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Introduction

Nektar++ [7] is a tensor product based finite element package designed to allow one
to construct efficient classical low polynomial order h-type solvers (where h is the size
of the finite element) as well as higher p-order piecewise polynomial order solvers. The
framework currently has the following capabilities:

e Representation of one, two and three-dimensional fields as a collection of piecewise
continuous or discontinuous polynomial domains.

e Segment, plane and volume domains are permissible, as well as domains representing
curves and surfaces (dimensionally-embedded domains).

e Hybrid shaped elements, i.e triangles and quadrilaterals or tetrahedra, prisms and
hexahedra.

e Both hierarchical and nodal expansion bases.
e Continuous or discontinuous Galerkin operators.

e Cross platform support for Linux, Mac OS X and Windows.

The framework comes with a number of solvers and also allows one to construct a variety
of new solvers.

Our current goals are to develop:
e Automatic auto-tuning of optimal operator implementations based upon not only
h and p but also hardware considerations and mesh connectivity.
e Temporal and spatial adaption.

e Features enabling evaluation of high-order meshing techniques.



Introduction xi

For further information and to download the software, visit the Nektar-+++ website at
http://www.nektar.info.


http://www.nektar.info
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Getting Started



CHAPTER ].

Installation

Nektar++ is available in both a source-code distribution and as pre-compiled binary
packages for a number of operating systems. We recommend using the pre-compiled
packages if you wish to use the existing Nektar4++ solvers for simulation and do not need
to perform additional code development.

1.1 Installing Debian/Ubuntu Packages

Binary packages are available for current Debian/Ubuntu based Linux distributions.
These can be installed through the use of standard system package management utilities,
such as Apt, if administrative access is available.

1. Add the appropriate line for the Debian-based distribution to the end of the file
/etc/apt/sources.list

Distribution Repository

Debian 8.0 (jessie) deb http://www.nektar.info/debian-jessie jessie contrib
Debian 7.0 (wheezy) deb http://www.nektar.info/debian-wheezy wheezy contrib
Ubuntu 14.04 (trusty) deb http://www.nektar.info/ubuntu-trusty trusty contrib

2. Update the package lists

apt-get update
3. Install the required Nektar4+-+ packages, or the complete suite with:
apt-get install nektar++

Any additional dependencies required for Nektar++ to function will be automati-
cally installed.
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Tip
N Nektar++ is split into multiple packages for the different components of
—@/— the software. A list of available Nektar++ packages can be found using;:

apt-cache search nektar++

1.2 Installing Redhat/Fedora Packages

Add a file to the directory /etc/yum.repos.d/nektar.repo with the following contents
[Nektar]

name=nektar
baseurl=<baseurl>

substituting <baseurl> for the appropriate line from the table below.

Distribution  <baseurl>

Fedora 20 http://ww.nektar.info/fedora/20/$basearch

Note

The $basearch variable is automatically replaced by Yum with the architecture
of your system.

1.3 Installing from Source
This section explains how to build Nektar++ from the source-code package.

Nektar++ uses a number of third-party libraries. Some of these are required, others are
optional. It is generally more straightforward to use versions of these libraries supplied
pre-packaged for your operating system, but if you run into difficulties with compilation
errors or failing regression tests, the Nektar++ build system can automatically build
tried-and-tested versions of these libraries for you. This requires enabling the relevant
options in the CMake configuration.

1.3.1 Obtaining the source code

There are two ways to obtain the source code for Nektar++:

e Download the latest source-code archive from the Nektar++ downloads page.


http://www.nektar.info/downloads
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e Clone the git repository

— Using anonymous access. This does not require credentials but any changes
to the code cannot be pushed to the public repository. Use this initially if you
would like to try using Nektar4++ or make local changes to the code.

git clone http://gitlab.nektar.info/clone/nektar/nektar.git nektar++

— Using authenticated access. This will allow you to directly contribute back
into the code.

git clone git@gitlab.nektar.info:nektar/nektar.git nektar++

\,/Tip

" You can easily switch to using the authenticated access from anony-
mous access at a later date.

1.3.2 Linux
1.3.2.1 Prerequisites

Nektar++ uses a number of external programs and libraries for some or all of its
functionality. Some of these are required and must be installed prior to compiling
Nektar++, most of which are available as pre-built system packages on most Linux
distributions or can be installed manually by a user. Others are optional and required
only for specific features, or can be downloaded and compiled for use with Nektar++
automatically (but not installed system-wide).

Installation
Package Req. Sys. User Auto. Note
C++ compiler v v gcc, icc, ete
CMake > 2.8.7 v v v Ncurses GUI optional
BLAS v v v Or MKL, ACML, OpenBLAS
LAPACK v v v
Boost >=1.52 v v v v Compile with iostreams
ModMETIS v v
FFTW > 3.0 v v v For high-performance FFTs
ARPACK > 2.0 v v For arnoldi algorithms
OpenMPI v For parallel execution
GSMPI v For parallel execution
PETSc v v Alternative linear solvers
Scotch v v v Alternative mesh partitioning
VTK > 5.8 v v Visualisation utilities
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Warning

A Boost version 1.51 has a bug which prevents Nektar++ working correctly. Please
use a newer version.

1.3.2.2 Quick Start

Open a terminal.
If you have downloaded the tarball, first unpack it:

tar -zxvf nektar++-4.3.2.tar.gz

Change into the nektar++ source code directory
mkdir -p build && cd build

ccmake ../
make install

1.3.2.3 Detailed instructions

From a terminal:

1. If you have downloaded the tarball, first unpack it

tar -zxvf nektar++-4.3.2.tar.gz

2. Change into the source-code directory, create a (build | subdirectory and enter it

mkdir -p build && cd build

3. Run the CMake GUI and configure the build by pressing (c

ccmake ../

e Select the components of Nektar++ (prefixed with 'NEKTAR_BUILD_ ) you would
like to build. Disabling solvers which you do not require will speed up the
build process.

e Select the optional libraries you would like to use (prefixed with NEKTAR_USE_ )
for additional functionality.

e Select the libraries not already available on your system which you wish to be
compiled automatically (prefixed with THIRDPARTY_BUILD_ )
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A full list of configuration options can be found in Section 1.3.5.

Note

Selecting THIRDPARTY_BUILD_ options will request CMake to automatically

@ download thirdparty libraries and compile them within the Nektar++ direc-
tory. If you have administrative access to your machine, it is recommended
to install the libraries system-wide through your package-management
system.

4. Press (c) to configure the build. If errors arise relating to missing libraries, review
the 'THIRDPARTY_BUILD_ selections in the configuration step above or install the
missing libraries manually or from system packages.

5. When configuration completes without errors, press (c) again until the option (g to
generate build files appears. Press ‘g to generate the build files and exit CMake.

6. Compile the code

make install

During the build, missing third-party libraries will be automatically downloaded,
configured and built in the Nektar++ build directory.

Tip

If you have multiple processors/cores on your system, compilation can be

NP significantly increased by adding the -jX option to make, where X is the
—@‘ number of simultaneous jobs to spawn. For example, use

make -j4 install

on a quad-core system.

7. Test the build by running unit and regression tests.

ctest

1.3.3 0OS X
1.3.3.1 Prerequisites

Nektar++ uses a number of external programs and libraries for some or all of its
functionality. Some of these are required and must be installed prior to compiling
Nektar++, most of which are available on MacPorts (www.macports.org) or can be
installed manually by a user. Others are optional and required only for specific features,
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or can be downloaded and compiled for use with Nektar++ automatically (but not
installed system-wide).

Note

To compile Nektar++ on OS X, Apple’s Xcode Developer Tools must be
installed. They can be installed either from the App Store (only on Mac
OS 10.7 and above) or downloaded directly from http://connect.apple.com/
(you are required to have an Apple Developer Connection account). Xcode
includes Apple implementations of BLAS and LAPACK (called the Accelerate

Framework).
Installation

Package Req. MacPorts User Auto. Note
Xcode v Provides developer tools
CMake > 2.8.7 v cmake v Ncurses GUI optional
BLAS v Part of Xcode
LAPACK v Part of Xcode
Boost >=1.52 v boost v v Compile with iostreams
TinyXML v tinyxml v v
ModMETIS v v
FFTW > 3.0 fftw-3 v v For high-performance FFTs
ARPACK > 2.0 arpack v For arnoldi algorithms
OpenMPI openmpi For parallel execution
GSMPI v For parallel execution
PETSc petsc v v Alternative linear solvers
Scotch scotch v v Alternative mesh partitioning
VTK > 5.8 vtk v Visualisation utilities

Tip

CMake, and some other software, is available from MacPorts (http://macports.

. org) and can be installed using, for example,

I
@ sudo port install cmake

Package names are given in the table above. Similar packages also exist in
other package managers such as Homebrew.

1.3.3.2 Quick Start

Open a terminal (Applications->Utilities->Terminal).


http://connect.apple.com/
http://macports.org
http://macports.org
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If you have downloaded the tarball, first unpack it:

tar -zxvf nektar++-4.3.2.tar.gz

Change into the nektar++ source code directory

mkdir -p build && cd build
ccmake ../
make install

1.3.3.3 Detailed instructions

From a terminal (Applications->Utilities->Terminal):

1. If you have downloaded the tarball, first unpack it

tar -zxvf nektar++-4.3.2.tar.gz

2. Change into the source-code directory, create a (build | subdirectory and enter it

mkdir -p build && cd build

3. Run the CMake GUI and configure the build

ccmake ../

Use the arrow keys to navigate the options and ENTER to select/edit an option.

o Select the components of Nektar++ (prefixed with ' NEKTAR_BUILD_ ) you would
like to build. Disabling solvers which you do not require will speed up the
build process.

e Select the optional libraries you would like to use (prefixed with NEKTAR_USE_ )
for additional functionality.

e Select the libraries not already available on your system which you wish to be
compiled automatically (prefixed with THIRDPARTY_BUILD_ )

A full list of configuration options can be found in Section 1.3.5.

Note

Selecting THIRDPARTY_BUILD_ options will request CMake to automatically
download thirdparty libraries and compile them within the Nektar++ direc-
tory. If you have administrative access to your machine, it is recommended
to install the libraries system-wide through MacPorts.
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4. Press (c) to configure the build. If errors arise relating to missing libraries (variables
set to NOTFOUND ), review the ' THIRDPARTY_BUILD_ selections in the previous step
or install the missing libraries manually or through MacPorts.

5. When configuration completes without errors, press (c) again until the option (g to
generate build files appears. Press ‘g to generate the build files and exit CMake.

6. Compile the code

make install

During the build, missing third-party libraries will be automatically downloaded,
configured and built in the Nektar++ build directory.

Tip
If you have multiple processors/cores on your system, compilation

N1~ can be significantly increased by adding the -jX option to make,
where X is the number of simultaneous jobs to spawn. For example,

make -j4 install

7. Test the build by running unit and regression tests.

ctest

1.3.4 Windows

Windows compilation is supported, but the build process is somewhat convoluted at
present. As such, only serial execution is supported with a minimal amount of additional
build packages. These can either be installed by the user, or automatically in the build
process.

Installation
Package Req. User Auto. Note
MS Visual Studio v v 2012 and 2013 known working
CMake > 3.0 v v
BLAS v v v
LAPACK v v v
Boost > 1.55 v v v Compile with iostreams
ModMETIS v v v
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1.3.4.1 Detailed instructions

1. Imstall Microsoft Visual Studio 2013 (preferred) or 2012 (known to work). This can
be obtained from Microsoft free of charge by using their Express developer tools from
http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx.

2. Install WinRAR from http://www.rarlab.com/download.htm.

3. Install CMake 3.0+ from http://www.cmake.org/download/. When prompted,
select the option to add CMake to the system PATH.

4. (Optional) Install Git from http://git-scm.com/download/win to use the devel-
opment versions of Nektar++. When prompted, select the option to add Git to
the system PATH. You do not need to select the option to add Unix tools to the
PATH.

5. (Optional) If you do not wish to build boost during the compilation process (which
can take some time), then boost binaries can be found at http://sourceforge.
net/projects/boost/files/boost-binaries/1.57.0/. By default these install
into C:\local\boost_1_57_0. If you use these libraries, you will need to:

e Rename 1libs-msvc12.0 to 1ib
e Inside the 1ib directory, create duplicates of boost_zlib.d11l and boost_bzip2.d1l
called z1ib.d11 and 1ibbz2.d11.

6. Unpack nektar++-4.3.2.tar.gz using WinRAR.

Note

Some Windows versions do not recognise the path of a folder which has

‘ ++ | in the name. If you think that your Windows version can not handle
path containing special characters, you should rename nektar++-4.3.2
to nektar-4.3.2.

7. Create a builds directory within the nektar++-4.3.2 subdirectory.

8. Open a Visual Studio terminal. From the start menu, this can be found in All
Programs > Visual Studio 2013 > Visual Studio Tools > Developer Command
Prompt for V52013.

9. Change directory into the builds directory and run the CMake graphical utility:

cd C:\path\to\nektar\builds
cmake-gui ..


http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://www.rarlab.com/download.htm
http://www.cmake.org/download/
http://git-scm.com/download/win
http://sourceforge.net/projects/boost/files/boost-binaries/1.57.0/
http://sourceforge.net/projects/boost/files/boost-binaries/1.57.0/
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10. Select the build system you want to generate build scripts for. Note that Visual
Studio 2013 is listed as Visual Studio 12 in the drop-down list. If you have a 64-bit
installation of Windows 7, you should select the Win64 variant, otherwise 32-bit
executables will be generated. Select the option to use the native compilers.

11. Click the Configure button, then the Generate button.
12. Return to the command line and issue the command:

msbuild INSTALL.vcxproj /p:Configuration=Release

To build in parallel with, for example, 12 processors, issue:

msbuild INSTALL.vcxproj /p:Configuration=Release /m:12

13. After the installation process is completed, the executables will be available in
builds\dist\bin.

14. To use these executables, you need to modify your system PATH to include the
library directories where DLLs are stored. To do this, navigate to Control Panel
> System and Security > System, select Advanced System Settings, and in the
Advanced tab click the Environment Variables. In the System Variables box, select
Path and click Edit. To the end of this list, add the full paths to directories:
e builds\dist\lib\nektar++-4.3.2
e builds\dist\bin
e Optionally, if you installed Boost from the binary packages, C:\local\boost_1_57_0 \1lib

15. To run the test suite, open a new command line window, change to the builds
directory, and then issue the command

ctest -C Release

1.3.5 CMake Option Reference

This section describes the main configuration options which can be set when building
Nektar++. The default options should work on almost all systems, but additional
features (such as parallelisation and specialist libraries) can be enabled if needed.

