Simulating Blood Flow and Mass Transport in the Rabbit Aorta.

Yumnah Mohamied
Department of Aeronautics and Bioengineering
Spencer Sherwin, Peter Weinberg

Nektar++ Workshop 2015

Why simulate blood flow?

- Atherosclerosis: disease characterized by the progressive narrowing and hardening of the arterial wall due to a build of fatty plaques.
- Focal nature: has a predilection for areas of branching and curvature
- Blood flow dynamics are critical
 - Mechanical forces on the wall (shear stress)
 - Flow-dependent mass transport of particles in the blood involved in the initiation of the disease: LDL (low density lipoprotein)

Re-evaluation of current consensus

- Low/oscillatory shear theory currently underlies most research into localising factors.
- Challenge: age-related change in disease in rabbits and humans.
- Recent studies casting doubts on the robustness and strength of this theory.

Transverse wall shear stress

= the time-average of wall shear stress components perpendicular to the mean flow direction [2].

Meshing

- Volume meshing in Starccm+
 - Curvature dependent surface triangulation.
 - Extrude surface inwards creating a prism layer to capture the boundary layer
 - Fill remaining volume with tetrahedral elements.
- Nektar++ MeshConvert utility
 - spherigon module
 - Curves surface elements using SPHERIGON patches

Dirichlet Boundary Conditions

Outflow Boundary Condition

- Influx of kinetic energy at outflow due to waveform
- Apply an absorption layer Forcing function: Absorption
 - · A region immediately upstream of outflow boundary specified
 - Damping momentum forcing function added to the NS eqn: $F = -D_p(\mathbf{u} \mathbf{u}|_{\delta\Omega})$

```
<FORCING>
<FORCE TYPE="Absorption">
<COEFF> SpongeCoefficient </COEFF>
<REFFLOW> RefFields </REFFLOW>
<REFFLOWTIME> RefTime </REFFLOWTIME>
</FORCE>
</FORCING>
```


Rabbit Geometries

Simulation Details

- ~ 150k elements (35k prisms, 115k tets) -> ~ 50M linear mesh.
- $Re_{in} = 300$, Wo = 4.
- Solver info:
 - Unsteady Navier-Stokes
 - Velocity correction scheme decoupling pressure and velocity.
 - CG approach
 - Full linear space with low energy block preconditioner
 - Iterative solver tolerance = 1e-8
- Varying time-steps through-out cycle.
- ~ 24h per cycle using ~300 cores
- Iteration count per time-step:
 - p: 35
 - u,v,w: 8

transWSS Patterns

Lesions vs Shear Metrics vs Permeability

Mass transport of LDL

- MeshConvert bl boundary layer splitter to refine prism bl.
 - Diffusion coefficient O(10⁻¹²). Transport is advection dominated
 - -> very fine boundary layer.
- MeshConvert extracttetprism remove tets, extract interface between tets and prisms (interior surface)
 - feature/extract-ptinterface
- FieldConvert interpfield NS solution interpolated to modified mesh as input for the AdvectionVelocity function

Simulation Details

- Pe = 2×10^8
- Solver info:
 - Unsteady Advection Diffusion
 - Continuous Galerkin projection
 - Full linear space with low energy block preconditioner
- Steady-state boundary conditions
- On-going work robin BC to capture water transport across the wall.

Thank you

