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Abstract

Various aspects that may help to enhance the implementation of the spectral/hp

element method have been considered.

A first challenge encountered is to implement the method and the corresponding

algorithms in a digestible, generic and coherent manner. Therefore, we first of all

demonstrate how the mathematical structure of a spectral/hp element discretisation

can be encapsulated in an object-oriented environment, leading to a generic and

flexible spectral/hp software library. Secondly, we present a generic framework for

time-stepping partial differential equations. Based upon the unifying concept of

General Linear Methods, we have designed an object-oriented framework that allows

the user to apply a broad range of time-stepping schemes in a unified fashion.

The spectral/hp element method can be considered as bridging the gap between

the – traditionally low-order – finite element method on one side and spectral meth-

ods on the other side. Consequently, a second challenge which arises in implementing

the spectral/hp element methods is to design algorithms that perform efficiently for

both low- and high-order spectral/hp discretisations, as well as discretisations in the

intermediate regime. In this thesis, we describe how the judicious use of different im-

plementation strategies for the evaluation of spectral/hp operators can be employed

to achieve high efficiency across a wide range of polynomial orders. Furthermore, we

explain how the multi-level static condensation technique can be applied as an effi-

cient direct solution technique for solving linear systems that arise in the spectral/hp

element method.

Finally, based upon such an efficient implementation of the spectral/hp element

method, we analyse which spectral/hp discretisation (that is, which specific combi-

nation of mesh size h and polynomial order P ) minimises the computational cost to

solve an elliptic problem up to a predefined level of accuracy. We investigate this

question for a set of both smooth and non-smooth problems.
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Chapter 1

Introduction

The spectral/hp element method combines the geometric flexibility of classical h-

type finite element techniques with the desirable resolution properties of spectral

methods. In this approach a polynomial expansion of order P is applied to ev-

ery elemental domain of a coarse finite element type mesh. These techniques have

been applied in many fundamental studies of fluid mechanics (Sherwin & Karni-

adakis 1996) and more recently have gained greater popularity in the modelling of

wave-based phenomena such as computational electromagnetics (Hesthaven & War-

burton 2002) and shallow water problems (Bernard, Remacle, Combien, Legat, &

Hillewaert 2009) – particularly when applied within a Discontinuous Galerkin for-

mulation. Although there are many references on the spectral/hp element method

today, including the textbooks of (Karniadakis & Sherwin 2005; Deville, Fischer,

& Mund 2002; Hesthaven & Warburton 2008), few references exist that cover in

detail the implementational aspects of the method. This thesis makes an attempt

to fill this gap by investigating some of the fundamental questions related to the

implementation of the spectral/hp element method.

There are at least two major challenges which arise in developing an efficient

implementation of a spectral/hp element discretisation:

• implementing the mathematical structure of the technique in a digestible,

generic and coherent manner, and

16



• designing and implementing the numerical methods and data structures in

a matter so that both high- and low-order discretisations can be efficiently

applied.

The present work intends to reflect on both these objectives. The efforts made in the

context of this thesis have contributed to the ongoing development of the Nektar++

project (Kirby & Sherwin 2006). Nektar++ is an open source software library which

is currently being collaboratively developed between engineers at Imperial College

London with computer scientists at the University of Utah. The first objective in

mind, the C++ programming language has been adopted within this collaboration

as the object-oriented coding environment that provides the necessary data struc-

turing and algorithms that appropriately emulate the mathematical construction

of a spectral/hp discretisation. We believe that this type of structuring will facili-

tate a wider class of developers in applying spectral/hp discretisations to scientific

and engineering applications without having to be overly familiar with the fine de-

tails of the implementations. In this work, we will present how we have decided to

encapsulate spectral/hp element discretisations within the Nektar++ project and

we will also demonstrate how an object-oriented environment allows us to design

generic algorithms by presenting the framework we have developed to time-integrate

partial differential equations (PDEs) in a unified fashion. Next to these considera-

tions above, which are an important issue in architecting the library and developing

generic algorithms, a large part of this thesis is dedicated to the second objective

regarding efficiency and computational performance.

In order to design algorithms which are efficient for both low- and high-order

spectral/hp discretisations, it is important to clearly define what we mean with low-

and high-order. The spectral/hp element method can be considered as bridging the

gap between the high-order end of the traditional finite element method and low-

order end of conventional spectral methods. However, the concept of high- and low-

order discretisations can mean very different things to these different communities.

For example, the seminal works by Zienkiewicz & Taylor (Zienkiewicz & Taylor 1989)

and Hughes (Hughes 1987) list examples of elemental expansions only up to third or

possibly fourth-order, implying that these orders are considered to be high-order for

17



the traditional h-type finite element community. In contrast the text books of the

spectral/hp element community (Szabó & Babuška 1991; Karniadakis & Sherwin

2005; Deville, Fischer, & Mund 2002; Hesthaven & Warburton 2008) typically show

examples of problems ranging from a low-order bound of minimally fourth-order up

to anything ranging from 10th-order to 15th-order polynomial expansions. On the

other end of the spectrum, practitioners of global (Fourier-based) spectral methods

(Gottlieb & Orszag 1977) would probably consider a 16th-order global expansion to

be relatively low-order approximation.

One could wonder whether these different definitions of low- and high-order are

just inherent to the tradition and lore of each of the communities or whether there

are more practical reasons for this distinct interpretation. Proponents of lower-order

methods might highlight that some problems of practical interest are so geometri-

cally complex that one cannot computationally afford to use high-order techniques

on the massive meshes required to capture the geometry. Alternatively, proponents

of high-order methods highlight that if the problem of interest can be captured on a

computational domain at reasonable cost then using high-order approximations for

sufficiently smooth solutions will provide a higher accuracy for a given computational

cost. If one however probes even further it also becomes evident that the different

communities choose to implement their algorithms in different manners. For exam-

ple the standard h-type finite element community will typically uses techniques such

as sparse matrix storage formats (where only the non-zero entries of a global matrix

are stored) to represent a global operator. In contrast the spectral/hp element com-

munity acknowledges that for higher polynomial expansions more closely coupled

computational work takes place at the individual elemental level and this leads to

the use of elemental operators rather than global matrix operators. In addition the

global spectral method community often make use of the tensor-product approxima-

tions where products of one-dimensional rules for integration and differentiation can

be applied. From the results in this thesis, it will appear that each of the different

implementation strategies will perform poorly when applied outside the aforemen-

tioned polynomial regimes typically adopted by the different communities, hinting

that the traditional views of low- and high-order may be have been strengthened by
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these practical barriers.

In this thesis, we are therefore lead to ask when we should adopt these different

implementation strategies if we would like to go from h to p efficiently, that is,

if we are to allow the order of our spatial approximations to vary from low-order

(P = 1) up to high-order (say P = 15)? We note that analytic estimates of com-

putational work in this polynomial regime are difficult if not impossible to establish

since the computational effort is highly dependent on hard to predict hardware

characteristics such as memory management and caching effect as well as optimised

linear algebra packages such as BLAS (Dongarra, Du Croz, Hammarling, Hanson, &

Duff 1988) and LAPACK (Anderson, Bai, Bischof, Blackford, Demmel, Dongarra,

Du Croz, Greenbaum, Hammarling, McKenney, & Sorensen 1999). We therefore

will mainly follow a computational approach to assess the efficiency of the different

implementation strategies. The support of various implementation strategies within

a spectral/hp code will allow the user to cross the community dependent barriers

of low- and high-order in an efficient way such as the aforementioned example of

P = 4 (the high-order limit for traditional finite elements and the low-order limit for

spectral/hp elements). This surrounding polynomial regime (2 < P < 6) is however

potentially an optimal/desirable range for applications where the mesh resolution

is such that increasing polynomial order leads to the onset of rapid/spectral con-

vergence. This level of resolution might be necessary to capture, for example, a

complex geometry. The benefit of intermediate polynomial resolution will however

only be observed if one can efficiently implement these polynomial discretisations.

Finally, we can also question whether it is sufficient to know which implemen-

tation strategy is optimal in terms of CPU time for a specific polynomial order

discretisation? Probably a more pertinent question is consider one is given the most

efficient implementation, what is the best spectral/hp discretisation to obtain a fixed

error for a minimal computational cost? Since computational cost is impacted by

different discretisation methodologies such as element size h, polynomial order P ,

adaptive refinement r (Remacle, Flaherty, & Shepard 2003) or even the continuity

of the approximation k (Hughes, Cottrell, & Bazilevs 2005), there are clearly many

factors to consider. To help reduce this extensive parameter space, in this work we
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will restrict ourselves to just h and P refinements leading to the question: which

specific combination of mesh-size h and polynomial order P requires the minimal

computational cost (i.e. run-time) to solve a problem up to a predefined accuracy?

We will investigate this question for a set of both smooth and non-smooth elliptic

problems.