1.3.5.1 Components

The first set of options specify the components of the Nektar++ toolkit to compile. Some
options are dependent on others being enabled, so the available options may change.

Components of the Nektar++ package can be selected using the following options:
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e NEKTAR_BUILD_DEMOS (Recommended)

Compiles the demonstration programs. These are primarily used by the regression
testing suite to verify the Nektar++ library, but also provide an example of the
basic usage of the framework.

e NEKTAR_BUILD_DOC

Compiles the Doxygen documentation for the code. This will be put in

$BUILDDIR/doxygen/html

e NEKTAR_BUILD_LIBRARY (Required)

Compiles the Nektar++ framework libraries. This is required for all other options.

e NEKTAR_BUILD_SOLVERS (Recommended)
Compiles the solvers distributed with the Nektar++ framework.

If enabling NEKTAR_BUILD_SOLVERS, individual solvers can be enabled or disabled.
See Part III for the list of available solvers. You can disable solvers which are not
required to reduce compilation time. See the NEKTAR_SOLVER_X option.

e NEKTAR_BUILD_TESTS (Recommended)
Compiles the testing program used to verify the Nektar++ framework.

e NEKTAR_BUILD_TIMINGS

Compiles programs used for timing Nektar++ operations.

e NEKTAR_BUILD UNIT_TESTS

Compiles tests for checking the core library functions.

e NEKTAR_BUILD_UTILITIES

Compiles utilities for pre- and post-processing simulation data.

e NEKTAR_SOLVER_X

Enabled compilation of the 'X’ solver.

A number of ThirdParty libraries are required by Nektar++. There are also optional
libraries which provide additional functionality. These can be selected using the following
options:

e NEKTAR_USE_ACML
Use the optimised BLAS library for AMD processors.
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NEKTAR_USE_ACCELERATE_FRAMEWORK

Use the Mac Osx accelerate framework for BLAS and LAPACK methods. This
option should only be required under in a Mac OSX environment.
NEKTAR_USE_ARPACK

Build Nektar++ with support for ARPACK. This provides routines used for linear
stability analyses. Alternative Arnoldi algorithms are also implemented directly in
Nektar++.

NEKTAR_USE_BLAS_LAPACK (Required)

Enables the use of Basic Linear Algebra Subroutines libraries for linear algebra
operations.

NEKTAR_USE_SYSTEM_BLAS_LAPACK (Recommended)

On Linux systems, use the default BLAS and LAPACK library on the system.
This may not be the implementation offering the highest performance for your
architecture, but it is the most likely to work without problem.

NEKTAR_USE_CCM

Use the cecmio library provided with the Star-CCM package for reading ccm files.
This option is required as part of NekMesh if you wish to convert a Star-CCM mesh
into the Nektar format. It is possible to read a Tecplot plt file from Star-CCM
but this output currently needs to be converted to ascii format using the Tecplot
package.

NEKTAR_USE_FFTW

Build Nektar++ with support for FFTW for performing Fast Fourier Transforms
(FFTs). This is used only when using domains with homogeneous coordinate
directions.

NEKTAR_USE_MKL

Use the Intel MKL library. This is typically available on cluster environments and
should offer performance tuned for the specific cluster environment.
NEKTAR_USE_MPI (Recommended)

Build Nektar++ with MPI parallelisation. This allows solvers to be run in serial
or parallel.

NEKTAR_USE_OPENBLAS

Use OpenBLAS for the BLAS library. OpenBLAS is based on the Goto BLAS
implementation and generally offers better performance than a non-optimised
system BLAS. However, the library must be installed on the system.
NEKTAR_USE_PETSC

Build Nektar++ with support for the PETSc package for solving linear systems.
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e NEKTAR_USE_SCOTCH

Build Nektar++ with support for the SCOTCH graph partitioning library. This
provides an alternative mesh partitioning algorithm to METIS. However, METIS
is still required as it is used by the multi-level static condensation algorithm.

e NEKTAR_USE_SMV

Build Nektar++ with support for optimised sparse matrix-vector operations.

e NEKTAR_USE_VTK

Build Nektar++ with support for VI'K libraries. This is only needed for specialist
utilities and is not needed for general use.

Note

The VTK libraries are not needed for converting the output of simulations
to VTK format for visualization as this is handled internally.

The THIRDPARTY_BUILD_X options select which third-party libraries are automatically
built during the Nektar++ build process. Below are the choices of X:

e BOOST

The Boost libraries are frequently provided by the operating system, so automatic
compilation is not enabled by default. If you do not have Boost on your system,
you can enable this to have Boost configured automatically.

e GSMPI

(MPI-only) Parallel communication library.

e LOKI

An implementation of a singleton.

e METIS

A graph partitioning library used for substructuring of matrices and mesh parti-
tioning when Nektar++ is run in parallel.

e PETSC

A package for the parallel solution of linear algebra systems.

e SCOTCH

An alternative graph partitioning library used for mesh partitioning when Nektar++
is run in parallel.

e TINYXML
Library for reading and writing XML files.
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1.4 Compiling Documentation

Documentation for Nektar++4 is provided in a number of forms:

e User Guide (LaTeX, compiled to pdf or html)
e Source code documentation (Doxygen compiled to html)

1.4.1 Dependencies

To build the LaTeX documents (user guide or tutorials), the following dependencies are
required:

e texlive-base
e texlive-latex-extra
e texlive-science

e imagemagick

To build the Doxygen documentation, the following dependencies are required:

e doxygen
e graphviz
1.4.2 Compiling the User Guide

To compile the User Guide:

1. Configure the Nektar++ build tree as normal.

2. Run

make user—guide-pdf

to make the PDF version, or run

make user-guide-html

to make the HTML version.
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1.4.3 Compiling the code documentation

To compile the code documentation enable the [NEKTAR_BUILD_DOC option in the ccmake
configuration tool.

You can then compile the HIML code documentation using:

make doc

1.5 Compiling Tutorials
If you are using a clone of the Nektar++ git repository, you can also download the source
for the Nektar++ tutorials which is available as a git submodule.

1. From a Nektar++ working directory (e.g. $NEKPP ):

git submodule init
git submodule update --remote

2. From your build directory (e.g. $NEKPP/build ), re-run cmake to update the build
system to include the tutorials

cmake ../

3. Compile each required tutorial, for example

make flow-stability-channel



CHAPTER 2

Mathematical Formulation

2.1 Background

The spectral /hp element method combines the geometric flexibility of classical h-type
finite element techniques with the desirable resolution properties of spectral methods. In
this approach a polynomial expansion of order P is applied to every elemental domain of a
coarse finite element type mesh. These techniques have been applied in many fundamental
studies of fluid mechanics [31] and more recently have gained greater popularity in the
modelling of wave-based phenomena such as computational electromagnetics [14] and
shallow water problems [4] - particularly when applied within a Discontinuous Galerkin
formulation.

There are at least two major challenges which arise in developing an efficient implemen-
tation of a spectral/hp element discretisation:

e implementing the mathematical structure of the technique in a digestible, generic
and coherent manner, and

e designing and implementing the numerical methods and data structures in a matter
so that both high- and low-order discretisations can be efficiently applied.

In order to design algorithms which are efficient for both low- and high-order spectral/hp
discretisations, it is important clearly define what we mean with low- and high-order.
The spectral/hp element method can be considered as bridging the gap between the
high-order end of the traditional finite element method and low-order end of conventional
spectral methods. However, the concept of high- and low-order discretisations can mean
very different things to these different communities. For example, the seminal works by
Zienkiewicz & Taylor [36] and Hughes list examples of elemental expansions only up to
third or possibly fourth-order, implying that these orders are considered to be high-order
for the traditional h-type finite element community. In contrast the text books of the
spectral/hp element community typically show examples of problems ranging from a

17
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low-order bound of minimally fourth-order up to anything ranging from 10**-order to
15*"-order polynomial expansions. On the other end of the spectrum, practitioners of
global (Fourier-based) spectral methods [12] would probably consider a 16*-order global
expansion to be relatively low-order approximation.

One could wonder whether these different definitions of low- and high-order are just
inherent to the tradition and lore of each of the communities or whether there are more
practical reasons for this distinct interpretation. Proponents of lower-order methods might
highlight that some problems of practical interest are so geometrically complex that one
cannot computationally afford to use high-order techniques on the massive meshes required
to capture the geometry. Alternatively, proponents of high-order methods highlight that
if the problem of interest can be captured on a computational domain at reasonable
cost then using high-order approximations for sufficiently smooth solutions will provide a
higher accuracy for a given computational cost. If one however probes even further it also
becomes evident that the different communities choose to implement their algorithms
in different manners. For example the standard hA-type finite element community will
typically uses techniques such as sparse matrix storage formats (where only the non-zero
entries of a global matrix are stored) to represent a global operator. In contrast the
spectral/hp element community acknowledges that for higher polynomial expansions
more closely coupled computational work takes place at the individual elemental level
and this leads to the use of elemental operators rather than global matrix operators. In
addition the global spectral method community often make use of the tensor-product
approximations where products of one-dimensional rules for integration and differentiation
can be applied.

2.2 Methods overview

Here a review of some terminology in order to situate the spectral/hp element method
within the field of the finite element methods.

2.2.1 The finite element method (FEM)

Nowadays, the finite element method is one of the most popular numerical methods in the
field of both solid and fluid mechanics. It is a discretisation technique used to solve (a set
of) partial differential equations in its equivalent variational form. The classical approach
of the finite element method is to partition the computational domain into a mesh of
many small subdomains and to approximate the unknown solution by piecewise linear
interpolation functions, each with local support. The FEM has been widely discussed
in literature and for a complete review of the method, the reader is also directed to the
seminal work of Zienkiewicz and Taylor [36].

2.2.2 High-order finite element methods

While in the classical finite element method the solution is expanded in a series of linear
basis functions, high-order FEMs employ higher-order polynomials to approximate the
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solution. For the high-order FEM, the solution is locally expanded into a set of P + 1
linearly independent polynomials which span the polynomial space of order P. Confusion
may arise about the use of the term order. While the order, or degree, of the expansion
basis corresponds to the maximal polynomial degree of the basis functions, the order of
the method essentially refers to the accuracy of the approximation. More specifically, it
depends on the convergence rate of the approximation with respect to mesh-refinement.
It has been shown by Babuska and Suri [3], that for a sufficiently smooth exact solution
u € H*(Q), the error of the FEM approximation u’ can be bounded by:

lu—u’l|5 < OB [[ul |y

This implies that when decreasing the mesh-size h, the error of the approximation
algebraically scales with the P power of h. This can be formulated as:

lu —u’[[g = O(h").

If this holds, one generally classifies the method as a P*-order FEM. However, for
non-smooth problems, i.e. £k < P + 1, the order of the approximation will in general be
lower than P, the order of the expansion.

2.2.2.1 h-version FEM

A finite element method is said to be of h-type when the degree P of the piecewise
polynomial basis functions is fixed and when any change of discretisation to enhance
accuracy is done by means of a mesh refinement, that is, a reduction in hA. Dependent
on the problem, local refinement rather than global refinement may be desired. The
h-version of the classical FEM employing linear basis functions can be classified as a
first-order method when resolving smooth solutions.

2.2.2.2 p-version FEM

In contrast with the h-version FEM, finite element methods are said to be of p-type when
the partitioning of domain is kept fixed and any change of discretisation is introduced
through a modification in polynomial degree P. Again here, the polynomial degree
may vary per element, particularly when the complexity of the problem requires local
enrichment. However, sometimes the term p-type FEM is merely used to indicated that
a polynomial degree of P > 1 is used.

2.2.2.3 hp-version FEM

In the hp-version of the FEM, both the ideas of mesh refinement and degree enhancement
are combined.
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2.2.2.4 The spectral method

As opposed to the finite element methods which builds a solution from a sequence of local
elemental approximations, spectral methods approximate the solution by a truncated
series of global basis functions. Modern spectral methods, first presented by Gottlieb and
Orzag [12], involve the expansion of the solution into high-order orthogonal expansion,
typically by employing Fourier, Chebyshev or Legendre series.

2.2.2.5 The spectral element method

Patera [25] combined the high accuracy of the spectral methods with the geometric
flexibility of the finite element method to form the spectral element method. The multi-
elemental nature makes the spectral element method conceptually similar to the above
mentioned high-order finite element. However, historically the term spectral element
method has been used to refer to the high-order finite element method using a specific
nodal expansion basis. The class of nodal higher-order finite elements which have become
known as spectral elements, use the Lagrange polynomials through the zeros of the
Gauss-Lobatto(-Legendre) polynomials.

2.2.2.6 The spectral/hp element method

The spectral/hp element method, as its name suggests, incorporates both the multi-
domain spectral methods as well as the more general high-order finite element methods.
One can say that it encompasses all methods mentioned above. However, note that the
term spectral/hp element method is mainly used in the field of fluid dynamics, while the
terminology p and hp-FEM originates from the area of structural mechanics.

2.2.3 The Galerkin formulation

Finite element methods typically use the Galerkin formulation to derive the weak form
of the partial differential equation to be solved. We will primarily adopt the classical
Galerkin formulation in combination with globally C° continuous spectral/hp element
discretisations.

To describe the Galerkin method, consider a steady linear differential equation in a
domain 2 denoted by

L(u) = f,

subject to appropriate boundary conditions. In the Galerkin method, the weak form of
this equation can be derived by pre-multiplying this equation with a test function v and
integrating the result over the entire domain €2 to arrive at: Find u € U such that

/vL(u)da::/vfdw, Yv eV,
Q Q

where U and V respectively are a suitably chosen trial and test space (in the traditional
Galerkin method, one typically takes Y = V). In case the inner product of v and L(u)
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can be rewritten into a bi-linear form a(v,u), this problem is often formulated more
concisely as: Find u € U such that

a(v,u) = (v, f), YveV,

where (v, f) denotes the inner product of v and f. The next step in the classical Galerkin
finite element method is the discretisation: rather than looking for the solution w in the
infinite dimensional function space U, one is going to look for an approximate solution
19 in the reduced finite dimensional function space U° C U. Therefore we represent the
approximate solution as a linear combination of basis functions ®,, that span the space
U, ie.

