
Pre- and post-processing in
Nektar++

D. Moxey, C. Cantwell, R. M. Kirby, S. Sherwin
Department of Aeronautics, Imperial College London

Nektar++ workshop
7th July 2015

Outline

• Motivation

• Pre-processing with MeshConvert

• Post-processing with FieldConvert

Motivation
• Nektar++ is a (highly-parallel) framework

• For it to be useful we need flexible utilities

• Legacy utilities: monolithic, one-per-need, lots of
duplication

• Pre-processing: how do we read different formats and
also make curvilinear meshes?

• Post-processing: how do visualise output, particularly
for very large-scale simulations?

Example: Bioflows
Different time dependent shear metrics

Workflow: mesh generation

Linear mesh
from Star-CCM+

Convert to high-order
using spherigons Output Nektar++ XML

Workflow: simulation processing
Extract top

surface

Solve for inflow condition
using ADRSolver

Use as boundary condition
in IncNavierStokes

Run solver to obtain base
flow solution

Visualise flow field interior
streamlines

Workflow: advection-diffusion
Extract prism

layer
Refine prism layer but

preserve curved elements
Run adv-diff. using

base field as
advection

Calculate scalar
gradient

Visualise on
surface field

Preprocessing

Many preprocessing requirements:
• Lots of different input formats
• Boundary layer refinement
• Simplex element generation
• Surface smoothing
• Surface extraction

Different applications have different requirements:
need flexible approach

Solution: flexible pipeline

Input Process Process Output

Nektar++
Nektar
Gmsh
Tecplot/Star
PLY
VTK
Semtex

High-order
smoothing

Boundary
refinement

Nektar++
Gmsh
VTK (linear)

MeshConvert: Utilises Nektar++ libraries with pipeline
concept: makes preprocessing easier

Mesh

Factory patterns

10

Input module factory

InputNekpp

InputSem

InputNek

InputGmsh

...

Application
key

InputNekpp

InputNekpp
instance

Kept modular through use of factory pattern:
given a key and registered classes, return an object

Factories and Nektar++
• Factories are pretty useful and being used all over

Nektar++

• Straightforward to define and use with the
NekFactory class inside LibUtilities

• In MeshConvert:

• One factory for input/output/processing modules

• Another for element type

11

How do I use it?
• MeshConvert, like everything else Nektar++, is

driven through its command line interface

12

 MeshConvert \  
 -m module1:opt1=a:opt2=b \  
 -m module2:opt3=c:opt4 \  
 input.xml output.xml

• Each module specifies its own options

• Input/output modules use file extensions

• Processing modules specified using -m and run in
the order specified

Some examples
Extract a surface: MeshConvert -m extract:surf=1-4 \  

 in.xml out.xml

Refine a boundary layer:
MeshConvert -m bl:surf=1:layers=5:r=4 \  
 in.xml out.xml

MeshConvert -m scalar:surf=1:scalar=x^2+y^2 \  
 in.xml out.xml

Apply a scalar function to a surface:

High-order mesh generation

14

High-order mesh generation

15

Curving mesh often leads to invalid elements

Isoparametric mapping

Shape function is a mapping from
reference element (parametric coordinates) to

mesh element (physical coordinates)
An isoparametric approach to high-order curvilinear boundary-layer meshing

D. Moxey, M. Hazan, S. J. Sherwin, J. Peiró, Comp. Meth. Appl. Mech. Eng. 283, 636-650, 2015

Boundary layer mesh generation

Subdivide the reference element in order to obtain a
boundary layer mesh

An isoparametric approach to high-order curvilinear boundary-layer meshing
D. Moxey, M. Hazan, S. J. Sherwin, J. Peiró, Comp. Meth. Appl. Mech. Eng. 283, 636-650, 2015

 Spacing distribution

Flexibility

18

r = 1 r = 1½ r = 2

• Use of geometric progression allows sequence of
meshes to be generated

More complex transforms

19

8 D. Moxey, M. Hazan, S. J. Sherwin and J. Peiró

c

f
z = c � f

W

quad
st

W

W

tri
st

f
Wst e

W

Fig. 3 Construction of the map z in the case of a quadrilateral being split into two triangles.