1.1 Motivation and structure of the thesis

As mentioned earlier in this chapter, this thesis covers different aspects that may

contribute to an optimal implementation of the spectral/hp element method. In or-

der to introduce the various aspects that have been studied, let us consider the scalar

advection-diffusion equation, which can be seen as the driving problem throughout

this thesis, defined as
∂u

∂t
+ ∇ · F (u) = ∇2u. (1.1)

For completeness, this equation should be subject to appropriate boundary and

initial conditions, see also Section 4.3. In the solution procedure of this partial

differential equation, we have subsequently encountered the following issues and

questions listed below, which we believe matter from an implementational point of

view. The thesis is structured to follow a similar pattern.

How to encapsulate the fundamental concepts related to the spatial dis-

cretisation? A first step in numerically solving the advection-diffusion equation is

selecting the spatial discretisation technique, which for the scope of this thesis will

be the spectral/hp element discretisation. Therefore in Chapter 2, we start with

introducing the fundamental concepts related to the spectral/hp element method.

In Chapter 3, we explain how these concepts can be encapsulated in a generic code

environment that allows for a sufficient level of both flexibility and performance.

How to apply the time-discretisation in a generic and efficient way?

Time-stepping algorithms and their implementations are, next to the spatial dis-

cretisation technique, a second important component within the solution of time-
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dependent partial differential equations such as the advection-diffusion equation.

Although the Method of Lines paradigm (Schiesser 1991) introduces a high level of

flexibility into the choice and application of time-stepping schemes, many practi-

tioners often feel constrained after their initial implementation of Euler-Forward to

one of the two families of schemes which claim Euler-Forward as its parent method:

multi-step (e.g. Adams-Bashforth and Adams-Moulton methods) or multi-stage

(e.g. Runga-Kutta methods). In Chapter 4 we present a generic framework – both

in terms of algorithms and implementations – that allows the user to almost seam-

lessly switch between almost the entire range of traditional time-stepping methods

without compromising the computational performance. We will show that in case

of the advection-diffusion equation, the user will only have to provide the frame-

work with three different routines that solve the following steady problems using

the selected spatial discretisation technique:

• An elliptic Helmholtz solver which numerically solves the steady Helmholtz

equation

u− λ∇2u = f, (1.2)

subject to the imposed boundary conditions.

• A projection operator which performs the discrete L2 projection of a function

upon the discrete solution space.

• A function that evaluates the advection term ∇·F (u) according to the spatial

discretisation technique.

When adopting the spectral/hp element method, solving the three problems above

typically require two types of operations: the evaluation of spectral/hp element

operators and the solution of linear systems. For example, the discretisation of the

projection operator above leads to the discrete system

Mû = B⊤Wf . (1.3)

where M and B⊤W respectively are the global mass matrix and the inner product

operator due to the spectral/hp discretisation (see also Section 2.2.4). Optimising
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the implementation of such discrete systems to be solved leads to the following two

questions.

How to optimise the evaluation of the spectral/hp element operators

The inner product in the discrete system above is an example of such a spectral/hp

element operator. In Chapter 5, we explain how the judicious use of different imple-

mentation strategies can be employed to efficiently evaluate such forward operators

for a wide range of polynomial orders. Therefore, we first introduce and discuss the

three different implementation strategies using either global matrices, local matri-

ces or the sum-factorisation technique. We then provide theoretical cost estimates

for each strategy. Next we investigate the effect of the different strategies on the

actual run-time by a set of computational tests and analyse which strategy should

be selected depending on the polynomial order.

How to optimise the solution of the linear system? In Chapter 6, we will

investigate different strategies for solving linear systems such as the one due to the

global mass matrix system in the example above. We will not consider iterative

solution strategies but we will restrict ourselves to direct solution methods. There-

fore, we investigate the concept of multi-level static condensation by exploring both

the top-down and the bottom-up variant. In addition, we will identify the optimal

strategies by comparing both methods with the more traditional approach of band-

width minimisation, both from a theoretical point as from a computational point of

view.

What is the best hp-discretisation at which to run your code? Answers

to the four questions above will provide some of the essential building blocks for an

efficient implementation of the spectral/hp element method. Once these building

blocks are available, it is also possible to consider the following question: given the

most efficient implementation, which is the optimal combination of mesh resolution

and polynomial order that requires the minimal run-time to approximate the exact

solution up to predefined accuracy? In Chapter 7, we will make a first attempt to
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answer this question. However, we will not consider the (time-dependent) advection-

diffusion equation for this purpose, but we will limit ourselves to solving the (steady)

Helmholtz equation for four different test-problems.

Finally, in Chapter 8 we will summarise the various findings, draw the relevant

conclusion and finish with some recommendations for future research.

1.2 Assumptions

In this thesis, we will restrict ourselves to the traditional C0 continuous Galerkin

formulation of the spectral/hp element method. Furthermore, we only consider

two-dimensional spectral/hp element discretisations and we assume the expansion

bases to be tensorial, i.e. the two-dimensional basis functions can be constructed

as a tensor product of one-dimensional basis functions (both for quadrilaterals and

triangles). In addition, we assume the expansion order to be the same in both the

coordinate directions.

The solution of time-dependent partial differential equations often involve the re-

peated application of matrix problems such as those listed in the advection-diffusion

example above. As a result, we only look to optimise the evaluation of the matrix

operators associated to the spectral/hp element operators (Chapter 5) or to the lin-

ear system (Chapter 6), thereby neglecting any matrix construction time (something

that may matter for the steady differential equations that e.g. arise in structural

mechanics). Furthermore, it should be noted that we define the optimal or most ef-

ficient implementation as the implementation which leads to the minimal run-time.

Although other aspects such as the required memory may also contribute to the

definition of the optimal implementation, we will associate the word optimal in this

thesis primarily to the actual measured run-time, thereby neglecting any memory

constraints.

All computational tests presented in this thesis were performed on an Intel Mac-

Book Pro (2.33 GHz dual core processor, 2GB RAM), and they were based on the

implementation of the presented techniques within the Nektar++ framework.
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Chapter 2

The Spectral/hp Element method

In this chapter, we give a brief overview of the fundamental concepts of the spec-

tral/hp element method in order to facilitate the discussion in the forthcoming chap-

ters. For a complete reference on this subject, the reader is referred to the textbook

by Karniadakis & Sherwin (Karniadakis & Sherwin 2005). But as a start, we first

review some terminology in order to situate the spectral/hp element method within

the field of the finite element methods.

The finite element method (FEM) Nowadays, the finite element method is one

of the most popular numerical methods in the field of both solid and fluid mechanics.

It is a discretisation technique used to solve (a set of) partial differential equations in

its equivalent variational form. The classical approach of the finite element method is

to partition the computational domain into a mesh of many small subdomains and

to approximate the unknown solution by piecewise linear interpolation functions,

each with local support. The FEM has been widely discussed in literature and for

a complete review of the method, the reader is also directed to the seminal work of

Zienkiewicz and Taylor (Zienkiewicz & Taylor 1989).

High-order finite element methods While in the classical finite element method

the solution is expanded in a series of linear basis functions, high-order FEMs employ

higher-order polynomials to approximate the solution. For the high-order FEM, the

solution is locally expanded into a set of P + 1 linearly independent polynomials
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which span the polynomial space of order P . Confusion may arise about the use of

the term order. While the order, or degree, of the expansion basis corresponds to the

maximal polynomial degree of the basis functions, the order of the method essen-

tially refers to the accuracy of the approximation. More specifically, it depends on

the convergence rate of the approximation with respect to mesh-refinement. It has

been shown in (Babuška & Suri 1994), that for a sufficiently smooth exact solution

u ∈ Hk(Ω) (k ≥ P + 1), the error of the FEM approximation uδ can be bounded by

||u− uδ||E ≤ ChP ||u||k. (2.1)

This implies that when decreasing the mesh-size h, the error of the approximation

algebraically scales with the P th power of h. This can be formulated as

||u− uδ||E = O(hP ). (2.2)

If this holds, one generally classifies the method as a P th-order FEM. However, for

non-smooth problems, i.e. k < P +1, the order of the approximation will in general

be lower than P, the order of the expansion.

h-version FEM A finite element method is said to be of h-type when the degree

P of the piecewise polynomial basis functions is fixed and when any change of

discretisation to enhance accuracy is done by means of a mesh refinement, that is,

a reduction in h. Dependent on the problem, local refinement rather than global

refinement may be desired. Consistent with the error estimate Eq. (2.1), the h-

version of the classical FEM employing linear basis functions can be classified as a

first-order method when resolving smooth solutions.

p-version FEM In contrast with the h-version FEM, finite element methods are

said to be of p-type when the partitioning of domain is kept fixed and any change of

discretisation is introduced through a modification in polynomial degree P . Again

here, the polynomial degree may vary per element, particularly when the complexity

of the problem requires local enrichment. However, sometimes the term p-type FEM

is merely used to indicated that a polynomial degree of P > 1 is used.
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hp-version FEM In the hp-version of the FEM, both the ideas of mesh refinement

and degree enhancement are combined.