W =" By

neN

Adopting a similar discretisation for the test functions v, the discrete problem to be
solved is given as: Find 4, (n € N) such that

> a(®m, Pl = (P, f), Ym EN.
neN

It is customary to describe this set of equations in matrix form as
Au=f,
where @ is the vector of coefficients 4, A is the system matrix with elements

Ajm][n] = a(®rn, ;) :/Q@mL(cbn)dw,

and the vector }’ is given by

A

Fim] = (@, f) = /anmfdw.
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XML Session File

The Nektar++ native file format is compliant with XML version 1.0. The root element
is NEKTAR which contains a number of other elements which describe configuration for
different aspects of the simulation. The required elements are shown below:

1 <NEKTAR>
<GEOMETRY>

</GEOMETRY>
<EXPANSIONS>

2
3
4
5
6 600
7  </EXPANSIONS>
8 <CONDITIONS>
9 600

10 </CONDITIONS>
11 500

12 </NEKTAR>

The different sub-elements can be split across multiple files, however each file must have a
top-level NEKTAR tag. For example, one might store the geometry information separate
from the remaining configuration in two separate files as illustrated below:

geometry.xml

1 <NEKTAR>
2  <GEOMETRY>
3 R
4  </GEOMETRY>
5 </NEKTAR>

conditions.xml

1 <NEKTAR>

2  <CONDITIONS>
3 600

4 </CONDITIONS>

5  <EXPANSIONS>

22
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7  </EXPANSIONS>

9 </NEKTAR>

Note

When specifying multiple files, repeated XML sub-elements are not merged.
The sub-elements from files appearing later in the list will, in general, override
those elements from earlier files.

For example, the NekMesh utility will produce a default EXPANSIONS | element
and blank (CONDITIONS | element. Specifying a custom-written XML file con-
taining these sections after the file produced by NekMesh will override these
defaults.

The exception to this rule is when an empty XML sub-element would override a
non-empty XML sub-element. In this case the empty XML sub-element will be
ignored. If the custom-written XML file containing (CONDITIONS  were specified
before the file produced by NEKMESH, the empty CONDITIONS  tag in the latter
file would be ignored.

3.1 Geometry

This section defines the mesh. It specifies a list of vertices, edges (in two or three
dimensions) and faces (in three dimensions) and how they connect to create the elemental
decomposition of the domain. It also defines a list of composites which are used in the
Expansions and Conditions sections of the file to describe the polynomial expansions and
impose boundary conditions.

The GEOMETRY section is structured as

1 <GEOMETRY DIM= SPACE= >

2  <VERTEX> ... </VERTEX>

3 <EDGE> ... </EDGE>

4 <FACE> ... </FACE>

5 <ELEMENT> ... </ELEMENT>

6 <CURVED> ... </CURVED>

7  <COMPOSITE> ... </COMPOSITE>
8 <DOMAIN> ... </DOMAIN>

9 </GEOMETRY>

It has two (required) attributes:

e [DIM specifies the dimension of the expansion elements.

e [SPACE | specifies the dimension of the space in which the elements exist.



24 Chapter 3 XML Session File

These attributes allow, for example, a two-dimensional surface to be embedded in a
three-dimensional space.

Note

The attribute PARTITION may also appear in a partitioned mesh. However,
this attribute should not be explicitly specified by the user.

FEach of the [VERTEX ), (EDGE , ([FACE , ([ELEMENT and (CURVED ) sections may optionally be
compressed and stored in base64-encoded gzipped binary form, using either little-endian or
big-endian ordering, as specified by the (COMPRESSED | attribute to these sections. Currently
supported values are:

e [B64Z-LittleEndian : Base64 Gzip compressed using little-endian ordering.

e [B64Z-BigEndian : Base64 Gzip compressed using big-endian ordering.

Note

The description below explains how the GEOMETRY  section is laid out in un-
compressed ascii format. From Jan 2016 the distribution uses the compressed
@ format for each of the above sections. To convert a compressed xml file into
ascii format use
NekMesh file.msh newfile.xml:xml:uncompress

3.1.1 Vertices
Vertices have three coordinates. Each has a unique vertex ID. In uncompressed form,
they are defined within (VERTEX | subsection as follows:

1<V ID="0"> 0.0 0.0 0.0 </V> ...

The [ VERTEX | subsection has optional attributes which can be used to apply a transforma-
tion to the mesh:
XSCALE , | YSCALE , ZSCALE , XMOVE , [ YMOVE ), | ZMOVE

They specify scaling factors (centred at the origin) and translations to the vertex coordi-
nates. For example, the following snippet

1 <VERTEX XSCALE= >
2 <V ID= >0.0 0.0 0.0 </V>
3 <V ID= >1.0 2.0 0.0 </V>

4 </VERTEX>

defines two vertices with coordinates (0.0,0.0,0.0), (1.0,2.0,0.0).
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All of these attributes can be arbitrary analytic expressions depending on pre- defined
constants and parameters defined in the XML file and mathematical operations/functions
of the latter. If omitted, default scaling factors 1.0, and translations of 0.0, are assumed.

3.1.2 Edges

Tip
The (EDGES  section is only necessary when (DIM=2 or (DIM=3 in the parent
GEOMETRY | element and may be omitted for one-dimensional meshes.

Edges are defined by two vertices. Each edge has a unique edge ID. In uncompressed
form, they are defined in the file with a line of the form

1 <E ID= >0 1 </E>

3.1.3 Faces

ol Tip
7
_@' The [FACES section is only necessary when (DIM=3 in the parent 'GEOMETRY
element and may otherwise be omitted.

Faces are defined by three or more edges. Each face has a unique face ID. They are
defined in the file with a line of the form

1 <T ID= >012</T>
2 <Q ID= >345 6 </Q>

The choice of tag specified (T or Q), and thus the number of edges specified depends on
the geometry of the face (triangle or quadrilateral).

3.1.4 Element

Elements define the top-level geometric entities in the mesh. Their definition depends
upon the dimension of the expansion. For two-dimensional expansions, an element is
defined by a sequence of three or four edges. For three-dimensional expansions, the
element is defined by a list of faces. Elements are defined in the file with a line of the
form

1 <T ID= >012</T>
2<H ID="1"> 3 4 5 6 7 8 </H>

Again, the choice of tag specified depends upon the geometry of the element. The element
tags are:



26 Chapter 3 XML Session File

e (8] Segment

e [T Triangle

e (@ Quadrilateral
e [A] Tetrahedron
e (P Pyramid

e (R Prism

e H Hexahedron

3.1.5 Curved Edges and Faces

NP Tip
_@' The [CURVED | section is only necessary if curved edges or faces are present in
the mesh and may otherwise be omitted.

For mesh elements with curved edges and/or curved faces, a separate entry is used
to describe the control points for the curve. Each curve has a unique curve ID and
is associated with a predefined edge or face. The total number of points in the curve
(including end points) and their distribution is also included as attributes. The control
points are listed in order, each specified by three coordinates. Curved edges are defined
in the file with a line of the form

1 <E ID= EDGEID= TYPE= NUMPOINTS="3">
2 0.0 0.0 0.0 0.5 0.5 0.0 1.0 0.0 0.0
3 </E>

Note

@ In the compressed form, this section contains different sub-elements to efficiently
encode the high-order curvature data. This is not described further in this
document.

3.1.6 Composites

Composites define collections of elements, faces or edges. Each has a unique composite ID
associated with it. All components of a composite entry must be of the same type. The
syntax allows components to be listed individually or using ranges. Examples include

1<C ID="0"> T[0-862] </C>
2 <C ID="1"> E[68,69,70,71] </C>
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3.1.7 Domain

This tag specifies composites which describe the entire problem domain. It has the form
of

1 <DOMAIN> C[0] </DOMAIN>

3.2 Expansions

This section defines the polynomial expansions used on each of the defined geometric
composites. Expansion entries specify the number of modes, the basis type. The
short-hand version has the following form

1 <E COMPOSITE= NUMMODES= FIELDS= TYPE= />

or, if we have more then one variable we can apply the same basis to all using

1 <E COMPOSITE= NUMMODES= FIELDS= TYPE= />

The expansion basis can also be specified in detail as a combination of one-dimensional
bases, and thus the user is able to, for example, increase the quadrature order. For tet
elements this takes the form:

1 <E COMPOSITE=

2 BASISTYPE=
NUMMODES=
POINTSTYPE=
NUMPOINTS=
FIELDS= />

D Ot s W

and for prism elements:

1 <E COMPOSITE=

2 BASISTYPE=
NUMMODES=
POINTSTYPE=
NUMPOINTS=
FIELDS= />

D Ot W

3.3 Conditions

The final section of the file defines parameters and boundary conditions which define the
nature of the problem to be solved. These are enclosed in the (CONDITIONS tag.

3.3.1 Parameters

Parameters may be required by a particular solver (for instance time-integration parame-
ters or solver-specific parameters), or arbitrary and only used within the context of the
session file (e.g. parameters in the definition of an initial condition). All parameters are
enclosed in the [PARAMETERS | XML element.
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1 <PARAMETERS>
2 600
3 </PARAMETERS>

A parameter may be of integer or real type and may reference other parameters defined
previous to it. It is expressed in the file as

1 <P> [PARAMETER NAME] = [PARAMETER VALUE] </P>

For example,

1 <P> NumSteps = 1000 </P>
2 <P> TimeStep 0.01 </P>
3 <P> FinTime = NumSteps*TimeStep </P>

3.3.2 Solver Information

These specify properties to define the actions specific to solvers, typically including
the equation to solve, the projection type and the method of time integration. The
property /value pairs are specified as XML attributes. For example,

1 <SOLVERINFO>

2 <I PROPERTY= VALUE= />
3 <I PROPERTY= VALUE= />
4 <I PROPERTY= VALUE= />

5 </SOLVERINFO>

The list of available solvers in Nektar++ can be found in Part III.

3.3.2.1 Drivers

Drivers are defined under the (CONDITIONS  section as properties of the (SOLVERINFO XML
element. The role of a driver is to manage the solver execution from an upper level.

The default driver is called [Standard | and executes the following steps:

1. Prints out on screen a summary of all the conditions defined in the input file.

[\V]

. Sets up the initial and boundary conditions.
3. Calls the solver defined by [SolverType| in the [SOLVERINFO XML element.

4. Writes the results in the output (.fld) file.

In the following example, the driver [Standard is used to manage the execution of the
incompressible Navier-Stokes equations:
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1 <SOLVERINFO>

2 <I PROPERTY= VALUE= />

3 <I PROPERTY= VALUE= />
4 <I PROPERTY= VALUE= />

5 <I PROPERTY= VALUE= />

6 <I PROPERTY= VALUE= />

7 </SOLVERINFO>

If no driver is specified in the session file, the driver [ Standard  is called by default. Other
drivers can be used and are typically focused on specific applications. As described in
Sec. 10.3.1 and 10.4.1, the other possibilities are:

e (ModifiedArnoldi - computes of the leading eigenvalues and eigenmodes using
modified Arnoldi method.

e Arpack - computes of eigenvalues/eigenmodes using Implicitly Restarted Arnoldi
Method (ARPACK).

e SteadyState - uses the Selective Frequency Damping method (see Sec. 10.1.5)
to obtain a steady-state solution of the Navier-Stokes equations (compressible or
incompressible).

3.3.3 Variables

These define the number (and name) of solution variables. Each variable is prescribed
a unique ID. For example a two-dimensional flow simulation may define the velocity
variables using

1 <VARTABLES>

2 <V ID= > u </V>

3 <V ID= > v </V>
4 </VARIABLES>

3.3.4 Global System Solution Information

Many Nektar++ solvers use an implicit formulation of their equations to, for instance,
improve timestep restrictions. This means that a large matrix system must be constructed
and a global system set up to solve for the unknown coeflicients. There are several
approaches in the spectral/hp element method that can be used in order to improve
efficiency in these methods, as well as considerations as to whether the simulation is run
in parallel or serial. Nektar++ opts for ‘sensible’ default choices, but these may or may
not be optimal depending on the problem under consideration.

This section of the XML file therefore allows the user to specify the global system solution
parameters, which dictates the type of solver to be used for any implicit systems that are
constructed. This section is particularly useful when using a multi-variable solver such as
the incompressible Navier-Stokes solver, as it allows us to select different preconditioning
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and residual convergence options for each variable. As an example, consider the block
defined by:

1 <GLOBALSYSSOLNINFO>

<V VAR= >
<I PROPERTY= VALUE= />
<I PROPERTY= VALUE= />
<I PROPERTY= VALUE= />
</V>
<V VAR= >
<I PROPERTY= VALUE= />
<I PROPERTY= VALUE= />
<I PROPERTY= VALUE= />
</V>

12 </GLOBALSYSSOLNINFO>

The above section specifies that the variables u,v,w should use the IterativeStaticCond
global solver alongside the LowEnergyBlock preconditioner and an iterative tolerance of
10~® on the residuals. However the pressure variable p is generally stiffer: we therefore
opt for a more expensive FullLinearSpaceWithLowEnergyBlock preconditioner and a
larger residual of 107%. We now outline the choices that one can use for each of these
parameters and give a brief description of what they mean.

Note

Defaults for all fields can be defined by setting the equivalent property in

the SOLVERINFO section. Parameters defined in this section will override any
options specificed there.

3.3.4.1 GlobalSysSoln options

Nektar++ presently implements four methods of solving a global system:

Direct solvers construct the full global matrix and directly invert it using an
appropriate matrix technique, such as Cholesky factorisation, depending on the
properties of the matrix. Direct solvers only run in serial.

Iterative solvers instead apply matrix-vector multiplications repeatedly, using the
conjugate gradient method, to converge to a solution to the system. For smaller
problems, this is typically slower than a direct solve. However, for larger problems
it can be used to solve the system in parallel execution.

Xxt solvers use the X X7 library to perform a parallel direct solve. This option is
only available if the NEKTAR_USE_MPT option is enabled in the CMake configuration.

PETSc solvers use the PETSc library, giving access to a wide range of solvers and
preconditioners. See section 3.3.4.4 below for some additional information on how
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to use the PETSc solvers. This option is only available if the NEKTAR_USE_PETSC
option is enabled in the CMake configuration.

Both the Xxt and PETSc solvers are considered advanced and are under development —
either the direct or iterative solvers are recommended in most scenarios.

These solvers can be run in one of three approaches:

e The Full approach constructs the global system based on all of the degrees of
freedom contained within an element. For most of the Nektar++ solvers, this
technique is not recommended.

e The StaticCond approach applies a technique called static condensation to instead
construct the system using only the degrees of freedom on the boundaries of the
elements, which reduces the system size considerably. This is the default option
in parallel.

e MultiLevelStaticCond methods apply the static condensation technique repeat-
edly to further reduce the system size, which can improve performance by 25-30%
over the normal static condensation method. It is therefore the default option
in serial. Note that whilst parallel execution technically works, this is under
development and is likely to be slower than single-level static condensation: this is
therefore not recommended.

