{1, 2, 3, 9, 10, 11}

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(e) support(4) =
{12, 13, 14}

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(f) star(4) =
{0, 6, 7, 8, 12, 13, 14}

Fig. 1: Example entity numbering for a single tetrahedron and the corresponding
internal DAG. Entities are numbered accross stratified layers (dimensions) with a
consecutive numbering in each stratum.

techniques exist that aim to increase the cache coherency of local data, either through
cache-aware or cache-oblivious reordering [22, 11, 12]. Cache-oblivious techniques aim
to reduce the bandwidth of the resulting sparse matrix and thus lower the number of
cache misses incurred when traversing local data regardless of the underlying caching
architecture.

The Reverse Cuthill-McKee (RCM) algorithm [7, 9] represents a classic exam-
ple of a cache-oblivious mesh reordering. RCM is based on a variant of a simplex
breadth-first search of the mesh connectivity graph and yields a fixed-size n tuple
that represents the new ordering permutation. Alternative methods, such as space
filling curve numberings, may be used to create similar permutations from a given
mesh topology graph in order to further increase cache coherency.

Some maths – a Hasse diagramme

Credit: Michael Lange et al, arXiv:1505.04633v1

DMPlex mesh management in Firedrake 3

2 3

4

1

9

14
12

11
10

13

(a) Vertex and edge numbering

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(b) Connectivity of entities in a DAG

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(c) cone(5) =
{9, 10, 11}

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(d) closure(5) =
{1, 2, 3, 9, 10, 11}

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(e) support(4) =
{12, 13, 14}

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(f) star(4) =
{0, 6, 7, 8, 12, 13, 14}

Fig. 1: Example entity numbering for a single tetrahedron and the corresponding
internal DAG. Entities are numbered accross stratified layers (dimensions) with a
consecutive numbering in each stratum.

techniques exist that aim to increase the cache coherency of local data, either through
cache-aware or cache-oblivious reordering [22, 11, 12]. Cache-oblivious techniques aim
to reduce the bandwidth of the resulting sparse matrix and thus lower the number of
cache misses incurred when traversing local data regardless of the underlying caching
architecture.

The Reverse Cuthill-McKee (RCM) algorithm [7, 9] represents a classic exam-
ple of a cache-oblivious mesh reordering. RCM is based on a variant of a simplex
breadth-first search of the mesh connectivity graph and yields a fixed-size n tuple
that represents the new ordering permutation. Alternative methods, such as space
filling curve numberings, may be used to create similar permutations from a given
mesh topology graph in order to further increase cache coherency.

DMPlex mesh management in Firedrake 3

2 3

4

1

9

14
12

11
10

13

(a) Vertex and edge numbering

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(b) Connectivity of entities in a DAG

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(c) cone(5) =
{9, 10, 11}

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(d) closure(5) =
{1, 2, 3, 9, 10, 11}

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(e) support(4) =
{12, 13, 14}

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

(f) star(4) =
{0, 6, 7, 8, 12, 13, 14}

Fig. 1: Example entity numbering for a single tetrahedron and the corresponding
internal DAG. Entities are numbered accross stratified layers (dimensions) with a
consecutive numbering in each stratum.

techniques exist that aim to increase the cache coherency of local data, either through
cache-aware or cache-oblivious reordering [22, 11, 12]. Cache-oblivious techniques aim
to reduce the bandwidth of the resulting sparse matrix and thus lower the number of
cache misses incurred when traversing local data regardless of the underlying caching
architecture.

The Reverse Cuthill-McKee (RCM) algorithm [7, 9] represents a classic exam-
ple of a cache-oblivious mesh reordering. RCM is based on a variant of a simplex
breadth-first search of the mesh connectivity graph and yields a fixed-size n tuple
that represents the new ordering permutation. Alternative methods, such as space
filling curve numberings, may be used to create similar permutations from a given
mesh topology graph in order to further increase cache coherency.

Why do we care?

• Potentially useful for geometry-based preconditioners
•  (Get me all the cells that share a face with cell X. Or share an

edge, etc.)

• Meshing maybe?
• Can push the burden of maintenance onto a library

Library for this - PETSc
• PETSc has a sub-library for dealing with these objects,

DMPlex.
• PETSc is very widely used
• Slightly impenetrable terminology and code-as-

documentation, but that improving.
• Under active development (M Lange @ Imperial, M

Knepley @ U Chicago)
• Can attach arbitrary data to any subset of entities, e.g.

•  Coordinates to vertices
•  Curvature data to edges

State in Nektar++
• Added an output module to MeshConvert

• Unfortunately DMPlex’s serialisation methods do not
support hybrid meshes, due to over-conservative error-
checking – the developers have mostly fixed this.

• A petsc-dev branch now supports output of these to HDF5
(thanks to Michael Lange)

Future of DMPlex+Nektar++
• Retry MeshConvert with updated PETSc

• Add new mesh reading class that uses current approach
but DMPlex/HDF format

• Use PETSc partitioning routines?

Thank you