The spectral method As opposed to the finite element methods which builds

a solution from a sequence of local elemental approximations, spectral methods

approximate the solution by a truncated series of global basis functions. Modern

spectral methods, first presented in (Gottlieb & Orszag 1977), involve the expan-

sion of the solution into high-order orthogonal expansions, typically by employing

Fourier, Chebyshev or Legendre series.

The spectral element method Patera (Patera 1984) combined the high ac-

curacy of the spectral methods with the geometric flexibility of the finite element

method to form the spectral element method. The multi-elemental nature makes

the spectral element method conceptually similar to the above mentioned high-

order finite element. However, historically the term spectral element method has

been used to refer to the high-order finite element method using a specific nodal

expansion basis. The class of nodal higher-order finite elements which have become

known as spectral elements, use the Lagrange polynomials through the zeros of the

Gauss-Lobatto(-Legendre) polynomials.

The spectral/hp element method The spectral/hp element method, as its

name suggests, incorporates both the multi-domain spectral methods as well as the

more general high-order finite element methods. One can say that it encompasses

all methods mentioned above. However, note that the term spectral/hp element

method is mainly used in the field of fluid dynamics, while the terminology p and

hp-FEM originates from the area of structural mechanics.

2.1 The Galerkin formulation

Finite element methods typically use the Galerkin formulation to derive the weak

form of the partial differential equation to be solved. In this thesis, we will primarily
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adopt the classical Galerkin formulation in combination with globally C0 continuous

spectral/hp element discretisations.

To describe the Galerkin method, consider a steady linear differential equation

in a domain Ω denoted by

L(u) = f, (2.3)

subject to appropriate boundary conditions. In the Galerkin method, the weak form

of this equation can be derived by pre-multiplying this equation with a test function

v and integrating the result over the entire domain Ω to arrive at: Find u ∈ U such

that ∫

Ω

vL(u)dx =

∫

Ω

vfdx, ∀v ∈ V, (2.4)

where U and V respectively are a suitably chosen trial and test space (in the tra-

ditional Galerkin method, one typically takes U = V). In case the inner product

of v and L(u) can be rewritten into a bi-linear form a(v, u), this problem is often

formulated more concisely as: Find u ∈ U such that

a(v, u) = (v, f), ∀v ∈ V, (2.5)

where (v, f) denotes the inner product of v and f . The next step in the classical

Galerkin finite element method is the discretisation: rather than looking for the

solution u in the infinite dimensional function space U , one is going to look for an

approximate solution uδ in the reduced finite-dimensional function space U δ ⊂ U .

Therefore we represent the approximate solution as a linear combination of basis

functions Φn that span the space U δ, i.e.

uδ =
∑

n∈N

Φnûn. (2.6)

Adopting a similar discretisation for the test functions v, the discrete problem to be

solved is given as: Find ûn (n ∈ N ) such that

∑

n∈N

a(Φm,Φn)ûn = (Φm, f), ∀m ∈ N . (2.7)

It is customary to describe this set of equations in matrix form as

Aû = f̂ . (2.8)
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where û is the vector of coefficients ûn, A is the system matrix with elements

A[m][n] = a(Φm,Φn) =

∫

Ω

ΦmL(Φn)dx, (2.9)

and the vector f̂ is given by

f̂ [m] = (Φm, f) =

∫

Ω

Φmfdx. (2.10)

2.2 Elemental spectral/hp element discretisations

Like any finite element discretisation, a spectral/hp element discretisation starts by

decomposing the domain Ω into a tessellation of |E| quadrilateral and/or triangular

elements such that

Ω =
⋃

e∈E

Ωe. (2.11)

Each of these elements Ωe in physical space can be considered as an image of a

standard element Ωst in reference space. For every element, there exists a one-to-

one mapping relating the physical Cartesian coordinates (x1, x2) of the element Ωe

to the reference coordinate system (ξ1, ξ2), which is defined as

x1 = χe
1(ξ1, ξ2), x2 = χe

2(ξ1, ξ2). (2.12)

2.2.1 Elemental expansion bases

For the two-dimensional spectral/hp expansions, we will only restrict our attention

to tensorial expansions, that is, expansions which can be constructed as a tensor

product of one-dimensional basis functions. This tensorial nature will be a necessary

prerequisite for the application of the sum-factorisation technique in Section 5.1.1.

Furthermore, we only consider expansion bases that have a typical boundary/interior

decomposition such that they can easily be assembled into a globally C0 continuous

spectral/hp expansion.

2.2.1.1 Quadrilateral tensorial expansion bases

The quadrilateral standard element Ωst is defined as the bi-unit square Q2 =

{(ξ1, ξ2) ∈ [−1, 1] × [−1, 1]}. Its Cartesian structure can be exploited to locally
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represent the solution as a tensorial spectral/hp expansion

u(ξ1, ξ2) =
∑

n∈N

φn(ξ1, ξ2)ûn =
P∑

p=0

P∑

q=0

ψp(ξ1)ψq(ξ2)ûpq, (2.13)

where the set of two-dimensional basis functions φn is defined as a tensor product

of the one-dimensional basis functions ψp in each of the coordinate directions, as

depicted in Fig. 2.1. The expansion basis ψp spans the polynomial space of order P

and, for a globally C0 continuous expansion – see also Section 2.3 – typically consists

of a set of either modal or nodal basis functions which can be decomposed into

boundary modes and interior modes. Boundary modes are defined as all the modes

which have non-zero support on the boundary where interior modes are zero on all

boundaries. As mentioned before, the tensor product nature of the expansion will

be the necessary prerequisite for the application of the sum-factorisation technique

outlined in Section 5.1.1.

 φpq(ξ1,ξ2) = ψp(ξ1) ψq(ξ2)

ψp(ξ1)

ξ1

ξ2

ψq(ξ2)

p

q

p
qa

a
a a

Figure 2.1: Construction of a two-dimensional C0 continuous modal quadri-

lateral expansion basis from the tensor product of two one-

dimensional expansions of order P = 4 (edge and face modes

have been scaled by a factor of 4 and 16 respectively). Courtesy

of (Karniadakis & Sherwin 2005).

2.2.1.2 Triangular tensorial expansion bases

The non-tensorial structure of the triangular reference element T 2 = {−1 ≤ ξ1, ξ2; ξ1+

ξ2 ≤ 0} seems to prohibit the construction of a tensorial expansion basis and con-

sequently, the application of the sum-factorisation technique. However, after intro-

ducing a collapsed coordinate system given by the transformation

η1(ξ1, ξ2) = 2
1 + ξ1
1 − ξ2

− 1, η2(ξ1, ξ2) = ξ2, (2.14)
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the triangular element can now be defined as T 2 = {(η1, η2) ∈ [−1, 1] × [−1, 1]}.
In order to generate a C0 continuous expansion and to ensure completeness of the

expansion, we now use a generalised tensor product to define the expansion basis as

u(ξ1, ξ2) =
∑

n∈N

φn(ξ1, ξ2)ûn =

P∑

p=0

f(p)∑

q=0

ψp (η1(ξ1, ξ2))ψpq (η2(ξ1, ξ2)) ûpq. (2.15)

Note that the upper bound f(p) of the index q now depends on the index p. Also

the one-dimensional expansion basis {ψpq} in the second coordinate direction ξ2 now

depends on both the indices p and q. This construction is graphically represented in

Fig. 2.2 for the C0 continuous modal triangular expansion introduced by Dubiner

(Dubiner 1991). For an in-depth discussion of tensorial expansions for triangular

elements, the reader is referred to (Karniadakis & Sherwin 2005).

p
q

 φpq(ξ1,ξ2) = ψp(η1) ψpq(η2)
a b

ξ1

ξ2

q

p

ψpq(η2)b
p

aψp(η1)

Figure 2.2: Construction of a two-dimensional 4th-order C0 continuous

modal triangular expansion basis using a generalised tensor

product procedure (edge and face modes have been scaled by

a factor of 4 and 16 respectively). Courtesy of (Karniadakis &

Sherwin 2005).

Note that in both the quadrilateral and triangular case, the lowest-order spec-

tral/hp expansion (i.e. P = 1) corresponds to the well-known linear finite element

expansion. The typical linear basis functions also appear as the vertex modes of

higher-order modal spectral/hp expansions, as can be observed in Figs. 2.1 and 2.2.

2.2.2 Elemental operations within the standard region

The weak form of the problem in the finite element method typically requires the

differentiation of functions and the evaluation of integrals over the domain. We
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start by defining the discrete integration and differentiation operators within the

standard region Ωst. Furthermore, we also introduce the operator that we will refer

to as the backward transformation.