The GlobalSysSoln option is formed by combining the method of solution with the
approach: for example IterativeStaticCond or PETScMultiLevelStaticCond.

3.3.4.2 Preconditioner options

Preconditioners can be used in the iterative and PETSc solvers to reduce the number
of iterations needed to converge to the solution. There are a number of preconditioner
choices, the default being a simple Jacobi (or diagonal) preconditioner, which is enabled
by default. There are a number of choices that can be enabled through this parameter,
which are all generally discretisation and dimension-dependent:



32 Chapter 3 XML Session File

Name Dimensions Discretisations
Null All All
Diagonal All All
FullLinearSpace 2/3D CG
LowEnergyBlock 3D CG
Block 2/3D All
FullLinearSpaceWithDiagonal All CG
FulllLinearSpaceWithLowEnergyBlock  2/3D CG
FullLinearSpaceWithBlock 2/3D CG

For a detailed discussion of the mathematical formulation of these options, see the
developer guide.

3.3.4.3 SuccessiveRHS options

The SuccessiveRHS option can be used in the iterative solver only, to attempt to reduce
the number of iterations taken to converge to a solution. It stores a number of previous
solutions, dictated by the setting of the SuccessiveRHS option, to give a better initial
guess for the iterative process.

3.3.4.4 PETSc options and configuration

The PETSc solvers, although currently experimental, are operational both in serial and
parallel. PETSc gives access to a wide range of alternative solver options such as GMRES,
as well as any packages that PETSc can link against, such as the direct multi-frontal
solver MUMPS.

Configuration of PETSc options using its command-line interface dictates what matrix
storage, solver type and preconditioner should be used. This should be specified in a
.petscrc file inside your working directory, as command line options are not currently
passed through to PETSc to avoid conflict with Nektar++ options. As an example, to
select a GMRES solver using an algebraic multigrid preconditioner, and view the residual
convergence, one can use the configuration:

-ksp_monitor
-ksp_view
-ksp_type gmres
~pc_type gamg

Or to use MUMPS, one could use the options:

-ksp_type preonly
-pc_type lu
-pc_factor_mat_solver_package mumps
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-mat_mumps_icntl_7 2

A final choice that can be specified is whether to use a shell approach. By default,
Nektar++ will construct a PETSc sparse matrix (or whatever matrix is specified on the
command line). This may, however, prove suboptimal for higher order discretisations.
In this case, you may choose to use the Nektar++ matrix-vector operators, which by
default use an assembly approach that can prove faster, by setting the PETScMatMult
SOLVERINFO option to Shell:

1 <I PROPERTY= VALUE= />

The downside to this approach is that you are now constrained to using one of the
Nektar++ preconditioners. However, this does give access to a wider range of Krylov
methods than are available inside Nektar++ for more advanced users.

3.3.5 Boundary Regions and Conditions

Boundary conditions are defined by two XML elements. The first defines the boundary
regions in the domain in terms of composite entities from the (GEOMETRY  section of the
file. Each boundary region has a unique ID and are defined as,

1 <BOUNDARYREGIONS>

2 <B ID=[id]> [composite-list] </B>
3 °00
4 </BOUNDARYREGIONS>

For example,

1 <BOUNDARYREGIONS>

2 <B ID="0"> C[2] </B>
3 <B ID="1"> C[3] </B>
4 </BOUNDARYREGIONS>

The second XML element defines, for each variable, the condition to impose on each
boundary region, and has the form,

1 <BOUNDARYCONDITIONS>

2 <REGION REF= >

3 <[typel] VAR= VALUE= />
4 ..

5 <[typeN] VAR= VALUE= />
6 </REGION>

7 coo

8 </BOUNDARYCONDITIONS>

There should be precisely one [REGION  entry for each (B entry defined in the | BOUNDARYREGION
section above. For example, to impose a Dirichlet condition on both variables for a
domain with a single region,
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1 <BOUNDARYCONDITIONS>

2 <REGION REF= >

3 <D VAR= VALUE= />
4 <D VAR= VALUE= />
5 </REGION>

6 </BOUNDARYCONDITIONS>

Boundary condition specifications may refer to any parameters defined in the session file.
The (REF | attribute corresponds to a defined boundary region. The tag used for each
variable specifies the type of boundary condition to enforce.

3.3.5.1 Dirichlet (essential) condition

Dirichlet conditions are specified with the (D tag.

Projection Homogeneous support Time-dependent support Dimensions

CG Yes Yes 1D, 2D and 3D
DG Yes Yes 1D, 2D and 3D
HDG Yes Yes 1D, 2D and 3D
Example:

1 <!-- homogeneous condition -->

2 <D VAR= VALUE= />

3 <!-- inhomogeneous condition -->

4 <D VAR="u" VALUE= />

5 <!-- time-dependent condition -->

6 <D VAR= USERDEFINEDTYPE= VALUE= />

3.3.5.2 Neumann (natural) condition

Neumann conditions are specified with the (N tag.

Projection Homogeneous support Time-dependent support Dimensions

CG Yes Yes 1D, 2D and 3D
DG No No 1D, 2D and 3D
HDG ? ? ?
Example:

1 <!-- homogeneous condition -->

2 <N VAR= VALUE= />

3 <!-- inhomogeneous condition -->

4 <N VAR= VALUE= />

5 <!-- time-dependent condition -->

6 <N VAR= USERDEFINEDTYPE= VALUE= />

7 <!-- high-order pressure boundary condition (for IncNavierStokesSolver) -->

8 <N VAR= USERDEFINEDTYPE= VALUE= />
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3.3.5.3 Periodic condition

Periodic conditions are specified with the (P tag.

Projection Homogeneous support Dimensions

CG Yes 1D, 2D and 3D
DG No 2D and 3D
Example:

1 <BOUNDARYREGIONS>

2 <B ID="0"> C[1] </B>

3 <B ID="1"> C[2] </B>

4 </BOUNDARYREGIONS>

5

6 <BOUNDARYCONDITIONS>

7 <REGION REF= >

8 <P VAR= VALUE= />
9 </REGION>

10 <REGION REF= >

11 <P VAR= VALUE= />
12 </REGION>

13 </BOUNDARYCONDITIONS>

Periodic boundary conditions are specified in a significantly different form to other
conditions. The VALUE property is used to specify which (BOUNDARYREGION  is periodic
with the current region in square brackets.

Caveats:

e A periodic condition must be set for ”’both”’ boundary regions; simply specifying
a condition for region 0 or 1 in the above example is not enough.

e The order of the elements inside the composites defining periodic boundaries is
important. For example, if ‘C[0]* above is defined as edge IDs ‘0,5,4,3‘ and ‘C[1]‘ as
“7,12,2,1° then edge 0 is periodic with edge 7, 5 with 12, and so on.

e For the above reason, the composites must also therefore be of the same size.

e In three dimensions, care must be taken to correctly align triangular faces which
are intended to be periodic. The top (degenerate) vertex should be aligned so that,
if the faces were connected, it would lie at the same point on both triangles.

3.3.5.4 Time-dependent boundary conditions

Time-dependent boundary conditions may be specified through setting the (USERDEFINEDTYPE
attribute and using the parameter t | where the current time is required. For example,

1 <D VAR= USERDEFINEDTYPE= VALUE= />
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3.3.5.5 Boundary conditions from file

Boundary conditions can also be loaded from file. The following example is from the
Incompressible Navier-Stokes solver,

1 <REGION REF="1">

2 <D VAR= FILE= />
3 <D VAR= VALUE= />
4 <N VAR= USERDEFINEDTYPE= VALUE= />

5 </REGION>

Boundary conditions can also be loaded simultaneously from a file and from an analytic
expression. For example in the scenario where a spatial boundary condition is read from
a file, but needs to be modulated by a time-dependent analytic expression:

1 <REGION REF="1">

2 <D VAR= VALUE= TimeDependent sin(PI*(x-t))

3 besfromfiles_u_1.bc
4

In the case where both (VALUE | and (FILE are specified, the values are multiplied together
to give the final value for the boundary condition.

3.3.6 Functions

Finally, multi-variable functions such as initial conditions and analytic solutions may
be specified for use in, or comparison with, simulations. These may be specified using
expressions ((<E>)) or imported from a file ((<F> ) using the Nektar4++ FLD file format

1 <FUNCTION NAME= >

2 <E VAR="u'" VALUE= />

3 </FUNCTION>

4 <FUNCTION NAME= >

5 <F VAR="u'" FILE= />

6 </FUNCTION>

A restart file is a solution file (in other words an .fld renamed as .rst) where the field data
is specified. The expansion order used to generate the .rst file must be the same as that
for the simulation. .pts files contain scattered point data which needs to be interpolated
to the field. For further information on the file format and the different interpolation
schemes, see section 5.3.12. All filenames must be specified relative to the location of the
xml file.

With the additional argument [ TIMEDEPENDENT="1" | different files can be loaded for
each timestep. The filenames are defined using boost::format syntax where the step
time is used as variable. For example, the function (Baseflow| would load the files
UOVO_1.00000000E-05.£1d |, [UOVO_2.00000000E-05.f1d | and so on.

1 <FUNCTION NAME= >
2 <F VAR= TIMEDEPENDENT= FILE= />
3 </FUNCTION>


http://www.boost.org/doc/libs/1_56_0/libs/format/doc/format.html#syntax
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For .pts files, the time consuming computation of interpolation weights in only performed
for the first timestep. The weights are stored and reused in all subsequent steps, which
is why all consecutive .pts files must use the same ordering, number and location of data
points.

Other examples of this input feature can be the insertion of a forcing term,

1 <FUNCTION NAME= >
2 <E VAR= VALUE= />

3 <E VAR= VALUE= />

4 </FUNCTION>

5 <FUNCTION NAME= >

6 <E VAR= VALUE= />

7 </FUNCTION>

or of a linear advection term

1 <FUNCTION NAME= >
2 <E VAR= VALUE= />
3 <E VAR= VALUE= />
4 <E VAR= VALUE= />

5 </FUNCTION>

3.3.6.1 Remapping variable names

Note that it is sometimes the case that the variables being used in the solver do not match
those saved in the FLD file. For example, if one runs a three-dimensional incompressible
Navier-Stokes simulation, this produces an FLD file with the variables (u), (v), (w) and
p. If we wanted to use this velocity field as input for an advection velocity, the

advection-diffusion-reaction solver expects the variables (Vx ), [Vy| and (Vz .

We can manually specify this mapping by adding a colon to the

1 <FUNCTION NAME= >
2 <F VAR= FILE= />
3 </FUNCTION>

There are some caveats with this syntax:

e You must specify the same number of fields for both the variable, and after the
colon. For example, the following is not valid.

1 <FUNCTION NAME= >
2 <F VAR= FILE= />
3 </FUNCTION>

e This syntax is not valid with the wildcard operator (*), so one cannot write for

example:
1 <FUNCTION NAME= >
2 <F VAR="#" FILE= />

3 </FUNCTION>
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3.3.6.2 Time-dependent file-based functions

With the additional argument [ TIMEDEPENDENT="1" | different files can be loaded for
each timestep. The filenames are defined using boost::format syntax where the step
time is used as variable. For example, the function (Baseflow| would load the files
UOVO_1.00000000E-05.£1d |, [ UOVO_2.00000000E-05.f1d | and so on.

1 <FUNCTION NAME= >
2 <F VAR= TIMEDEPENDENT= FILE= />
3 </FUNCTION>

Section 3.6 provides the list of acceptable mathematical functions and other related
technical details.

3.3.7 Quasi-3D approach

To generate a Quasi-3D appraoch with Nektar++ we only need to create a 2D or a 1D
mesh, as reported above, and then specify the parameters to extend the problem to a
3D case. For a 2D spectral/hp element problem, we have a 2D mesh and along with the
parameters we need to define the problem (i.e. equation type, boundary conditions, etc.).
The only thing we need to do, to extend it to a Quasi-3D approach, is to specify some
additional parameters which characterise the harmonic expansion in the third direction.
First we need to specify in the solver information section that that the problem will be
extended to have one homogeneouns dimension; here an example

1 <SOLVERINFO>

2 <I PROPERTY= VALUE= />
3 <I PROPERTY= VALUE= />

4 <I PROPERTY= VALUE= />

5 <I PROPERTY= VALUE= />

6 <I PROPERTY= VALUE= />

7 <I PROPERTY= VALUE= />

8 </SOLVERINFO>

then we need to specify the parameters which define the 1D harmonic expanson along the
z-axis, namely the homogeneous length (LZ) and the number of modes in the homogeneous
direction (HomModesZ). HomModesZ corresponds also to the number of quadrature
points in the homogenous direction, hence on the number of 2D planes discretized with a
specral/hp element method.

1 <PARAMETERS>

2 <P> TimeStep = 0.001 </P>
3 <P> NumSteps = 1000 </P>
4 <P> I0_CheckSteps = 100 </P>
5 <P> I0_InfoSteps = 10 </P>
6 <P> Kinvis = 0.025 </P>
7  <P> HomModesZ =4 </P>
8 <P> LZ =1.0 </P>
9 </PARAMETERS>


http://www.boost.org/doc/libs/1_56_0/libs/format/doc/format.html#syntax
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In case we want to create a Quasi-3D approach starting form a 1D spectral/hp element
mesh, the procedure is the same, but we need to specify the parameters for two harmonic

directions (in Y and Z direction). For Example,

1 <SOLVERINFO>

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

<I
<I
<I
<I
<I
<I
</SOL
<PARA
<P>
<P>
<P>
<P>
<P>
<P>
<P>
<p>
<P>
<P>
<P>

PROPERTY=
PROPERTY=
PROPERTY=
PROPERTY=
PROPERTY=
PROPERTY=
VERINFO>
METERS>
TimeStep
NumSteps
I0_CheckSteps
I0_InfoSteps
wavefreq
epsilon
Lambda
HomModesY
LY
HomModesZ
LZ

21 </PARAMETERS>

0.001 </P>
200 </P>
200 </P>
10 </P>
PI </P>
1.0 </P>
1.0 </P>
10 </P>
6.5 </P>
6 </P>
2.0 </P>

VALUE=
VALUE=
VALUE=
VALUE=
VALUE=
VALUE=

/>
/>
/>
/>
/>
/>

By default the opeartions associated with the harmonic expansions are performed with the
Matix-Vector-Multiplication (MVM) defined inside the code. The Fast Fourier Transofrm
(FFT) can be used to speed up the operations (if the FFTW library has been compiled
in ThirdParty, see the compilation instructions). To use the FFT routines we need just

to insert a flag in the solver information as below:

1 <SOLVERINFO>

=W N

© 00 N O w»

<I
<I
<I
<I
<I
<I
<I
</SOL

PROPERTY=
PROPERTY=
PROPERTY=
PROPERTY=
PROPERTY=
PROPERTY=
PROPERTY=
VERINFO>

VALUE=
VALUE=
VALUE=
VALUE=
VALUE=
VALUE=
VALUE=

/>
/>
/>
/>
/>
/>
/>

The number of homogenenous modes has to be even. The Quasi-3D apporach can be
created starting from a 2D mesh and adding one homogenous expansion or starting form
a 1D mesh and adding two homogeneous expansions. Not other options available. In
case of a 1D homogeneous extension, the homogeneous direction will be the z-axis. In
case of a 2D homogeneous extension, the homogeneous directions will be the y-axis and
the z-axis.
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3.4 Filters

Filters are a method for calculating a variety of useful quantities from the field variables
as the solution evolves in time, such as time-averaged fields and extracting the field
variables at certain points inside the domain. Each filter is defined in a [FILTER tag
inside a [FILTERS) block which lies in the main (NEKTAR | tag. In this section we give an
overview of the modules currently available and how to set up these filters in the session
file.

