Pre- and post-processing in

Nektar++
D. Moxey, C. Cantwell, R. M. Kirby, S. Sherwin

Nektar++ workshop
7th July 2015

Outline

e Motivation

* Pre-processing with MeshConvert

* Post-processing with FLeldConvert

Motivation

Nektar++ is a (highly-parallel) framework
For it to be useful we need flexible utilities

Legacy utilities: monolithic, one-per-need, lots of
duplication

Pre-processing: how do we read different formats and
also make curvilinear meshes?

Post-processing: how do visualise output, particularly
for very large-scale simulations”

Example: Biotlows

Different time dependent shear metrics

Worktlow: mesh generation

Linear mesh Convert to high-order
from Star-CCM+ using spherigons i

-—f

-
ﬁ

Worktlow: simulation processing

Extract top
surface

Solve for inflow condition
using ADRSolver

Use as boundary condition
in IncNavierStokes

Run solver to obtain base
flow solution

Visualise flow field interior
streamlines

Worktlow: advection-diffusion

Extract prism Refine prism layer but Run adv-diff. using
layer preserve curved elements base field as

advection

Calculate scalar
gradient

Visualise on
surface field

Preprocessing

Many preprocessing requirements:
* |Lots of different input formats
 Boundary layer refinement
* Simplex element generation
e Surface smoothing
e Surface extraction

Different applications have different requirements:
need flexible approach

Solution: flexible pipeline

>->-_> N

Nektar++ High-order Boundary Nektar++
Nektar smoothing refinement Gmsh
Gmsh VTK (linear)
Tecplot/Star
PLY Mesh

_—
VTK

Semtex

MeshConvert: Utilises Nektar++ libraries with pipeline
concept: makes preprocessing easier

Factory patterns

Kept modular through use of factory pattern:
given a key and registered classes, return an object

a key

InputNekpp InputNek *
InputSem InputGmsh

InputNekpp

Instance
Input module tactory d 'nputNekpp

Application

Factories and Nektar++

e Factories are pretty useful and being used all over
Nektar++

e Straightforward to define and use with the
NekFactory class inside LibUtilit1ies

e In MeshConvert:

* One factory for input/output/processing modules

* Another for element type

11

How do | use 1t?

MeshConvert, like everything else Nektar++, is
driven through its command line interface

MeshConvert \
-m modulel:optl=a:optl=b \
-m modulel:opt3=c:optd4 \
1nput.xml output.xml

Each module specities its own options
Input/output modules use file extensions

Processing modules specified using -m and run In
the order specified

12

Some examples

MeshConvert -m extract:surf=1-4 \

Extract a surface: in xml out.xml

Refine a boundary layer:

MeshConvert -m bl:surf=1:layers=5:r=4 \
in.xml out.xml

Apply a scalar function to a surface:

MeshConvert -m scalar:surf=1l:scalar=xA2+yA2 \
in.xml out.xml

igh-order mesh generation

W]

il

14

High-order mesh generation

Curving mesh often leads to invalid elements

15

|[Soparametric mapping

x°(§)

T\

/52

Shape function is a mapping from
reference element (parametric coordinates) to
mesh element (physical coordinates)

Boundary layer mesh generation

< _ &2

Subdivide the reference element in order to obtain a
boundary layer mesh

Flexibility

e Use of geometric progression allows sequence of
meshes to be generated

r=1 l’=11/2 r=2

18

More complex transforms

Quads to triangles Prisms to tetrahedra

19

Inside MeshConvert

* Boundary layer splitting is the in bl module

* Does prism and hex refinement

* Prism to tet splitting is in the tetsplit module

* |n theory this can be extended to other element
to tet splitting

FieldConvert

Like MeshConvert, but for post-processing

Same command line usage, but now you use multiple input
files (since you generally have .xml and . fld files)

Supports parallel execution, uses Nektar++ parallel format
(directories with one file per process)

Also has a wider range of command line options
Wide range of processing modules

Tecplot and VIK output formats

FieldConvert modules

extract
Extract a boundary

region

equispaced
Create equispaced
output files

multishear
Compute shear

components

r . A
vorticity

Compute vorticity field

deform
Deform the mesh
according to input

s cOprojection h
Apply a CO projection
to the field
(N\
grad
Calculate gradient
fields
. J
(. . N\
qcriterion
Calculate Q-criterion
s for vortex detection)

of fluid

1socontour
Create linear
iIsocontours of field

WSS
Calculate wall shear

siress

scalgrad

Calculate scalar
gradient field

interpfield
Interpolate one field
onto another

Some examples

Convert to VTK: | FieldConvert in.xml in.fld out.vtu

Optionally specify a range + output order:

FieldConvert -r -2,3,1,2 -n 10 in.xml in.fld out.vtu

Interpolate data from one mesh to another:

FieldConvert -m interpfield:fromxml=f.xml:fromfld=f.fld \
out.xml out.fld

Generate vorticity:

FieldConvert -m vorticity in.xml in.fld out.fld

Conclusions

 \We now have a range of tlexible pre- and post-
processing strategies

- Coming soon:
e |Incorporate mesh generation from CAD (M. Turner)

e Better parallel file formats for very large scale jobs
based on HDF (R. Nash)

 Condensed mesh geometry formats to reduce
memory footprint and solver pre-processing time

Thanks for listening!
@davidmoxey

d.moxey@imperial.ac.uk

nektar-users@imperial.ac.uk

mailto:d.moxey@imperial.ac.uk?subject=
mailto:nektar-users@imperial.ac.uk