2.2.2.1 Numerical integration

In order to allow for a numerical implementation of the FEM, different discrete

integration rules, also known as numerical quadrature, have been proposed. In spec-

tral/hp element methods, Gaussian quadrature is typically employed to evaluate

integrals. The fundamental concept of Gaussian quadrature, which is particularly

accurate when integrating smooth functions, is the approximation of the integral by

a finite summation. In the one-dimensional standard region [−1, 1], this yields the

form (for Legendre integration),

∫ 1

−1

u(ξ)dξ ≈
Q−1∑

i=0

ωiu(ξi), (2.16)

where ωi and ξi respectively are the weights and abscissas of the Q quadrature points

within the standard segment. Dependent on the choice of the quadrature points, in

particular the inclusion of the endpoints of the standard segment interval, one can

distinguish between Gauss-Legendre, Gauss-Radau-Legendre and Gauss-Lobatto-

Legendre quadrature. The use of Gaussian quadrature contributes to the efficiency

of the FEM, as it permits the exact integration of polynomials of order exceeding

Q− 1. Concretely, relation (2.16) is exact when,

• u(ξ) ∈ P2Q−1 ([−1, 1]) if using Gauss-Legendre quadrature,

• u(ξ) ∈ P2Q−2 ([−1, 1]) if using Gauss-Radau-Legendre quadrature,

• u(ξ) ∈ P2Q−3 ([−1, 1]) if using Gauss-Lobatto-Legendre quadrature.

This ensures that all discrete first-order and second-order linear operators in the

spectral/hp element method will be evaluated exactly if the quadrature order is

chosen to be at least:

• Q = P + 1 if using Gauss-Legendre or Gauss-Radau-Legendre quadrature,
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• Q = P + 2 if using Gauss-Lobatto-Legendre quadrature.

However, note that the integration of, for example, quadratic non-linearities or the

integration over curved elements may require a higher number of quadrature points

(Kirby & Karniadakis 2003).

Numerical integration using Gaussian quadrature can be trivially extended to the

two-dimensional standard regions, yielding

Quadrilateral region Q2

∫ 1

−1

∫ 1

−1

u(ξ1, ξ2)dξ1dξ2 ≈
Q1−1∑

i=0

ωi

{
Q2−1∑

j=0

ωju(ξ1i
, ξ2j

)

}

, (2.17)

Triangular region T 2

∫

T 2

u(ξ1, ξ2)dξ1dξ2 =

∫ 1

−1

∫ 1

−1

u(η1, η2)

∣∣∣∣
∂(ξ1, ξ2)

∂(η1, η2)

∣∣∣∣ dη1dη2

≈
Q1−1∑

i=0

ωi

{
Q2−1∑

j=0

ωj

1 − η2j

2
u(η1i

, η2j
)

}

,

≈
Q1−1∑

i=0

ωi

{
Q2−1∑

j=0

ω̄ju(η1i
, η2j

)

}
, (2.18)

where ω̄j = ωj

1−η2j

2
.

Gaussian quadrature: a remarkable property Gauss first recognised that for

a particular choice of Q abscissas, it is possible to exactly integrate polynomials of

order higher than Q−1. For Gauss-Legendre quadrature using Q quadrature points,

he showed that any polynomial up to order 2Q− 1 can be integrated exactly.

However, when inverting this idea, the following remarkable fact can be recog-

nised: every polynomial in the space P2Q−1 which has the same function values at

the Q quadrature points, yields the same integral in the interval [−1, 1]. This is

demonstrated in Fig. 2.3 for second-order Gauss-Legendre integration. The points

a and b, located at the two quadrature zeros ξ = ±
√

1
3
, uniquely define a linear

polynomial and define an infinite set of quadratic and cubic polynomials. It is a
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direct result from the properties of Gaussian quadrature, that all these polynomials

(up to third-order) have the same integral in the interval [−1, 1]. This implies that

the area of the shaded region in Fig. 2.3 is equal for every subfigure.
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Figure 2.3: 2nd-order Gauss-Legendre quadrature: All polynomials u(ξ) ∈
P3 ([−1, 1]) going through the points a and b yield the same

value for
∫ 1

−1
u(ξ)dξ.

2.2.2.2 Collocation differentiation

Since a finite or spectral/hp element problem often involves the derivative of a

function inside an integral, it can be appreciated that we require the value of the

function derivative at the quadrature points in order to numerically evaluate the

integral under consideration. We will employ a technique referred to as collocation

differentiation in order to calculate these values.

Assume an arbitrary function u(ξ), defined in the one-dimensional standard re-

gion [−1, 1]. This function can be approximated by expanding it as

u(ξ) ≈ uδ(ξ) =

Q−1∑

j=0

hj(ξ)u(ξj), (2.19)

where hj(ξ) are the Lagrange polynomials through the set ofQ quadrature (or nodal)

points ξj, defined as

hj(ξ) =

∏Q−1
i=0,i6=j (ξ − ξi)

∏Q−1
i=0,i6=j (ξj − ξi)

. (2.20)
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Note that this approximation is exact if u(ξ) is a polynomial of order equal or less

than P = Q − 1. The derivative of u(ξ) at the quadrature points can then be

evaluated as

du(ξi)

dξ
≈ duδ(ξi)

dξ
=

Q−1∑

j=0

diju(ξj), (2.21)

where the elements dij of the differentiation matrix are defined as

dij =
dhj(ξi)

dξ
. (2.22)

This implies that the collocation differentiation technique allows us to compute the

derivative of a function at the quadrature points based upon the function values

based at the same points.

Quadrilateral region Q2 A two-dimensional function u(ξ1, ξ2) defined on the

unit-square Q2 can be represented in terms of Lagrange polynomials associated

with the set of quadrature points as

u(ξ1, ξ2) ≈ uδ(ξ1, ξ2) =

Q−1∑

i=0

Q−1∑

j=0

hi(ξ1)hj(ξ2)u(ξ1i
, ξ2j

). (2.23)

The partial derivative with respect to ξ1 at the quadrature points can therefore be

evaluated as

∂u(ξ1r
, ξ2s

)

∂ξ1
≈ ∂uδ(ξ1r

, ξ2s
)

∂ξ1
=

Q−1∑

i=0

Q−1∑

j=0

dhi(ξ1r
)

dξ1
hj(ξ2s

)u(ξ1i
, ξ2j

). (2.24)

Due to the collocation property of the Lagrangian representation (that is, hj(ξs) =

δjs), this can be simplified to

∂uδ(ξ1r
, ξ2s

)

∂ξ1
=

Q−1∑

i=0

Q−1∑

j=0

driδjsu(ξ1i
, ξ2j

) =

Q−1∑

i=0

driu(ξ1i
, ξ2s

), (2.25)

where dri is defined as in Eq. (2.22). The partial derivative with respect to ξ2 can

be calculated equivalently to arrive at

∂uδ(ξ1r
, ξ2s

)

∂ξ2
=

Q−1∑

i=0

dsiu(ξ1r
, ξ2i

). (2.26)

.
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Triangular region T 2 For the triangular standard region T 2, we can represent

any function u(ξ1, ξ2) by a set of Lagrange polynomials in terms of the collapsed

coordinates (η1, η2) as

u(ξ1, ξ2) ≈ uδ(ξ1, ξ2) =

Q−1∑

i=0

Q−1∑

j=0

hi(η1)hj(η2)u(η1i
, η2j

). (2.27)

The partial derivatives with respect to the Cartesian system (ξ1, ξ2) may then be

determined by applying the chain rule




∂uδ

∂ξ1

∂uδ

∂ξ2




=





∂η1

∂ξ1

∂η2

∂ξ1

∂η1

∂ξ2

∂η2

∂ξ2









∂uδ

∂η1

∂uδ

∂η2




=





2

1 − η2

0

1 + η1

1 − η1
1









∂uδ

∂η1

∂uδ

∂η2




, (2.28)

where the value of the partial derivatives with respect to η1 and η2 at the quadrature

points can be calculated as

∂uδ(η1r
, η2s

)

∂η1
=

Q−1∑

i=0

driu(η1i
, η2s

), (2.29)

∂uδ(η1r
, η2s

)

∂η2

=

Q−1∑

i=0

dsiu(η1r
, η2i

). (2.30)

2.2.2.3 Backward transformation

When using modal expansion bases, it is often necessary to transform the coefficients

of an expansion to the value of the spectral/hp expansion at the quadrature points.

This is for example the case when applying the collocation differentiation technique

to a spectral/hp expansion. This backward transformation from coefficient space to

physical space is simply defined as

u(ξ1i
, ξ2j

) =
∑

n∈N

φn(ξ1i
, ξ2j

)ûn, (2.31)

that is, the backward transformation is merely the evaluation of the spectral/hp

element expansion at the quadrature points.