Here is an example [FILTER :

1 <FILTER TYPE= >
2 <PARAM NAME= > Valuel </PARAM>
3 <PARAM NAME= > Value2 </PARAM>

4 </FILTER>

A filter has a name — in this case, (FilterName| — together with parameters which are set
to user-defined values. Each filter expects different parameter inputs, although where
functionality is similar, the same parameter names are shared between filter types for
consistency. Numerical filter parameters may be expressions and so may include session
parameters defined in the ([PARAMETERS | section.

In the following we document the filters implemented. Note that some filters are solver-
specific and will therefore only work for a given subset of the available solvers.

3.4.1 Time-averaged fields

This filter computes time-averaged fields for each variable defined in the session file.
Time averages are computed by either taking a snapshot of the field every timestep,
or alternatively at a user-defined number of timesteps N. An output is produced at
the end of the simulation into [session_avg.fld , or alternatively every M timesteps as
defined by the user, into a sequence of files (session_*_avg.fld , where (* ) is replaced by
a counter. This latter option can be useful to observe statistical convergence rates of the
averaged variables.

The following parameters are supported:

Option name Required Default Description

OutputFile X session  Prefix of the output filename to which
average fields are written.

SampleFrequency X 1 Number of timesteps at which the aver-
age is calculated, N.

OutputFrequency X NumSteps Number of timesteps after which output

is written, M.
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As an example, consider:

1 <FILTER TYPE= >

2 <PARAM NAME= >MyAverageFie1d</PARAM>
3 <PARAM NAME= >100</PARAM>

4 <PARAM NAME= > 10 </PARAM>

5 </FILTER>

This will create a file named MyAverageField.fld averaging the instantaneous fields
every 10 time steps. The averaged field is however only output every 100 time steps.

3.4.2 Moving average of fields

This filter computes the exponential moving average (in time) of fields for each variable
defined in the session file. The moving average is defined as:

Up = oty + (1 — a)tp—1

with 0 < o < 1 and w1 = u.

The same parameters of the time-average filter are supported, with the output file in
the form |session_*_movAvg.fld . In addition, either @ or the time-constant 7 must be
defined. They are related by:
ls
T+t
where t; is the time interval between consecutive samples.

As an example, consider:

1 <FILTER TYPE= >

2 <PARAM NAME= >MyMovingAverage</PARAM>
3 <PARAM NAME= >100</PARAM>

4 <PARAM NAME= > 10 </PARAM>

5 <PARAM NAME= > 0.1 </PARAM>

6 </FILTER>
This will create a file named MyMovingAverage_movAvg.fld | with a moving average sam-
pled every 10 time steps. The averaged field is however only output every 100 time
steps.

3.4.3 Reynolds stresses

@ Note
This filter is only supported for the incompressible Navier-Stokes solver.

This filter is an extended version of the time-average filter. It outputs not only the
time-average of the fields, but also the Reynolds stresses. The same parameters supported
in the time-average case can be used, for example:
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1 <FILTER TYPE= >

2 <PARAM NAME= >MyAverageField</PARAM>
3 <PARAM NAME= >100</PARAM>

4 <PARAM NAME= > 10 </PARAM>

5 </FILTER>

By default, this filter uses a simple average. Optionally, an exponential time average can
be used, in which case the output contain the moving averages and the Reynolds stresses
calculated based on them. For example:

1 <FILTER TYPE= >

2 <PARAM NAME= >MyAverageField</PARAM>
3 <PARAM NAME= >true</PARAM>

4 <PARAM NAME= >100</PARAM>

5 <PARAM NAME= > 10 </PARAM>

6 <PARAM NAME= > 0.01 </PARAM>

7 </FILTER>

3.4.4 Checkpoint fields

The checkpoint filter writes a checkpoint file, containing the instantaneous state of the
solution fields at at given timestep. This can subsequently be used for restarting the
simulation or examining time-dependent behaviour. This produces a sequence of files, by
default named 'session_x.chk , where (* ) is replaced by a counter. The initial condition

is written to [session_0.chk .

Note

This functionality is equivalent to setting the I0_CheckSteps| parameter in the
session file.

The following parameters are supported:

Option name Required Default Description

OutputFile X session Prefix of the output filename to which
the checkpoints are written.

OutputFrequency v - Number of timesteps after which output
is written.

For example, to output the fields every 100 timesteps we can specify:

1 <FILTER TYPE= >
2 <PARAM NAME= >IntermediateFields</PARAM>
3 <PARAM NAME= >100</PARAM>

4 </FILTER>
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3.4.5 History points

The history points filter can be used to evaluate the value of the fields in specific points
of the domain as the solution evolves in time. By default this produces a file called
session.his ). For each timestep, and then each history point, a line is output containing
the current solution time, followed by the value of each of the field variables. Commented
lines are created at the top of the file containing the location of the history points and
the order of the variables.

The following parameters are supported:

Option name Required Default Description

OutputFile X session Prefix of the output filename to which
the checkpoints are written.

OutputFrequency X 1 Number of timesteps after which output
is written.

OutputPlane X 0 If the simulation is homogeneous, the

plane on which to evaluate the history
point. (No Fourier interpolation is cur-
rently implemented.)

Points v - A list of the history points. These should
always be given in three dimensions.

For example, to output the value of the solution fields at three points (1,0.5,0), (2,0.5,0)
and (3,0.5,0) into a file | TimeValues.his every 10 timesteps, we use the syntax:

1 <FILTER TYPE= >
2 <PARAM NAME= >TimeValues</PARAM>
3 <PARAM NAME= >10</PARAM>

4 <PARAM NAME= >

5 10.50

6 2 0.50

7 30.50

8 </PARAM>

9 </FILTER>

3.4.6 ThresholdMax

The threshold value filter writes a field output containing a variable m, defined by the
time at which the selected variable first exceeds a specified threshold value. The default
name of the output file is the name of the session with the suffix _max.f1d. Thresholding
is applied based on the first variable listed in the session by default.

The following parameters are supported:
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Option name Required Default

Description

OutputFile X sesston__max.fld
ThresholdVar X first variable name
ThresholdValue v -

InitialValue v

StartTime X 0.0

Output filename to which the
threshold times are written.
Specifies the variable on which
the threshold will be applied.
Specifies the threshold value.
Specifies the initial time.
Specifies the time at which to
start recording.

An example is given below:

1 <FILTER TYPE= >

2 <PARAM NAME= > threshold_max.fld </PARAM>
3 <PARAM NAME= > u </PARAM>

4 <PARAM NAME= > 0.1 </PARAM>

5 <PARAM NAME= > 0.4 </PARAM>

6 </FILTER>

which produces a field file threshold_max.f1d.

3.4.7 ThresholdMin value

Performs the same function as the (ThresholdMax  filter but records the time at which

the threshold variable drops below a prescribed value.

3.4.8 One-dimensional energy

This filter is designed to output the energy spectrum of one-dimensional elements. It
transforms the solution field at each timestep into a orthogonal basis defined by the

functions

wp(f) = Lp(f)

where L, is the p-th Legendre polynomial. This can be used to show the presence of, for
example, oscillations in the underlying field due to numerical instability. The resulting
output is written into a file called session.eny by default. The following parameters

are supported:

Option name Required Default Description

OutputFile X session, Prefix of the output filename to which
the energy spectrum is written.

OutputFrequency X 1 Number of timesteps after which output
is written.

An example syntax is given below:
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1 <FILTER TYPE= >
2 <PARAM NAME= >EnergyFile</PARAM>
3 <PARAM NAME= >10</PARAM>

4 </FILTER>

3.4.9 Modal energy

@ Note
This filter is only supported for the incompressible Navier-Stokes solver.

This filter calculates the time-evolution of the kinetic energy. In the case of a two- or
three-dimensional simulation this is defined as

1
Ei(t) = 5 /Q 2 dz

However if the simulation is written as a one-dimensional homogeneous expansion so that

N
u(x,t) = Z (1) emikx
k=0
then we instead calculate the energy spectrum

1 R
Eu(t) = 5 /Q |2 da

Note that in this case, each component of @iy is a complex number and therefore
N = [HomModesZ /2 lines are output for each timestep. This is a particularly useful tool
in examining turbulent and transitional flows which use the homogeneous extension. In
either case, the resulting output is written into a file called (session.mdl by default.

The following parameters are supported:

Option name Required Default Description

OutputFile X session, Prefix of the output filename to which
the energy spectrum is written.

OutputFrequency X 1 Number of timesteps after which output
is written.

An example syntax is given below:

1 <FILTER TYPE= >
2 <PARAM NAME= >EnergyFile</PARAM>
3 <PARAM NAME= >10</PARAM>

4 </FILTER>
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3.4.10 Aerodynamic forces

@ Note
This filter is only supported for the incompressible Navier-Stokes solver.

This filter evaluates the aerodynamic forces along a specific surface. The forces are
projected along the Cartesian axes and the pressure and viscous contributions are
computed in each direction.

The following parameters are supported:

Option name Required Default Description

OutputFile X session| Prefix of the output filename to which the
forces are written.

Frequency X 1 Number of timesteps after which output is
written.

Boundary v - Boundary surfaces on which the forces are

to be evaluated.

An example is given below:

1 <FILTER TYPE= >

2 <PARAM NAME= >DragLift.frc</PARAM>
3 <PARAM NAME= >10</PARAM>

4 <PARAM NAME= > B[1,2] </PARAM>

5 </FILTER>

During the execution a file named [DragLift.frc| will be created and the value of the
aerodynamic forces on boundaries 1 and 2, defined in the [GEOMETRY  section, will be

output every 10 time steps.

3.4.11 Kinetic energy and enstrophy

Note

This filter is only supported for the incompressible and compressible Navier-
Stokes solvers in three dimensions.

The purpose of this filter is to calculate the kinetic energy and enstrophy

_ 1 2 _ 1 2
Bi= gy |l dr, &= oo |l ar
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where ©(Q2) is the volume of the domain €. This produces a file containing the time-
evolution of the kinetic energy and enstrophy fields. By default this file is called
session.eny where session is the session name.

The following parameters are supported:

Option name Required Default Description

OutputFile X session.eny Output file name to which the en-
ergy and enstrophy are written.

OutputFrequency v - Number of timesteps at which out-

put is written.

To enable the filter, add the following to the [FILTERS  tag:

1 <FILTER TYPE= >
2 <PARAM NAME= > 1 </PARAM>
3 </FILTER>

3.5 Forcing

An optional section of the file allows forcing functions to be defined. These are enclosed
in the [FORCING  tag. The forcing type is enclosed within the (FORCE) tag and expressed in
the file as:

1 <FORCE TYPE= >
2 ..
3 </FORCE>

The force type can be any of the following:

e "Absorption"
° "Body"
e "Programmatic"

e "Noise"

3.5.1 Absorption

This force type allows the user to apply an absorption layer (essentially a porous region)
anywhere in the domain. The user may also specify a velocity profile to be imposed
at the start of this layer, and in the event of a time-dependent simulation, this profile
can be modulated with a time-dependent function. These velocity functions and the
function defining the region in which to apply the absorption layer are expressed in the
CONDITIONS section, however the name of these functions are defined here by the COEFF
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tag for the layer, the (REFFLOW) tag for the velocity profile, and the (REFFLOWTIME | for the
time-dependent function.

1 <FORCE TYPE= >
2 <COEFF> [FUNCTION NAME] <COEFF/>
3 <REFFLOW> [FUNCTION NAME] <REFFLOW/>
4 <REFFLOWTIME> [FUNCTION NAME] <REFFLOWTIME/>
5 </FORCE>
3.5.2 Body

This force type specifies the name of a body forcing function expressed in the (CONDITIONS
section.

1 <FORCE TYPE= >
2 <BODYFORCE> [FUNCTION NAME] <BODYFORCE/>
3 </FORCE>

3.5.3 Programmatic

This force type allows a forcing function to be applied directly within the code, thus it
has no associated function.

1 <FORCE TYPE= >
2 </FORCE>

3.5.4 Noise

This force type allows the user to specify the magnitude of a white noise force. Optional
arguments can also be used to define the frequency in time steps to recompute the noise
(default is never) and the number of time steps to apply the noise (default is the entire
simulation).

1 <FORCE TYPE= >
2 <WHITENOISE> [VALUE] <WHITENOISE/>
3 <!-- Optional arguments -->

4 <UPDATEFREQ> [VALUE] <UPDATEFREQR/>
5 <NSTEPS> [VALUE] <NSTEPS/>
6 </FORCE>

3.6 Analytic Expressions

This section discusses particulars related to analytic expressions appearing in Nektar++-.
Analytic expressions in Nektar+-+ are used to describe spatially or temporally varying
properties, for example

e velocity profiles on a boundary

e some reference functions (e.g. exact solutions)
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which can be retrieved in the solver code.

Analytic expressions appear as the content of (VALUE  attribute of

e boundary condition type tags within [ <REGION> subsection of  <BOUNDARYCONDITIONS>
e.g. [<D>, <N> etc.

e expression declaration tag (<E>| within [ <FUNCTION> subsection.

The tags above declare analytic expressions as well as link them to one of the field
variables declared in (<EXPANSIONS> section. For example, the declaration

1 <D VAR= VALUE= />

registers expression sin(mz) cos(my) as a Dirichlet boundary constraint associated with
field variable (u).