To demonstrate this point, we first examine the problem of figure 3, which depicts
an example where a quadrilateral is split along a diagonal edge in order to obtain
two triangles. We may again utilise an affine mapping f (x) = �x in order to map
W

tri
st onto a subdomain f

Wst of W

quad
st . From our previous argument we see that each

component of z = c � f has degree 2P in general if the original quadrilateral is of
order P.

Since z 2 [P(W tri
st)]

2 we must select a sufficiently large polynomial order for the
triangular space so that all terms of the expansion are represented in the resulting
expansion. To guarantee this for a general quadrilateral-to-triangle split, given a
quadrilateral of order P we must generate triangles of order 2P. Then the space
P(W quad

st)⇢P(W tri
st) and thus z captures all curvature of the original mapping. For

a visual illustration of this, we may represent the polynomial spaces of the triangular
and quadrilateral elements in the form of a Pascal’s triangle as shown in figure 4.

Figure 5 illustrates the problem of using triangular elements which are not suf-
ficiently enriched. On the left, a second-order (P2) quadrilateral is split into two
second-order triangles. Splitting the quadrilateral into two P2 triangles leads to the
generation of degenerate elements. In this case, the symmetry of the deformed ele-
ment coupled with the quadratic order of the triangles means that the diagonal edge
which bisects the quadrilateral is forced to remain straight and thus causes a self-
intersection. We note that in this example, the interior quadrilateral mode x

2
1 x

2
2 is not

Quads to triangles
On the generation of curvilinear meshes through subdivision of isoparametric elements
D. Moxey, M. D. Green, S. J. Sherwin, J. Peiró, New Challenges in Grid Generation and

Adaptivity for Scientific Computing pp. 203-215

Prisms to tetrahedra

Inside MeshConvert

• Boundary layer splitting is the in bl module

• Does prism and hex refinement

• Prism to tet splitting is in the tetsplit module

• In theory this can be extended to other element
to tet splitting

FieldConvert
• Like MeshConvert, but for post-processing

• Same command line usage, but now you use multiple input
files (since you generally have .xml and .fld files)

• Supports parallel execution, uses Nektar++ parallel format
(directories with one file per process)

• Also has a wider range of command line options

• Wide range of processing modules

• Tecplot and VTK output formats

FieldConvert modules
extract

Extract a boundary
region

deform
Deform the mesh
according to input

c0projection
Apply a C0 projection

to the field

equispaced
Create equispaced

output files

isocontour
Create linear

isocontours of field

grad
Calculate gradient

fields

multishear
Compute shear

components

scalgrad
Calculate scalar

gradient field

qcriterion
Calculate Q-criterion
for vortex detection

vorticity
Compute vorticity field

of fluid

interpfield
Interpolate one field

onto another

wss
Calculate wall shear

stress

Some examples
Convert to VTK: FieldConvert in.xml in.fld out.vtu

Optionally specify a range + output order:

FieldConvert -r -2,3,1,2 -n 10 in.xml in.fld out.vtu

FieldConvert -m interpfield:fromxml=f.xml:fromfld=f.fld \  
 out.xml out.fld

Interpolate data from one mesh to another:

Generate vorticity:
FieldConvert -m vorticity in.xml in.fld out.fld

Conclusions
• We now have a range of flexible pre- and post-

processing strategies

• Coming soon:

• Incorporate mesh generation from CAD (M. Turner)

• Better parallel file formats for very large scale jobs
based on HDF (R. Nash)

• Condensed mesh geometry formats to reduce
memory footprint and solver pre-processing time

Thanks for listening!

@davidmoxey

d.moxey@imperial.ac.uk

nektar-users@imperial.ac.uk

mailto:d.moxey@imperial.ac.uk?subject=
mailto:nektar-users@imperial.ac.uk