2.2.3 Elemental operations within general-shaped elements

We have mentioned earlier that every general-shaped element Ωe can be seen as an

image of the standard element Ωst through the mapping of Eq. (2.12). As a result,
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a spectral/hp expansion on a local element can be defined as

u(x1, x2) =
∑

n∈N

φn

(
χ−1

1 (x1, x2), χ
−1
2 (x1, x2)

)
ûn. (2.32)

where χ−1
1 and χ−1

2 together define the coordinate transformation from (x1, x2) to

(ξ1, ξ2). In the spectral/hp element method, it is customary to express the mapping

between the local Cartesian coordinates (x1, x2) and the reference coordinates (ξ1, ξ2)

as a spectral/hp expansion of the same order as the expansion used to represent the

solution, i.e.

xi = χi(ξ1, ξ2) =
∑

n∈N

φn(ξ1, ξ2)x̂
i
n. (2.33)

When employing the modal hierarchical C0 continuous basis functions for this iso-

parametric mapping, the coefficients of all but the linear vertex modes can be zero

in order to exactly describe a straight-sided element. To describe a curved region,

however, requires more information such that we can truly speak from a high-order

representation in that case.

2.2.3.1 Integration within a general-shaped element

In order to integrate a function u(x1, x2) over an arbitrary quadrilateral or triangular

region Ωe, we can apply a coordinate transformation to arrive at

∫

Ωe

u(x1, x2)dx1dx2 =

∫

Ωst

u(ξ1, ξ2) |J | dξ1dξ2, (2.34)

where J is the Jacobian due to the transformation, defined as

J =

∣∣∣∣∣∣∣∣∣

∂x1

∂ξ1

∂x2

∂ξ1

∂x1

∂ξ2

∂x2

∂ξ2

∣∣∣∣∣∣∣∣∣

=
∂x1

∂ξ1

∂x2

∂ξ2
− ∂x2

∂ξ1

∂x1

∂ξ2
. (2.35)

The transformed integral is now over the reference region Ωst such that we can

apply the numerical quadrature rules of Section 2.2.2.1. Furthermore, the use of an

iso-parametric mapping for the coordinate transformation allows us to calculate the

terms ∂xi

∂ξj
in the Jacobian by means of the collocation differentiation technique of

Section 2.2.2.2.
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2.2.3.2 Differentiation within a general-shaped element

To differentiate a function u(x1, x2) within an arbitrary region Ωe, we apply the

chain rule which, for the two-dimensional case, gives





∂u

∂x1

∂u

∂x2




=





∂ξ1
∂x1

∂ξ2
∂x1

∂ξ1
∂x2

∂ξ2
∂x2









∂u

∂ξ1

∂u

∂ξ2




=

1

J





∂x2

∂ξ2
−∂x2

∂ξ1

−∂x1

∂ξ2

∂x1

∂ξ1









∂u

∂ξ1

∂u

∂ξ2




. (2.36)

Again we can use the collocation differentiation technique within a standard element

to compute the metric terms ∂ξi

∂xj
as well as the derivatives of u with respect to the

reference coordinates ξ1 and ξ2.

2.2.4 Elemental matrix and vector notation

The formulation in two dimensions and the use of tensorial expansions necessitates

the introduction of a large number of subscript and superscript notations. To help

clarify the operations to be discussed in the remainder of this work we, therefore,

introduce a matrix and vector notation to represent operations such as integration,

differentiation and the transformation from coefficient to physical space. We note,

however, that the despite this matrix representation, the explicit construction of

these matrices is not always necessary or even desirable in practice (see also Chapter

5). Finally, we also would like to note that all definitions in this section refer to

a single element. In Section 2.3 we will extend the notation to include multiple

elements. To distinguish between the two uses we will introduce the superscript e.

2.2.4.1 Elemental vectors

The vector of physical values u We define the vector u as the evaluation of a

function u(ξ) at the entire set of quadrature points, i.e.

u[n] = u(ξn). (2.37)

When employing a tensor-product quadrature rule in two-dimensions, the quadra-

ture points are ordered according to a lexicographical ordering along the ξ1 direction
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such that

u[i+ jQ1] = u(ξ1i
, ξ2j

), 0 ≤ i < Q1, 0 ≤ j < Q2. (2.38)

This ordering is chosen to facilitate the application of the sum-factorisation tech-

nique as explained in Section 5.1.1.

The vector of coefficients û To represent all expansion coefficients of a spec-

tral/hp element discretisation in vector form, we adopt a similar notation but with

a circumflex, such that

û[n] = ûn, n ∈ N . (2.39)

For the tensor-based quadrilateral expansion coefficients ûpq we again adopt a lexi-

cographical numbering convention along the ξ1 direction, yielding

û[p+ q(P1 + 1)] = ûpq, 0 ≤ p ≤ P1, 0 ≤ q ≤ P2. (2.40)

For triangular tensorial expansions, however, the application of the sum-factorisation

technique requires a lexicographical ordering along the ξ2 direction, i.e.

û[q +
p(2P2 + 3 − p)

2
] = ûpq, 0 ≤ p, q, p ≤ P1, p+ q ≤ P2, P1 ≤ P2. (2.41)

2.2.4.2 Elemental matrices

The basis matrix B The basis matrix B can be considered as a discrete rep-

resentation of the basis functions and is therefore defined as having columns which

are fixed expansion modes φn(ξ) evaluated at all the quadrature points ξm, that is,

B[m][n] = φn(ξm). (2.42)

Note that both the modes (the columns) and quadrature points (the rows) within

the matrix B are ordered in a consistent fashion to the vectors û and u respectively.

The weight matrix W The weight matrix W is a diagonal matrix containing the

Gaussian quadrature weights multiplied by the Jacobian at the quadrature points

and is ordered consistent with the vector u, such that

W [m][m] = ωm |J(ξm)| , (2.43)
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where in two dimensions, ωm is the product of the one-dimensional quadrature

weights in each of the coordinate directions evaluated at ξm.

The differentiation matrices D The differentiation matrices Dξ1 and Dξ2 are

defined as

Dξ1 = IQ1 ⊗ D1d
ξ1
, (2.44)

Dξ2 = D1d
ξ2
⊗ IQ2, (2.45)

where IQ is the identity matrix of size Q×Q, ⊗ denotes the Kronecker product and

D1d
ξi

is the one-dimensional differentiation matrix (see also Eq. (2.22)) with entries

D1d
ξi

[m][n] =
dhn(ξim)

dξi
. (2.46)

Furthermore, we define the differentiation matrices Dx1 and Dx2 as

Dx1 = Ξ1
1Dξ1 + Ξ2

1Dξ2 , (2.47a)

Dx2 = Ξ1
2Dξ1 + Ξ2

2Dξ2 , (2.47b)

where Ξi
j are the diagonal matrices containing the derivative metrics evaluated at

the quadrature points, i.e.

Ξi
j [m][m] =

∂ξi
∂xj

∣∣∣∣
ξm

. (2.48)

2.2.4.3 Elemental operations in matrix notation

The introduction of a vector and matrix notation allows to formulate the earlier

defined operations such as the backward transformation, integration and differenti-

ation in a more concise way.

Backward transformation The backward transformation from coefficient to phys-

ical space in matrix notation can be represented as

u = Bû. (2.49)
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Integration - Inner product In a finite element method, the integrals to be

evaluated are typically of the form, see Eq. (2.10),

Î[n] :=

∫

Ωe

φn(x1, x2)u(x1, x2)dx1dx2, ∀n ∈ N , (2.50)

which can be recognised as the inner product of a function u with respect to all the

basis functions φn. The discrete evaluation of this operation can be represented in

matrix notation as

Î = B⊤Wu. (2.51)

Differentiation Following the collocation differentiation technique, the derivative

of a function u evaluated at the quadrature nodes can be formulated in matrix

notation as

∂u

∂ξi
= Dξi

u, (2.52)

∂u

∂xi

= Dxi
u =

2∑

j=1

Ξj
iDξj

u. (2.53)

2.3 Global spectral/hp element discretisations

2.3.1 Global expansion functions

Although high-order expansion bases are initially constructed on an elemental level,

we require some form of connectivity between the elements in order to solve par-

tial differential equations. Such global representations of the solution are typically

constructed by imposing C0 continuity across element boundaries. This procedure

is facilitated by the boundary/interior decomposition of the elemental modes as we

consequently only need to merge the corresponding boundary modes of adjacent

elements into single global modes. This is depicted in Fig. 2.4(a). A global C0

continuous spectral/hp expansion can then be represented as

u(x1, x2) =
∑

m∈N g

Φm(x1, x2)û
g
m =

∑

e∈E

∑

n∈N

φe
n(x1, x2)û

e
n, (2.54)

where ûg
i are the global degrees of freedom corresponding to the global expansion

basis Φi. The |E| × |N | elemental degrees of freedom ûe
m can be related to the |N g|
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global degrees of freedom ûg
n through the local-to-global mapping m(e, n). This

many-to-one mapping can also be represented by the matrix operation A, that is,

ûl = Aûg, (2.55)

which can be seen as scattering the vector of global coefficients ûg upon the vector

of local coefficients ûl. We can also write the vector ûl as

ûl = ûe =





û1

û2

...