Enforcing the same velocity profile at multiple boundary regions and/or field variables
results in repeated re-declarations of a corresponding analytic expression. Currently
one cannot directly link a boundary condition declaration with an analytic expression
uniquely specified somewhere else, e.g. in the [<FUNCTION> subsection. However this
duplication does not affect an overall computational performance.

3.6.1 Variables and coordinate systems

Declarations of analytic expressions are formulated in terms of problem space-time
coordinates. The library code makes a number of assumptions to variable names and
their order of appearance in the declarations. This section describes these assumptions.

Internally, the library uses 3D global coordinate space regardless of problem dimension.
Internal global coordinate system has natural basis (1,0,0),(0,1,0),(0,0,1) with coordinates

7x7 7y and 7’z”. In other words, variables ”’x”’,”’y”’ and are considered to be

IS NI N 777)

first, second and third coordinates of a point (”’x”,"’y”’,”’z

99,99
Z

Declarations of problem spatial variables do not exist in the current XML file format.
Even though field variables are declarable as in the following code snippet,

1 <VARIABLES>

2 <V ID= > u </V>
3 <V ID= > v </V>
4 </VARIABLES>

there are no analogous tags for space variables. However an attribute SPACE of
<GEOMETRY> section tag declares the dimension of problem space. For example,

1 <GEOMETRY DIM= SPACE= > ...
2  </GEOMETRY>
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specifies 1D flow within 2D problem space. The number of spatial variables presented in
expression declaration should match space dimension declared via | <GEOMETRY>  section
tag.

The library assumes the problem space also has natural basis and spatial coordinates
have names b 7X77 ’777 7y7? ) and” 7Z77 7'

Problem space is naturally embedded into the global coordinate space: each point of

e 1D problem space with coordinate x is represented by 3D point (x,0,0) in the global
coordinate system:;

e 2D problem space with coordinates (x,y) is represented by 3D point (x,y,0) in the
global coordinate system:;

e 3D problem space with coordinates (x,y,z) has the same coordinates in the global
space coordinates.

Currently, there is no way to describe rotations and translations of problem space relative
to the global coordinate system.

The list of variables allowed in analytic expressions depends on the problem dimension:

99,999
X

e For 1D problem analytic expressions must make use of variable only;

e For 2D problem analytic expressions should make use of variables ”’x”’ and ”’y”".

I I

e 3D problems may use variables ”’x”’, ”’y”’ and ”’z”’

in their analytic expressions.

Violation of these constraints yields unpredictable results of expression evaluation. The
current implementation assigns magic value -9999 to each dimensionally excessive spacial
variable appearing in analytic expressions. For example, the following declaration

1 <GEOMETRY DIM= SPACE= > ..

2 </GEOMETRY> ...

3 <CONDITIONS> ...

4 <BOUNDARYCONDITIONS>

5 <REGION REF= >

6 <D VAR= VALUE= /> <D VAR="v" VALUE="sin(PI*x)*cos(PI*xy)" />
7 </REGION>

8 </BOUNDARYCONDITIONS>

9

</CONDITIONS>

[
(=)

results in expression x + y + z being evaluated at spatial points (z;, y;, —9999) where x;
and y; are the spacial coordinates of boundary degrees of freedom. However, the library
behaviour under this constraint violation may change at later stages of development (e.g.,
magic constant 0 may be chosen) and should be considered unpredictable.



3.6  Analytic Expressions 51

Another example of unpredictable behaviour corresponds to wrong ordering of variables:

1 <GEOMETRY DIM= SPACE= > ...

2 </GEOMETRY> ...

3 <CONDITIONS> ...

4 <BOUNDARYCONDITIONS>

5 <REGION REF= >

6 <D VAR= VALUE= />
7 </REGION>

8 </BOUNDARYCONDITIONS>

9

</CONDITIONS>

=
(=)

MISM

Here one declares 1D problem, so Nektar++ library assumes spacial variable is ”7’x
At the same time, an expression sin(y) is perfectly valid on its own, but since it does
not depend on ”’x”’ it will be evaluated to constant sin(—9999) regardless of degree of
freedom under consideration.

3.6.1.1 Time dependence
Variable 7’t”’ represents time dependence within analytic expressions. The boundary con-

dition declarations need to add an additional property [USERDEFINEDTYPE="TimeDependent"
in order to flag time dependency to the library.

3.6.1.2 Syntax of analytic expressions

Analytic expressions are formed of

e brackets (). Bracketing structure must be balanced.

e real numbers: every representation is allowed that is correct for boost: :lexical_cast<double>() ,
e.g.

1 1.2, 1.2e-5, .02

e mathematical constants
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Identifier Meaning Real Value
Fundamental constants
E Natural Logarithm 2.71828182845904523536
PI T 3.14159265358979323846
GAMMA Euler Gamma 0.57721566490153286060
DEG deg/radian 57.2957795130823208768
PHI golden ratio 1.61803398874989484820
Derived constants

LOG2E log, e 1.44269504088896340740
LOGI10E logge 0.43429448190325182765
LN2 log, 2 0.69314718055994530942
PI 2 5 1.57079632679489661923
PI 4 T 0.78539816339744830962
1 PI 1 0.31830988618379067154
2 PI % 0.63661977236758134308
2_SQRTPI % 1.12837916709551257390
SQRT2 V2 1.41421356237309504880
SQRT1_2 % 0.70710678118654752440

e parameters: alphanumeric names with underscores, e.g. |GAMMA_123 | (GaM123_45a_}|,
_gamma123 | are perfectly acceptable parameter names. However parameter name

cannot start with a numeral. Parameters must be defined with <PARAMETERS>. ..</PARAMETERS> |
Parameters play the role of constants that may change their values in between of
expression evaluations.

e variables (i.e.,, x, y, z and t)

e unary minus operator (e.g. (-x))

e binary arithmetic operators +, -, *, /, -~ Powering operator allows using real

exponents (it is implemented with std::pow() function)

e boolean comparison operations <, <=, >, >=, == evaluate their sub-expressions
to real values 0.0 or 1.0.

e mathematical functions of one or two arguments:
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Identifier = Meaning

abs (x) absolute value |z|

asin(x) inverse sine arcsin

acos(x) inverse cosine arccos

ang(x,y) computes polar coordinate § = arctan(y/z) from (z,y)
atan(x) inverse tangent arctan x

atan2(y,x) inverse tangent function (used in polar transformations)
ceil(x) round up to nearest integer [z]

cos(x) cosine cos

cosh(x) hyperbolic cosine cosh x

exp (x) exponential e*

fabs (x) absolute value (equivalent to abs)

floor(x) rounding down |z]

log(x) logarithm base e, Inx = logx

logl0(x) logarithm base 10, log;q x
rad(x,y) computes polar coordinate r = \/z2 + y? from (z,y)

sin(x) sine sin z

sinh(x) hyperbolic sine sinh x
sqrt (x) square root \/x

tan(x) tangent tanx

tanh (x) hyperbolic tangent tanh x

These functions are implemented by means of the cmath library: http://www.
cplusplus.com/reference/clibrary/cmath/. Underlying data type is (double
at each stage of expression evaluation. As consequence, complex-valued expressions
(e.g. (—2)°.123) get value nan (not a number). The operator ~ is implemented
via call to std::pow() function and accepts arbitrary real exponents.

random noise generation functions. Currently implemented is |awgn(sigma) | -
Gaussian Noise generator, where ¢ is the variance of normal distribution with zero
mean. Implemented using the boost: :mt19937 random number generator with
boost variate generators (see http://www.boost.org/libs/random)

3.6.1.3 Examples

Some straightforward examples include

Basic arithmetic operators: 0.5%0.3164/(3000°0.25)
Simple polynomial functions: |y*(1-y)
Use of values defined in (PARAMETERS | section: |-2*Kinvis*(x-1)

More complex expressions involving trigonometric functions, parameters and con-
stants: ' (LAMBDA/2/PI)*exp (LAMBDA*x) *sin (2+PIxy)


http://www.cplusplus.com/reference/clibrary/cmath/
http://www.cplusplus.com/reference/clibrary/cmath/
http://www.boost.org/libs/random
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e Boolean operators for multi-domain functions:  (y<0)*sin(y) + (y>=0)x*y

3.6.2 Performance considerations

Processing analytic expressions is split into two stages:

e parsing with pre-evaluation of constant sub-expressions,

e cvaluation to a number.

Parsing of analytic expressions with their partial evaluation take place at the time of
setting the run up (reading an XML file). Each analytic expression, after being pre-
processed, is stored internally and quickly retrieved when it turns to evaluation at given
spatial-time point(s). This allows to perform evaluation of expressions at a large number
of spacial points with minimal setup costs.

3.6.2.1 Pre-evaluation details

Partial evaluation of all constant sub-expressions makes no sense in using derived constants
from table above. This means, either make use of pre-defined constant LN10°2 or
straightforward expression logl0(2)~2 results in constant 5.3018981104783980105
being stored internally after pre-processing. The rules of pre-evaluation are as follows:

e constants, numbers and their combinations with arithmetic, analytic and comparison
operators are pre-evaluated,

e appearance of a variable or parameter at any recursion level stops pre-evaluation of
all upper level operations (but doesn’t stop pre-evaluation of independent parallel
sub-expressions).

For example, declaration

1 <D VAR= VALUE= />

results in expression exp(-x*(-0.97372300937516503167)*y ) being stored internally:
sub-expression sin(PI*(sqrt(2)+sqrt(3))/2) is evaluated to constant but appearance
of x and y variables stops further pre-evaluation.

Grouping predefined constants and numbers together helps. Its useful to put brackets to
be sure your constants do not run out and become factors of some variables or parameters.

Expression evaluator does not do any clever simplifications of input expressions, which is
clear from example above (there is no point in double negation). The following subsection
addresses the simplification strategy.
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3.6.2.2 Preparing analytic expression

The total evaluation cost depends on the overall number of operations. Since evaluator
is not making simplifications, it worth trying to minimise the total number of operations
in input expressions manually.

Some operations are more computationally expensive than others. In an order of increasing

complexity:

e x, /, abs, fabs, ceil, floor,

~, sqrt, exp, log, loglO, sin, cos, tan, sinh, cosh, tanh, asin, acos, atan.

For example,

e xx*x is faster than x~2 — it is one double multiplication vs generic calculation of

arbitrary power with real exponents.

(x+sin(y)) "2 is faster than (x+sin(y))*(x+sin(y)) - sine is an expensive
operation. It is cheaper to square complicated expression rather than compute it
twice and add one multiplication.

An expression  exp(-41*%( (x+(0.3*cos(2*PI*t))) "2 + (0.3*sin(2*PI*t))"2 )) makes
use of 5 expensive operations (exp, sin, cos and power ~ twice) while an
equivalent expression exp(-41*( x*x+0.6*xx*cos(2*PI*t) + 0.09 )) uses only 2
expensive operations.

If any simplifying identity applies to input expression, it may worth applying it, provided
it minimises the complexity of evaluation. Computer algebra systems may help.

3.6.2.3 Vectorized evaluation

Expression evaluator is able to calculate an expression for either given point (its space-
time coordinates) or given array of points (arrays of their space-time coordinates, it uses
SoA). Vectorized evaluation is faster then sequential due to a better data access pattern.
Some expressions give measurable speedup factor 4.6. Therefore, if you are creating your
own solver, it worth making vectorized calls.
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CHAPTER 4

NekMesh

NekMesh is a utility bundled with Nektar++ which has two purposes:

e allow foreign mesh file formats to be converted into Nektar++’s XML format;

e aide in the generation of high-order meshes through a series of supplied processing
modules.

Note

NekMesh replaces a previous utility called MeshConvert. This change is to
reflect the fact that the program no longer only converts and manipulates

meshes but can now also generate them from a CAD definition. This mesh
generator is in a early beta stage of development and as such is disabled by
default. For the time being those not using the beta mesh generator can use
NekMesh as they would have used MeshConvert, none of the functionality or
methodology has changed.

There is also some limited support for other output formats. We begin by running
through a basic example to show how a mesh can be converted from the widely-used
mesh-generator Gmsh to the XML file format.

Note

The default since Jan 2016 is to output the .xml files in a compressed form
where the VERTEX, EDGES, FACES, ELEMENTS and CURVED information
is compressed into binary format which is then converted into base64. This is
identified for each section by the attribute ( COMPRESSED="B64Z-LittleEndian" |
To output in ascii format add the module option “:xml:uncompress” to the .xml
file, i.e.
NekMesh file.msh newfile.xml:xml:uncompress

57
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4.1 Exporting a mesh from Gmsh

To demonstrate how NekMesh works, we will define a simple channel-like 3D geometry.
First, we must define the Gmsh geometry to be used. The Gmsh definition is given below,
and is visualised in figure 4.1.

1 Point (1) {-1, 0, 0, 1.0};

2 Point (2) {-0.3, 0, 0, 1.0};

3 Line(3) = {1, 2};

4 s[] = Extrude {0, 0, 7} {

5 Line{3}; Layers{5}; Recombine;

61;

7 v[] = Extrude {{0, 0, 1}, {0, 0, 0}, Pi} {
8 Surface{s[1]}; Layers{10}; Recombine;
9};

Whilst a full tutorial on Gmsh is far beyond the scope of this document, note the use
of the Recombine argument. This allows us to generate a structured hexahedral mesh;
remove the first Recombine to generate a prismatic mesh and both occurances to generate
a tetrahedral mesh. Increasing the Layers numbers refines the mesh in the radial and
azimuthal direction respectively.

4.2 Defining physical surfaces and volumes

Figure 4.1 Geometry definition in Gmsh (left) and resulting high-order mesh visualised in
ParaView (right).

In order for us to use the mesh, we need to define the physical surfaces which correspond
to the inflow, outflow and walls so that we can set appropriate boundary conditions.
The numbering resulting from the extrusions in this case is not straightforward. In the
graphical interface, select Geometry > Physical Groups > Add > Surface, and then
hover over each of the surfaces which are shown by the dashed gray lines. The numbering
will be revealed in the toolbar underneath the geometry as a ruled surface. In this case:

e Walls: surfaces 7, 8, 28, 29.

e Inflow: surface 16.
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e Outflow: surface 24.

We also need to define the physical volumes, which can be done in a similar fashion. For
this example, there is only one volume having ID 1. Adding these groups to the end of
the .geo file is very straightforward:

1 Physical Volume(0) = {1};

2 Physical Surface(1)= {7,8,28,29};
3 Physical Surface(2) {16%};

4 Physical Surface(3) = {24};

Either choose the option File->Save Mesh or, assuming this is saved in a file named
test.geo, run the command

gmsh -3 test.geo
which will produce the resulting MSH file test.msh. One can generate a high-order
mesh by specifying the order on the command line, for example

gmsh -3 -order 6 test.geo

will generate a sixth-order mesh. Note that you will need to use a current version of
Gmsh in order to do this, most likely from subversion.

4.3 Converting the MSH to Nektar++ format

Assuming that you have compiled Nektar++ according to the compilation instructions,
run the command

NekMesh test.msh test.xml
to generate the XML file.

Note

This file contains only the geometry definition (and a default EXPANSIONS
definition). In order to use this mesh, a CONDITIONS section must be supplied
detailing the solver and parameters to use.

To validate the mesh visually, we can use a utility such as Paraview or Vislt. To do this,
run the command

XmlToVtk test.xml
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which generates an unstructured VTK file test.vtu.

It is possible that, when the high-order information was inserted into the mesh by Gmsh,
invalid elements are generated which self intersect. In this case, the Jacobian of the
mapping defining the curvature will have negative regions, which will generate warnings
such as:

Warning: Level O assertion violation
3D deformed Jacobian not positive (element ID = 48) (first vertex ID = 105)

This tells you the element ID that is invalid, and the ID of the first vertex of the element.
Whilst a resulting simulation may run, the results may not be valid because of this
problem, or excessively large amounts of time may be needed to solve the resulting linear
system.

4.4 NekMesh modules

NekMesh is designed to provide a pipeline approach to mesh generation. To do this, we
break up tasks into three different types. Each task is called a module and a chain of
modules specifies the pipeline.

e Input modules read meshes in a variety of formats;
e Processing modules modify meshes to aide in generation processes;

e Output modules write meshes in a variety of formats.

The figure below depicts how these might be coupled together to form a pipeline: On the

R
Process 2

\

Y

Y

Input

Output

Process 1

Figure 4.2 Tllustrative pipeline of the NekMesh process.

command line, we would define this as:

NekMesh -m processl -m process2 input.msh output.xml

Process modules can also have parameters passed to them, that can take arguments, or
not.

NekMesh -m processl:pl=123:booleanparam input.msh output.xml

To list all available modules use the (-1 command line argument:
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Available classes:
Input: dat:
Reads Tecplot polyhedron ascii format converted from Star CCM (.dat).

and then to see the options for a particular module, use the (-p ) command line argument:

Options for module detect:
vol: Tag identifying surface to process.

Note

Module names change when you use the -p option. Input modules should be

preceded by | in: , processing modules by proc: and output modules by out: .

4.4.1 Input modules

Input and output modules use file extension names to determine the correct module to
use. Not every module is capable of reading high-order information, where it exists. The
table below indicates support currently implemented.
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Notes

Format Extension High-order
Gmsh msh v
Nektar rea v

Nektar++ xml
PLY ply
Semtex sem

Star-CCM+4  dat

Star-CCM+ ccm

VTK vtk

AN N

Only reads nodes, elements and physical
groups (which are mapped to composites).
Reads elements, fluid boundary conditions.
Most curve types are unsupported: high-
order information must be defined in an
accompanying .hsf file.

Fully supported.

Reads only the ASCII format..

Reads elements and boundary conditions.
In order to read high-order information,
run meshpr session.sem > session.msh
and place in the same directory as the
session file.

Star outputs plt file which currently needs
to be coverted to ascii using Tecplot.
Reads mesh only, only support for quads
and triangles (2D) and hexes, prisms,
tetrahedra (3D).

Reads start ccm format. Reads mesh only,
only support for quads and triangles (2D)
and hexes, prisms, tetrahedra (3D). Re-
quires NEKTAR, USE__ CCM option to
be activated in cmake and then requires
ccmio library to be compiled by user.
Experimental support. Only ASCII trian-
gular data is supported.

Note that you can override the module used on the command line. For example, Semtex
session files rarely have extensions. So for a session called 'pipe-3d we can convert this

using the syntax

NekMesh pipe-3d:sem pipe-3d.xml

Typically, mesh generators allow physical surfaces and volumes to contain many element
types; for example a cube could be constructed from a mixture of hexes and prisms. In
Nektar++, a composite can only contain a single element type. Whilst the converter will
attempt to preserve the numbering of composites from the original mesh type, sometimes
a renumbering will occur when a domain contains many element types. For example, for
a domain with the tag (150 containing quadrilaterals and triangles, the Gmsh reader

will print a notification along the lines of:

Multiple elements in composite detected; remapped:



4.4 NekMesh modules 63

- Tag 150 => 150 (Triangle), 151 (Quadrilateral)

The resulting file therefore has two composites of IDs (150 and (151 | respectively, con-
taining the triangular and quadrilateral elements of the original mesh.

4.4.2 Output modules

The following output formats are supported:

Format Extension High-order Notes

Gmsh msh v Curvature output is highly experimental.
Nektar++ xml v Most functionality supported.

VTK vtk X Experimental. Only ASCII triangular data

is supported.

Note that for both Gmsh and VTK, it is highly likely that you will need to experiment
with the source code in order to successfully generate meshes since robustness is not
guaranteed.

The default for xml is into binary data which has been converted into base64. If you
wish to see an ascii output you need to specify the output module option (uncompress
by executing:

NekMesh Mesh.msh output.xml:xml:uncompress

In the rest of these subsections, we discuss the various processing modules available
within NekMesh.

4.4.3 Extract surfaces from a mesh
To extract composite surfaces 2 and 3 from a mesh use the module [extract | module:

NekMesh -m extract:surf=2,3 Mesh.xml output.xml

If you also wish to have the boundaries of the extracted surface detected add the
detectbnd  option

NekMesh -m extract:surf=2,3:detectbnd Mesh.xml output.xml

4.4.4 Negative Jacobian detection

To detect elements with negative Jacobian determinant, use the | jac| module:
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NekMesh -m jac Mesh.xml output.xml

To get a detailed list of elements which have negative Jacobians, one may use the (1ist
option:

NekMesh -m jac:list Mesh.xml output.xml

and to extract the elements for the purposes of visualisation within the domain, use the
extract | boolean parameter:

NekMesh -m jac:extract Mesh.xml MeshWithNegativeElements.xml

To turn off curvature associated with negative jacobians one can try to use the removecurveifsingular
boolean parameter:

NekMesh -m jac:removecurveifsingular Mesh.xml output.xml

This option will remove the high order curvature on prismatic faces with singular jacobians.
This does not guarantee a non-singular mesh since it is possible for neighbouring element
then to have singular jacobians. Multiple calls to the module might help with this
scenario.

4.4.5 Spherigon patches

Where high-order information is not available (e.g. when using meshes from imaging
software), various techniques can be used to apply a smoothing to the high-order element.
In NekMesh we use spherigons, a kind of patch used in the computer graphics community
used for efficiently smoothing polygon surfaces.

Spherigons work through the use of surface normals, where in this sense ‘surface’ refers
to the underlying geometry. If we have either the exact or approximate surface normal
at each given vertex, spherigon patches approximate the edges connecting two vertices
by arcs of a circle. In NekMesh we can either approximate the surface normals from the
linear elements which connect to each vertex (this is done by default), or supply a file
which gives the surface normals.

To apply spherigon patches on two connected surfaces 11 and 12 use the following
command:

NekMesh -m spherigon:surf=11,12 \
MeshWithStraighEdges.xml MeshWithSpherigons.xml
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If the two surfaces "11" and "12" are not connected, or connect at a sharp edge which is
C° continuous but not C'! smooth, use two separate instances of the spherigon module.

NekMesh -m spherigon:surf=11 -m spherigon:surf=12 \
MeshWithStraighEdges.xml MeshWithSpherigons.xml

This is to avoid the approximated surface normals being incorrect at the edge.

If you have a high-resolution mesh of the surfaces 11 and 12 in 'ply format it can be
used to improve the normal definition of the spherigons. Run:

NekMesh -m spherigon:surf=11,12:usenormalfile=Surf_11-12_Mesh.ply \
MeshWithStraighEdges.xml MeshWithSpherigons.xml

This can be useful, for example, when meshing the Leading edge of an airfoil. Starting
from a linear mesh (left figure) the spherigon patches curve the surface elements producing
leading edge closer to the underlying geometry:

Y Y

Figure 4.3 (a) Leading edge without spherigons, (b) Leading edge with spherigons

4.4.6 Periodic boundary condition alignment

When using periodic boundary conditions, the order of the elements within the boundary
composite determines which element edges are periodic with the corresponding boundary
composite.

To counteract this issue, NekMesh has a periodic alignment module which attempts
to identify pairs of mutually periodic edges. Given two surfaces (surfi and [surf2),
which for example correspond to the physical surface IDs specified in Gmsh, and an axis
which defines the periodicity direction, the following command attempts to reorder the
composites:
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NekMesh -m peralign:surfl=11:surf2=12:dir=y \
-m peralign:surfl=13:surf2=14:dir=z Mesh.xml Mesh_aligned.xml

Here the surfaces with IDs 11 and 12 will be aligned normal to the y-axis and the surfaces
13 and 14 will be aligned normal to the z-axis.

Note that this command cannot perform magic — it assumes that any given edge or face
lying on the surface is periodic with another face on the opposing surface, that there are
the same number of elements on both surfaces, and the corresponding edge or face is the
same size and shape but translated along the appropriate axis.

In 3D, where prismatic or tetrahedral elements are connected to one or both of the
surfaces, additional logic is needed to guarantee connectivity in the XML file. In this
case we append the [orient parameter:

NekMesh -m peralign:surfl=11:surf2=12:dir=y:orient input.dat output.xml

Note

One of the present shortcomings of | orient  is that it throws away all high-order
information and works only on the linear element. This can be gotten around
if you are just doing e.g. spherigon patches by running this peralign module

before the ' spherigon module.

4.4.7 Boundary layer splitting

Often it is the case that one can generate a coarse boundary layer grid of a mesh. NekMesh
has a method for splitting prismatic and hexahedral elements into finer elements based
on the work presented in [22] and [23]. You must have a prismatic mesh that is O-type —
that is, you can modify the boundary layer without modifying the rest of the mesh.

Given n layers, and a ratio r which defines the relative heights of elements in different
layers, the method works by defining a geometric progression of points
2(1—r)
_ k _
T = Tp—1 +ar”, (1—1_77‘71_"_1
in the standard segment [—1,1]. These are then projected into the coarse elements to
construct a sequence of increasingly refined elements, as depicted in figure 4.4.

To split a prism boundary layer on surface 11 into 3 layers with a growth rate of 2 and 7
integration points per element use the following command:

NekMesh -m bl:surf=11:layers=3:r=2:nq=7 MeshWithOnePrismLayer.xml \
MeshWith3PrismsLayers.xml
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Figure 4.4 Splitting Qg and applying the mapping x¢ to obtain a high-order layer of prisms
from the macro-element.

Figure 4.5 (a) LE with Spherigons but only one prism layer for resolving the boundary layer,
(b) LE with Spherigons with 3 growing layers of prisms for better resolving the boundary layer.

Note

You can also use an expression in terms of coordinates (z,y, z) for r to make
the ratio spatially varying; e.g. r=sin(x) . In this case the function should be
sufficiently smooth to prevent the elements self-intersecting.

4.4.8 High-order cylinder generation

Generating accurate high-order curved geometries in Gmsh is quite challenging. This
module processes an existing linear cylindrical mesh, with axis aligned with the z-
coordinate axis, to generate accurate high-order curvature information along the edges.
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NekMesh -m cyl:surf=2:r=1.0:N=5 LinearCylinder.xml HighOrderCylinder.xml

The module parameters are:

e surf: Surface on which to apply curvature. This should be the outer surface of
the cylinder.

e r: Radius of the cylinder.

e N: Number of high-order points along each element edge.

Note

The module could also be used to apply curvature along the interior of a hollow
cylinder. However, there are no checks to ensure the resulting elements are not
self-intersecting.

4.4.9 Surface extraction

Often one wants to visualise a particular surface of a 3D mesh. NekMesh supports
extraction of two-dimensional surfaces which can be converted using (Xm1ToVtk  or similar
programs for visualisation purposes, or combined with (FieldConvert in order to extract
the value of a 3D field on a given surface.

To extract a surface use the command:

NekMesh -m extract:surf=12,3,4 volume-mesh.xml surface-mesh.xml

where the integers are surface IDs to be extracted.

An optional arguemnt of (detectbnd | can be added to identify the boundary composites
as part of the surface extraction.

4.4.10 Linearisation
The ability to remove all the high-order information in a mesh can be useful at times.

To do this in NekMesh use the command:

NekMesh -m linearise high-order-mesh.xml linear-mesh.xml

The output will contain only the linear mesh information, all curved information is
removed.
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4.4.11 Extracting interface between tetrahedra and prismatic elements

When the mesh is three-dimensional and comprised of a prismatic boundary layer with
tetrahedra in the interior of the domain, this module extracts the prismatic elements only,
and constructs a boundary region for the interface between the tetrahedra and prisms.
This is useful in, for example, the study of aortic flows, where the prismatic boundary
layer can be extracted and refined to study unsteady advection-diffusion problems on a
more refined grid inside the boundary layer.

To use this module you therefore use the command:

NekMesh -m extracttetprisminterface input.xml output.xml

There are no configuration options for this module, as it is highly specific to a certain
class of meshes.

4.4.12 Boundary identification

Some mesh formats lack the ability to identify boundaries of the domain they discretise.
NekMesh has a rudimentary boundary identification routine for conformal meshes, which
will create a composite of edges (2D) or faces (3D) which are connected to precisely one
element. This can be done using the detect module:

NekMesh -m detect volume.xml volumeWithBoundaryComposite.xml

4.4.13 Scalar function curvature

This module imposes curvature on a surface given a scalar function z = f(z,y). For
example, if on surface 1 we wish to apply a surface defined by a Gaussian z = exp[—(z% +
y?)] using 7 quadrature points in each direction, we may issue the command

NekMesh -m scalar:surf=1:nq=7:scalar=exp\(x*x+y*y\) mesh.xml deformed.xml

Note

This module makes no attempt to apply the curvature to the interior of the

@ domain. Elements must therefore be coarse in order to prevent self-intersection.
If a boundary layer is required, one option is to use this module in combination
with the splitting module described earlier.
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FieldConvert

FieldConvert is a utility embedded in Nektar++ with the primary aim of allowing the
user to convert the Nektar++ output binary files (.chk and .fld) into a format which can
be read by two common visualisation softwares: Paraview (.vtu format) or Tecplot (.dat
format). FieldConvert also allows the user to manipulate the Nektar++ output binary
files by using some additional modules which can be called with the option (-m) which
stands for (m odule. Note that another flag, (-r (which stand for (r ange) allows the user
to specify a sub-range of the domain on which the conversion or manipulation of the
Nektar++ output binary files will be performed.