û|E|




, (2.56)

where we have adopted the notation that an underlined vector denotes an extension

over all elemental regions.

2.3.2 Global operations

When following a traditional Galerkin procedure, the discrete weak formulation to

be solved is an integral form which typically contains terms of the form

Îg[m] :=

∫

Ω

Φm(x1, x2)u(x1, x2)dx1dx2, m ∈ N g. (2.57)

The elemental decomposition of the problem now allows us to express this inner

product of the function u(x1, x2) with respect to the global basis functions Φm as a

series of elemental contributions such that

Îg[m] :=
∑∫

Ωe

φe
n(x1, x2)u(x1, x2)dx1dx2, (2.58)

where the summation is taken over these elemental φe
n modes that correspond to

the mth global mode as defined by the mapping m(e, n). This process, referred to

as global assembly or direct stiffness summation is graphically represented in Fig.

2.4(b) and can be mathematically expressed as the transpose of A such that

Îg = A
⊤Î l, (2.59)

where Î l = Î
e
is the vector of local contributions. This procedure of global assembly
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Figure 2.4: Illustration of local to global assembly. If we have a global

expansion as represented in figure (a) it can be decomposed

into two elemental contributions multiplied by the same global

coefficient û. To integrate a function f(x1, x2) with respect to

the global mode, as illustrated in figure (b), the integration

in the global region is the sum of the integration in the local

regions.

can also be used to construct global system matrices out of elemental contributions.

For example the global mass matrix, defined as

M [m][n] =

∫

Ω

Φm(x1, x2)Φm(x1, x2)dx1dx2, (2.60)

can be constructed as

M = A
⊤M e

A, (2.61)

where we have adopted the notation that an underlined matrix denotes a block-

diagonal concatenation of elemental matrices, i.e.

M e =





M 1 0 0 · · · 0

0 M 2 0 · · · 0

0 0 M 3 · · · 0
...

...
...

. . .
...

0 0 0 · · · M |E|





. (2.62)

42



Chapter 3

Encapsulation of Spectral/hp

Elements

A major challenge which arises when one aims to develop a software package that

implements the spectral/hp element method is to implement the mathematical struc-

ture of the method in a digestible and coherent matter. Obviously, there are many

ways to encapsulate the fundamental concepts related to the spectral/hp element

method, depending on e.g. the intended goal of the developer or the chosen pro-

gramming language. In this chapter, we will –without going in too much detail–

give a an overview of how we have chosen to abstract and implement spectral/hp

elements in the Nektar++ library (Kirby & Sherwin 2006). However, we want to

emphasise that this is not the only possible choice.

3.1 Nektar++ and the abstraction of spectral/hp

elements

Nektar++ (Kirby & Sherwin 2006) is an open source software library currently be-

ing developed at Imperial College London in collaboration with the University of

Utah. It is designed to provide a toolbox of data structures and algorithms which

implement the spectral/hp element method. Nektar++ is the continuation and

adaptation of the Nektar flow solver. As opposed to its predecessor which focused
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on solving fluid dynamics problems, Nektar++ is implemented as a C++ object-

oriented toolkit which allows developers to implement spectral element solvers for

a variety of different engineering problems. Nektar++ heavily relies on the object-

oriented nature of the C++ programming language. It is designed as a collection of

classes that extensively make use of powerful features such as inheritance, polymor-

phism, virtual functions, templates, . . . For more information about these topics,

the reader is referred to (Stroustrup 2000).

The structure of the Nektar++ library, a collection of five different sublibraries,

is designed to reflect the typical structure of a global spectral/hp approximation.

Two of the main characteristics of this typical structure are:

• The elemental decomposition of the problem

As for all finite element methods, the computational domain is partitioned into

a mesh of many small subdomains or elements. Analogously, the spectral/hp

solution is expanded into a series of local expansions, each with support on a

single element. This elemental representation enables the treatment of oper-

ations on a local elemental basis rather than on global level. This not only

simplifies the formulation but also allows many operations to be performed

more efficiently.

• The introduction of a standard region

The introduction of a standard region allows the expansion basis to be defined

just once, that is only on the standard region. All other elements then can be

considered as the image of the standard element under a parametric mapping.

Consequently, the elemental operations of integration and differentiation can

all be executed on the standard element, subject to a proper treatment of the

transformation from local (world space) to standard (reference space) coor-

dinates. For curved-sided elements, the mapping from standard element to

local element is generally done using an iso-parametric representation. In this

case, the local geometry is represented with an expansion of the same form

and polynomial order as the unknown variables.

This structure, supplemented with building blocks such as block matrix linear alge-
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bra routines and automatic data coordinating objects, allows for an encapsulation

in an object-oriented C++ implementation. Five different sublibraries, employing

this characteristic pattern, are provided in the full Nektar++ library:

• the standard elemental region sublibrary (StdRegions library)

• the parametric mapping sublibrary (SpatialDomains library)

• the local elemental region sublibrary (LocalRegions library)

• the global region sublibrary (MultiRegions library)

• the supporting utilities sublibrary (LibUtilities library)

This structure can also be related to the formulation of a global spectral/hp element

expansion, i.e.

u(x) =

MultiRegions library︷ ︸︸ ︷∑

e∈E

∑

n∈N

φe
n(x)ûe

n

︸ ︷︷ ︸
LocalRegions library

=
∑

e∈E

∑

n∈N

φstd
n

SpatialDomains library︷ ︸︸ ︷
([χe]−1 (x)) ûe

n

︸ ︷︷ ︸
StdRegions library

. (3.1)

A more detailed overview of the Nektar++ structure, including an overview of the

most important classes per sublibrary, is depicted in Fig. 3.1. The idea behind these

classes will be briefly outlined in the sections below.
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• data: ◦ a list of local elemental expansions
• da for the classes DisContField iD, ContField iD:

objects of these classes contain:

• data: ◦ the basis φp(ξi)
• data: ◦ the coefficients ûp

expansion on standard element u(ξi) =
∑

p φp(ξi)ûp

• data: ◦ the physical values u(ξi)

expansion on local element u(xi) =
∑

p φp(xi)ûp

• data: ◦ the coefficients ûp

• data: ◦ the geometry of the element

• data: ◦ the basis φp(xi)

• data: ◦ the physical values u(xi)

expansion on a global region u(xi) =
∑

e

∑
p φ

e
p(xi)û

e
p

• data: ◦ to the local element, which entirely describes the geometry)
• data: ◦ the metric terms of the transformation (Jacobian, ...)

TriGeom

ExpList

ContField2D

ExpList2D

DisContField2D

ExpList3D

DisContField3D

ContField3D

ExpList1D

DisContField1D

ContField1D

• data: ◦ a mapping array from the local to the global degrees of freedom

HexGeom

• data: ◦ information about the boundary conditions

PrismGeom

QuadGeomSegGeom

Figure 3.1: Main structure of the Nektar++ library.

3.1.1 The StdRegions library

The StdRegions library, see Fig. 3.1, bundles all classes that mimic a spectral/hp

element expansion on a standard region. Such an expansion, i.e.

u(ξi) =
∑

n∈N

φn(ξi)ûn, (3.2)

can be encapsulated in a class that essentially should only contain three data struc-

tures, respectively representing (see also Section 2.2.4):

• the coefficient vector û,

• the discrete basis matrix B, and
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• the vector u which represents the value of the expansion at the quadrature

points ξi.

All standard expansions, independent of the dimensionality or shape of the standard

region, can be abstracted in a similar way. Therefore, it is possible to define these

data structures in an abstract base class, i.e. the class StdExpansion. This base class

can also contain the implementation of methods that are identical across all shapes.

Derived from this base class is another level of abstraction, i.e. the abstract classes

StdExpansion1D, StdExpansion2D and StdExpansion3D. All other shape-specific

classes (such as e.g. StdSegExp or StdQuadExp) are inherited from these abstract

base classes. These shape-specific classes are the classes from which objects will

be instantiated. They also contain the shape-specific implementation for operations

such as integration or differentiation.

3.1.2 The SpatialDomains library

The most important family of classes in the Spatialdomains library is the Geometry

family, as can also be seen in Fig. 3.1. These classes are the representation of a

(geometric) element in physical space. It has been indicated before, see Section 2.2.1,

that every local element can be considered as an image of the standard element where

the corresponding one-to-one mapping can be represented as an elemental standard

spectral/hp expansion. As such, a proper encapsulation should at least contain

data structures that represent such an expansion in order to completely define the

geometry of the element. Therefore, we have equipped the classes in the Geometry

family with the following data structures:

• an object of StdExpansion class, and

• a data structure that contains the metric terms (Jacobian, derivative metrics,

. . . ) of the transformation.