Almost all of the FieldConvert functionalities can be run in parallel if Nektar++ is
compiled using MPI (see the installation documentation for additional info on how to
implement Nektar++ using MPI). !

5.1 Convert .fld / .chk files into Paraview, VisIt or Tecplot format

To convert the Nektar++ output binary files (.chk and .fld) into a format which can be
read by two common visualisation softwares: Paraview (.vtu format), Vislt (.vtu format)
or Tecplot (.dat format) the user can run the following commands:

e Paraview or Vislt (.vtu format)

FieldConvert test.xml test.fld test.vtu

e Tecplot (.dat format)

FieldConvert test.xml test.fld test.dat

'Modules that do not have parallel support will be specified in the appropriate section.

70
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where (FieldConvert  is the executable associated to the utility FieldConvert, [test.xml
is the session file and (test.dat , (test.vtu) are the desired format outputs, either Tecplot
or Paraview format respectively.

\ Tip
N
()~ Note that the session file is also supported in its compressed format
test.xml.gz .

5.2 Range option -r

The Fieldconvert range option (-r) allows the user to specify a sub-range of the mesh
(computational domain) by using an additional flag, -r (which stands for (r ange and
either convert or manipulate the Nektar++ output binary files. Taking as an example
the conversion of the Nektar++ binary files (.chk or .fld) shown before and wanting to
convert just the 2D sub-range defined by —2 < z < 3, —1 < y < 2 the additional flag
-r) can be used as follows:

e Paraview or Vislt (.vtu format)

FieldConvert -r -2,3,-1,2 test.xml test.fld test.vtu

e Tecplot (.dat format)

FieldConvert -r 2,3,-1,2 test.xml test.fld test.dat

where (-r) defines the range option of the FieldConvert utility, the two first numbers
define the range in x direction and the the third and fourth number specify the y range.
A sub-range of a 3D domain can also be specified. For doing so, a third set of numbers
has to be provided to define the z range.

5.3 FieldConvert modules -m

FieldConvert allows the user to manipulate the Nektar++ output binary files (.chk and
fld) by using the flag (-m) (which stands for ‘module).. Specifically, FieldConvert has
these additional functionalities

1. [COProjection : Computes the CO projection of a given output file;
2. [QCriterion: Computes the Q-Criterion for a given output file;

3. (addF1d : Sum two .fld files;
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4. 'combineAvg : Combine two Nektar++ binary output (.chk or .fld) field file contain-
ing averages of fields (and possibly also Reynolds stresses) into single file;

5. [concatenate : Concatenate a Nektar++ binary output (.chk or .fld) field file into
single file;

6. [equispacedoutput : Write data as equi-spaced output using simplices to represent
the data for connecting points;

7. [extract : Extract a boundary field;

8. [homplane : Extract a plane from 3DH1D expansions;

9. [innerproduct | take the inner product between one or a series of fields with another
field (or series of fields).

10. [interpfield : Interpolates one field to another, requires fromxml, fromfld to be
defined;

11. 'interppointdatatofld : Interpolates given discrete data using a finite difference
approximation to a fld file given an xml file;

12. 'interppoints : Interpolates a set of points to another, requires fromfld and fromxml
to be defined, a line or plane of points can be defined;

13. [isocontour : Extract an isocontour of “fieldid” variable and at value “fieldvalue”.
Optionally “fieldstr” can be specified for a string defiition or “smooth” for smoothing;

14. [ jacobianenergy : Shows high frequency energy of Jacobian;
15. 'meanmode : Extract mean mode (plane zero) of 3DH1D expansions;

16. [pointdatatofld : Given discrete data at quadrature points project them onto an
expansion basis and output fld file;

17. [printfldnorms : Print L2 and LInf norms to stdout;
18. [scalargrad: Computes scalar gradient field;
19. [scaleinputfld : Rescale input field by a constant factor;

20. (shear : Computes time-averaged shear stress metrics: TAWSS, OSI, transWSS,
TAAFI, TACFI, WSSG;

21. (surfdistance : Computes height of a prismatic boundary layer mesh and projects
onto the surface (for e.g. y™ calculation).

22. [vorticity: Computes the vorticity field.

23. (wss): Computes wall shear stress field.
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The module list above can be seen by running the command

FieldConvert -1

In the following we will detail the usage of each module.

5.3.1 Smooth the data: COProjection module

To smooth the data of a given .fld file one can use the [COProjection module of Field-
Convert

FieldConvert -m COProjection test.xml test.fld test-COProj.fld

where the file 'test-COProj.f1d can be processed in a similar way as described in section
5.1 to visualise the result either in Tecplot, Paraview or Vislt.

The option [localtoglobalmap will do a global gather of the coefficients and then scatter
them back to the local elements. This will replace the coefficients shared between two
elements with the coefficients of one of the elements (most likely the one with the highest
id). Although not a formal projection it does not require any matrix inverse and so is
very cheap to perform.

The option (usexmlbcs | will enforce the boundary conditions specified in the input xml
file.

The option helmsmoothing=L will perform a Helmholtz smoothing projection of the form

21\ 2 21\?% o
<v2 + (;) )anew — (;) fiori9

which can be interpreted in a Fourier sense as smoothing the original coefficients using a
low pass filter of the form

1

~new ~OTlg

T RR

2
where Ky = fﬂ-

and so L is the length scale below which the coefficients values are halved or more. Since
this form of the Helmholtz operator is not possitive definite, currently a direct solver is
necessary and so this smoother is mainly of use in two-dimensions.

5.3.2 Calculate Q-Criterion: QCriterion module

To perform the Q-criterion calculation and obtain an output data containing the Q-
criterion solution, the user can run

FieldConvert -m QCriterion test.xml test.fld test-QCrit.fld
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where the file (test-QCrit.f1d can be processed in a similar way as described in section
5.1 to visualise the result either in Tecplot, Paraview or Vislt.

5.3.3 Sum two .fld files: addFld module

To sum two .fld files one can use the (addFld | module of FieldConvert

FieldConvert -m addfld:fromfld=filel.fld:scale=-1 filel.xml file2.fld \
file3.f1ld

In this case we use it in conjunction with the command (scale ) which multiply the values
of a given .fld file by a constant (value|. (filel.f1d) is the file multiplied by (value
filel.xml is the associated session file, file2.f1d is the .fld file which is summed to
filel.f1d  and finally (file3.£1d ) is the output which contain the sum of the two .fld
files. (file3.£f1d  can be processed in a similar way as described in section 5.1 to visualise
the result either in Tecplot, Paraview or Vislt.

5.3.4 Combine two .fld files containing time averages: combineAvg module

To combine two .fld files obtained through the AverageFields or ReynoldsStresses filters,
use the combineAvg module of FieldConvert

FieldConvert -m combineAvg:fromfld=filel.fld filel.xml file2.fld \
file3.fld

file3.f1ld | can be processed in a similar way as described in section 5.1 to visualise the
result either in Tecplot, Paraview or Vislt.

5.3.5 Concatenate two files: concatenate module

To concatenate (filel.fld and file2.f1ld into|file-conc.fld one can run the following
command

FieldConvert -m concatenate file.xml filel.fld file2.fld file-conc.fld

where the file (file-conc.f1ld can be processed in a similar way as described in section
5.1 to visualise the result either in Tecplot, Paraview or Vislt.

5.3.6 Equi-spaced output of data: equispacedoutput module

This module interpolates the output data to an truly equispaced set of points (not
equispaced along the collapsed coordinate system). Therefore a tetrahedron is represented
by a tetrahedral number of poinst. This produces much smaller output files. The points
are then connected together by simplices (triangles and tetrahedrons).
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FieldConvert -m equispacedoutput test.xml test.fld test.dat

or

FieldConvert -m equispacedouttput test.xml test.fld test.vtu

Note

Currently this option is only set up for triangles, quadrilaterals, tetrahedrons
and prisms.

5.3.7 Extract a boundary region: extract module

The boundary region of a domain can be extracted from the output data using the
following command line

FieldConvert -m extract:bnd=2:fldtoboundary=1 test.xml \
test.fld test-boundary.fld

The option (bnd | specifies which boundary region to extract. Note this is different to
NekMesh where the parameter | surf  is specified and corresponds to composites rather
boundaries. If (bnd  is not provided, all boundaries are extracted to different fields. The
fldtoboundary | is an optional command argument which copies the expansion of test.fld
into the boundary region before outputting the .fld file. This option is on by default.
If it turned off using 'fldtoboundary=0 the extraction will only evaluate the boundary
condition from the xml file. The output will be placed in test-boundary-b2.fld. If more
than one boundary region is specified the extension -b0.fld, -b1.fld etc will be outputted.
To process this file you will need an xml file of the same region. This can be generated
using the command:

NekMesh -m extract:surf=5 test.xml test-b0.xml
The surface to be extracted in this command is the composite number and so needs to

correspond to the boundary region of interest. Finally to process the surface file one can
use

FieldConvert test-b0.xml test-b0.fld test-b0.dat

This will obviously generate a Tecplot output if a .dat file is specified as last argument.
A vtu extension will produce a Paraview or Vislt output.
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5.3.8 Compute the gradient of a field: gradient module

To compute the spatial gradients of all fields one can run the following command

FieldConvert -m gradient test.xml test.fld test-grad.fld

where the file [file-grad.f1d can be processed in a similar way as described in section
5.1 to visualise the result either in Tecplot, Paraview or VisIt.

5.3.9 Extract a plane from 3DH1D expansion: homplane module

To obtain a 2D expansion containing one of the planes of a 3DHI1D field file, use the
command:

FieldConvert -m homplane:planeid=value file.xml file.fld file-plane.fld

If the option (wavespace is used, the Fourier coefficients corresponding to (planeid are
obtained. The command in this case is:

FieldConvert -m homplane:wavespace:planeid=value file.xml \
file.fld file-plane.fld

The output file ' file-plane.fld can be processed in a similar way as described in section
5.1 to visualise it either in Tecplot or in Paraview.

5.3.10 Inner Product of a single or series of fields with respect to a single
or series of fields: innerproduct module

You can take the inner product of one field with another field using the following
command:

FieldConvert -m innerproduct:fromfld=filel.fld file2.xml file2.fld \
out.stdout

This command will load the filel.f1d and (file2.f1d ) assuming they both are spatially
defined by (files.xml ) and determine the inner product of these fields. The input option
fromfld) must therefore be specified in this module.

Optional arguments for this module are (fields| which allow you to specify the fields
that you wish to use for the inner product, i.e.

FieldConvert -m innerproduct:fromfld=filel.fld:fields=’’0,1,2’’ file2.xml \
file2.fld out.stdout
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will only take the inner product between the variables 0,1 and 2 in the two fields files.
The default is to take the inner product between all fields provided.

Additional options include (multifldids and (allfromflds which allow for a series of
fields to be evaluated in the following manner:

FieldConvert -m innerproduct:fromfld=filel.fld:multifldids=’’0-37’\
file2.xml file2.fld out.stdout

will take the inner product between a file names field1_ 0.fld, field1_ 1.fld, field1_ 2.fld
and field1_ 3.fld with respect to field2.fld.

Analogously including the options (allfromflds ), i.e.

FieldConvert -m innerproduct:fromfld=filel.fld:multifldids=’’0-3’:\
allfromflds file2.xml file2.fld out.stdout

Will take the inner product of all the from fields, i.e. field1_0.fld,field1_1.ld,field1_ 2.fid
and field1_ 3.fld with respect to each other. This option essentially ignores file2.fid. Only
the unique inner products are evaluated so if four from fields are given only the related
trianuglar number 4 x 5/2 = 10 of inner products are evaluated.

This option can be run in parallel.

5.3.11 Interpolate one field to another: interpfield module

To interpolate one field to another, one can use the following command:

FieldConvert -m interpfield:fromxml=filel.xml:fromfld=filel.fld \
file2.xml file2.fld

This command will interpolate the field defined by (filel.xml and (filel.fld to the
new mesh defined in (file2.xml and output it to (file2.fld. The (fromxml and
fromfld must be specified in this module. In addition there are two optional ar-
guments ' clamptolowervalue and |clamptouppervalue| which clamp the interpolation
between these two values. Their default values are -10,000,000 and 10,000,000.

Tip
M. This module can run in parallel where the speed is increased not only due to
@ using more cores but also, since the mesh is split into smaller sub-domains, the
search method currently adopted performs faster.
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5.3.12 Interpolate scattered point data to a field: interppointdatatofld mod-
ule

To interpolate discrete point data to a field, use the interppointdatatofld module:

FieldConvert -m interppointdatatofld filel.xml filel.pts filel.fld

This command will interpolate the data from (filel.pts to the mesh and expansions

defined in (filel.xml and output the field to (file1l.f1d . The file [file.pts is of the
form:

1 <?xml version="1.0" encoding="utf-8" 7>
2 <NEKTAR>

3  <POINTS DIM= FIELDS= >

4 1.0000 -1.0000 1.0000 -0.7778

5 2.0000 -0.9798 0.9798 -0.7980

6 3.0000 -0.9596 0.9596 -0.8182

7 4.0000 -0.9394 0.9394 -0.8384

8  </POINTS>

9 </NEKTAR>

where (DIM="1" FIELDS="a,b,c specifies that the field is one-dimensional and contains
three variables, a, b, and c¢. Each line defines a point, while the first column contains
its z-coordinate, the second one contains the a-values, the third the b-values and so on.
In case of n-dimensional data, the n coordinates are specified in the first n columns
accordingly. In order to interpolate 1D data to a nD field, specify the matching coordinate
in the output field using the [interpcoord  argument:

FieldConvert -m interppointdatatofld:interppointdatatofld=1 3D-filel.xml \
1D-filel.pts 3D-filel.fld

This will interpolate the 1D scattered point data from '1D-filel.pts to the y-coordinate

of the 3D mesh defined in (3D-filel.xml|. The resulting field will have constant values
along the x and z coordinates. For 1D Interpolation, the module implements a quadratic
scheme and automatically falls back to a linear method if only two data points are
given. A modified inverse distance method is used for 2D and 3D interpolation. Linear
and quadratic interpolation require the data points in the