Note that although the latter data structure is not necessary to define the geometry,

it contains information inherent to the iso-parametric representation of the element

that can later be used in e.g. the LocalRegions library. Again, the StdExpansion
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object can be defined in the abstract base class Geometry. However, for every

shape-specific geometry class, it needs to be initialised according to the correspond-

ing StdRegions class (e.g. for the QuadGeom class, it needs to be initialised as an

StdQuadExp object).

3.1.3 The LocalRegions library

The LocalRegions library is designed to encompass all classes that encapsulate the

elemental spectral/hp expansions in physical space, see also Fig. 3.1. Considering

Eq. (3.1), it can be appreciated that such a local expansion essentially is a standard

expansion that has a (in C++ parlance) additional coordinate transformation that

maps the standard element to the local element. In an object-oriented context,

these is-a and has-a relationships can be applied as follows: the classes in the

LocalRegions library are derived from the StdExpansion class tree but they are

supplied with an additional data member representing the geometry of the local

element. Depending on the shape-specific class in the LocalRegions library, this

additional data member is an object of the corresponding class in the Geometry

class structure. This inheritance between the LocalRegions and StdRegions library

also allows for a localised implementation that prevents code duplication. In order to

e.g. evaluate the integral over a local element, the integrand can be multiplied by the

Jacobian of the coordinate transformation, where after the evaluation is redirected

to the StdRegions implementation.

3.1.4 The MultiRegions library

The MultiRegions library (see Fig. 3.1) is the sublibrary that contains the abstrac-

tion of multi-elemental and global spectral/hp element expansions. In particular,

it is the class ExpList and its derived classes that have been designed for this in-

tended goal. Due to the modular structure of the previously introduced elemental

sublibraries, this base class can be thought of as nothing more as an array of local

expansions. As a results, the main data structure in the base class effectively is an

array of StdExpansion objects (however, these objects will have to be initialised as
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objects of the LocalRegions classes). Also the implementation of operations such as

integration or differentiation within this class simply can be defined as a loop over

the elemental implementations. The use of virtual functions in the StdRegions and

LocalRegions will ensure that the appropriate shape-specific elemental implementa-

tion will be selected.

As a multi-elemental spectral/hp expansion often is more than just a collection

of separate elements, we have also derived the DisContField and ContField classes

(with the classes ExpListi D as a layer of abstraction in between). These classes

additionally contain information about the connectivity between the elements which

is encapsulated as a mapping from local to global degrees of freedom. In terms of

connectivity, we can make a distinction between Discontinuous Galerkin expansions

(DisContField) and the C0 continuous Galerkin expansions (ContField). The

DisContField and ContField classes are also the classes that are intended to be

used by the user to solve partial differential equations.

3.1.5 Using the libraries

These libraries can be used as ingredients for the driving application, for example,

a Navier-Stokes solver. This conceptual approach of the software leads to generic

implementations with a high user-flexibility. A two-dimensional elliptic Helmholtz

solver can for example be easily implemented as (in simplified pseudo C++ code)

ExpList* Exp = new ContField2D(inputfile);

Exp->HelmSolve();

However, one can easily change this into a 3D discontinuous Galerkin solver by

simply replacing the first line by

ExpList* Exp = new DisContField3D(inputfile);

3.2 Good coding practice

One of the challenges in object-oriented programming is finding a good balance

between a generic code architecture on one side and the performance on the other
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side. While the former has been discussed in the previous sections, we here want to

focus on some of the aspects that may help to minimise the run-time of your code.

The goal of this section is not to investigate how to improve performance by means

of different implementation strategies that are conceptually different (this will be

the subject of the forthcoming chapters). We merely want to provide some practical

guidelines that, once you have selected an algorithm to implement, may help you to

write efficient code (in the sense that it runs fast).

These guidelines have resulted from our attempt to optimise the implementation

of the elemental operators. Despite the fact that some of the guidelines may be

obvious for experienced programmers, we do want to share them as we have experi-

enced that they all together have lead to a significant speed-up. And although they

are more generally valid, we will introduce the guidelines by means of the example

of the elemental weak Laplacian operator, defined as

v̂m =
∑

n∈N

(∇φm,∇φn) ûm, ∀m ∈ N . (3.3)

where (·, ·) represents the inner product over the element Ωe. The weak Laplacian

operator can also be seen as part of the weak Helmholtz operator, an essential

building block in the solution procedure of the advection-diffusion equation. Note

that we will focus on the matrix free (using sum-factorisation, see also Chapter 5)

evaluation of this operator.

3.2.1 Implement the most efficient formulation

For a two-dimensional quadrilateral element, Eq. (3.3), can be rewritten as

v̂m =
∑

n∈N

{(
∂φm

∂x1
,
∂φn

∂x1

)
+

(
∂φm

∂x2
,
∂φn

∂x2

)}
ûm, ∀m ∈ N . (3.4)

A first implementation, let us call it the naive implementation, can be based upon

an equivalent formulation in terms of the matrix operator Dxi
, B and W , yielding

v̂ = (Dx1B)⊤ WDx1Bû + (Dx2B)⊤ WDx2Bû, (3.5)

where Dxi
is the discrete derivative operator with respect to the ith coordinate di-

rection and B and W are the operators as defined in Section 2.2.4. To demonstrate
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our point of implementing the most efficient formulation, let us focus on the deriva-

tive operator. Starting from the expression above, it is possible to implement the

Laplacian operator making four separate function calls to the local derivative oper-

ator, twice with respect to x1 and twice with respect to x2. However underneath,

each derivative operator Dxi
will be evaluated in terms of the standard derivative

operators Dξi
, according to Eq. (2.47), as

Dxi
=

2∑

j=1

Ξj
iDξj

, (3.6)

where we have previously in Section 2.2.4 defined Ξj
i as the diagonal matrix of the

derivative metrics evaluated at the quadrature points, i.e. Ξj
i [k][k] =

∂ξj

∂xi

∣∣∣
ξk

. As a

result, such a naive (but generic) implementation of the weak Laplacian operator

will actually require 4 × 2 = 8 derivative operations in total.

The problem with the naive implementation is that it evaluates the standard

derivative operators Dξi
more than strictly necessary. To appreciate this, insert Eq.

(3.6) into Eq. (3.5), to arrive at

v̂ =

2∑

i=1

[(
2∑

j=1

Ξj
iDξj

)

B

]⊤
W

(
2∑

k=1

Ξk
i Dξj

)

Bû. (3.7)

After appropriate rearranging, this leads to the formulation (see also Appendix

A.2.5)

v̂ = B⊤
[

D⊤
ξ1

Dξ2⊤
]



∑2

i=1 Ξ1
i Ξ

1
i W

∑2
i=1 Ξ1

i Ξ
2
i W

∑2
i=1 Ξ2

i Ξ
1
i W

∑2
i=1 Ξ2

i Ξ
2
i W







 Dξ1

Dξ2



Bû. (3.8)

It can be observed that the implementation of the weak Laplacian operator in essence

only requires four standard derivative operations, rather than the required eight in

the naive implementation. The optimal implementation should then best be based

upon the formulation given by Eq. (3.8) rather than on the formulation as given by

Eq. (3.5). It may be appreciated that for this example, selecting the most efficient

formulation may lead to a significant performance gain.
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3.2.2 Precompute and store relevant information

Considering Eq. (3.6), we see that the local derivative operator requires the deriva-

tive metrics Ξj
i that are associated to the mapping from the reference element to

the local element. In general these metric terms are computed only once, that is

when preprocessing the mesh. They subsequently are stored for future use. From

Eq. (3.8), it can be seen that the matrices Ξj
i also come back in the evaluation of

the weak Laplacian operator. However they do not appear separately but they are

combined together with the quadrature metric W to form some kind of Laplacian

metric Gij , defined as

Gij =

2∑

k=1

Ξi
kΞ

j
kW . (3.9)

For an efficient evaluation of the weak Laplacian operator, it is advised to also

precompute and store these Laplacian metrics Gij during preprocessing. The weak

Laplacian operator then can be formulated as

v̂ = B⊤
[

D⊤
ξ1

Dξ2⊤
]


 G11 G12

G21 G22







 Dξ1

Dξ2



Bû. (3.10)

Although the on-the-fly computation of the terms Gij in essence merely is an O(P 2)

operation (compared to the O(P 3) operators B and Dξi
– see also Section 5.2 and

Appendix A for more information on operation count), it in fact is an rather expen-

sive operation as it involves at least 12 separate O(P 2) operations (vector additions

and/or vector multiplications) in total. Although the storage of these additional

terms Gij requires extra memory, it will significantly speed-up the execution.

3.2.3 Implement specialised vector algebra routines

Although we just explained that for optimal efficiency it is not advised to com-

pute the terms Gij on-the-fly, it provides an ideal example to illustrate the current

guideline. Although we have introduced all the terms in the expression

Gij =
(
Ξi

1Ξ
j
1 + Ξi

2Ξ
j
2

)
W , (3.11)

as diagonal matrices, they will of coarse be encapsulated as some sort of vector or

array. As a result, the computation of Gij is a combination of vector additions and
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vector multiplications. In the Nektar++ library, we previously used the available

BLAS level I (Dongarra, Du Croz, Hammarling, Hanson, & Duff 1988) type of

routines, such as the daxpy routine or similar routines as provided by other vector

manipulation routines. However, these routines mainly operate on a limited amount

of input vectors (typically two or three). This means that in order to evaluate the

entire right-hand-side of Eq. (3.11), it is required to make repetitive calls to these

functions as well as to use some temporary memory storage to save the intermediate

results. This can be optimised by extending these existing libraries with your own

routines. For the example under consideration, we have observed that a tailor-made

routine as simple as

for(int i = 0; i < size; i++)

{

z[i] = (a[i]*b[i]+c[i]*d[i])*e[i];

}

is sufficient to seriously enhance the performance. Although the number of floating

point operations is identical, the performance difference can mainly be attributed

to the reduction in the number of memory references and the circumvention of

temporary memory storage.

3.2.4 Smart use of temporary memory storage

Inefficient use and allocation of temporary memory storage may hamper the per-

formance. This is especially the case for low-order expansions, in which the cost

associated to temporary memory is relatively high compared to the matrix and

vector operations due to the limited size of vectors and matrices. The following

guidelines may help to minimise this overhead in cost.

3.2.4.1 Reuse temporary memory storage

An implementation of Eq. (3.10) starts with the following three steps

tmp1 = Bû;
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tmp2 = Dξ1tmp1;

tmp3 = Dξ2tmp1;

where tmp1, tmp2 and tmp3 are three different temporary arrays used to store the

intermediate results. For the computation of the next step, it is possible to reuse

the temporary array tmp1, i.e.

tmp1 = G11tmp2+G12tmp3;

Such a reuse of temporary memory storage not only limits the memory footprint, it

also leads to more cache hits which may result in a reduction in run-time.

3.2.4.2 Allocate contiguous memory

If you know the total size of all required temporary memory required, it is best to

allocate this memory all at once in the beginning of the routine. The different tem-

porary arrays can then be defined as an offset pointer to this master array, without

the need to make additional allocation calls. This strategy has two advantages:

• There is only one memory allocation call. This will enhance efficiency as it is

more the number of calls than the amount of memory allocated that matters.

• All temporary memory is contiguous. Such a locality of data will result in

a more efficient memory use, including an increment in cache hits. As said

before, this is beneficial for the run-time.

3.2.4.3 Do not allocate temporary memory in the core routines

The operator Bξi
and Dξi

and their transposed operators can be considered as the

core routines of the Nektar++ library as almost all spectral/hp element operators

can be constructed as a composition of these operators (see e.g. the weak Laplacian

operator). As a result, it is important that they are implemented as efficiently as

possible. In Section 5.1.1.2 it is explained that the backward transformation operator

B is evaluated in two steps and requires temporary memory to store the intermediate

result. However, from the previous section, it can be appreciated that allocating this

temporary memory inside the function that implements the operator B might not
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be optimal, especially because this operator is frequently called from other functions.

It is therefore advised to pass some of the contiguous memory storage allocated for

the Laplacian operator as an additional argument to the function that implements

the operator B (it may be necessary to allocate additional memory storage for this

purpose). Another option may be to copy the implementation of the operator B

to the Laplacian operator (which also helps to guarantee inlining). However, we

prefer not to follow this strategy as it will lead to many instances of duplicate code,

which somehow violates the idea of a generic conceptual approach (and may lead to

problems in case of code improvements or code maintenance).
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Chapter 4

A Generic Framework for

Time-Stepping Partial Differential

Equations

In the development of simulation software into which numerical approximation

strategies for solving time-dependent partial differential equations (PDEs) are im-

plemented, the time-stepping method and its implementation typically receive a

subordinate role to the modelling and spatial discretisation choices. There exist a

myriad of reasons why this partitioning of effort exists and is justified. In part, the

Method of Lines (MoL), which is commonly employed to help simplify the discreti-

sation process, focuses one’s attention on distilling the partial differential equations

down to a collection of coupled ordinary differential equations (ODEs) to which clas-

sic time-stepping methods can be applied (see e.g. (Schiesser 1991) for a discussion

of the MoL approach). A large amount of effort is thus invested into this distilla-

tion process of modelling and spatial discretisation, and the final ODE discretisation

stage is often viewed as a straightforward process requiring little concentrated focus.

For engineering practices, one then typically begins his testing with an implemen-

tation of Euler-Forward – the parent time-stepping method of almost all multi-step

and multi-stage schemes. In many applications, the practitioner does not go beyond

this point, on the one hand because the Euler-Forward method may be the only
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method natively available in the software package (such as e.g. in the OpenFOAM

CFD solver (OpenFOAM 2010)), but also arguing that the time-stepping error is

sufficiently small compared to modelling, spatial and parameter errors, such that no

further effort should be invested into more elaborate time-stepping algorithms. For

those applications in which high-order time-stepping is advantageous, practitioners

encounter the multi-stage/multi-step divide – whether to use multi-step methods

like Adams-Bashforth and Adams-Moulton, which typically require more memory

but have an economy of floating-point operations, or to use multi-stage methods

like Runge-Kutta (RK), which typically have larger stability regions and require

less memory. Whichever selection is made might require further reworking of their

simulation software to accommodate either the memory needs or evaluation needs

of the family of schemes selected. This serves further to discourage fully exploit-

ing all the advances that have been made in the numerical solution of ODEs and

discourages doing verification studies in which the interplay between spatial and

temporal discretisation errors (beyond just leading order-of-accuracy statements)

are quantified.

The goal of this effort was to develop a generic framework, both in terms of

algorithms and software implementations, which allows the user to almost seam-

lessly switch between various explicit and implicit time-stepping methods. The first

challenge we encountered was the question of how to span the multi-stage/multi-

step divide. By basing our algorithms on J.C. Butcher’s unifying General Linear

Methods (Burrage & Butcher 1980; Butcher 1987; Butcher 2006), we are able to ac-

commodate a wide range of the time-stepping schemes used in engineering practice,

which not only encourages the judicious use of the plethora of different methods

that exist, but also facilitates time-discretisation verification studies. However, the

ODE concept of general linear methods currently does not encompass the family

of implicit-explicit (IMEX) schemes that are often used to time-integrate PDEs as

encountered in CFD, see e.g. (Ascher, Ruuth, & Wetton 1995; Ascher, Ruuth, &

Spiteri 1997). In order to treat these schemes in a similar way, we have shown that

through a small modification, these schemes as well can be formulated as a general

linear method.
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Although the MoL approach, in principle, abstracts away the spatial discretisa-

tion part of the PDE, there are some specific issues arising during this procedure

that have a decisive influence on the design of a generic PDE time-stepping frame-

work. In particular, it is the question how to deal with boundary conditions in a

generic and computationally efficient manner that forms the second major challenge

of this chapter.

Finally, a remark regarding terminology when dealing with time-stepping schemes

that are formally explicit from an ODE point of view. Spatially discretising a PDE

using a Galerkin approach generally leads to a ODE system which involves the in-

version of a global system regardless of the fact that we are using an explicit time-

stepping scheme. This situation can be referred to as an indirect explicit method

in contrast to the direct explicit method resulting from, for example, a standard

finite difference discretisation. Also note that the framework we will present is only

valid for implicit schemes in which the stage values can be computed in a decoupled

fashion. Such decoupled schemes include all implicit multi-step schemes and the

diagonally implicit multi-stage schemes such as the DIRK schemes. Fully implicit

multi-stage methods, which are rarely adopted in engineering practice, do not fit

into the presented framework.

Design Considerations Based upon the aforementioned motivations, we set the

following as the objectives of our time-stepping framework:

• It should allow the user to select its preferred method in an unbiased fashion.

• It should facilitate both explicit and implicit time-stepping.

• It should facilitate both multi-step and multi-stage schemes.

• It should allow the user to implement more elaborate partitioning schemes,

e.g. Implicit-Explicit (IMEX) schemes.

• It should be designed anticipating that the Method of Lines has been used on

a PDE to yield a system of coupled ODEs. Therefore the framework should be

able to accommodate both static and time-dependent boundary conditions.
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• It should work independent of the spatial discretisation choice (i.e. it should

work with continuous Galerkin and discontinuous Galerkin methods, as well

as with finite difference and finite volume methods).

• It should provide an efficient solution for time-stepping PDEs, i.e. the com-

putational cost should be comparable to scheme-specific implementations.

Outline In this chapter, we document the objectives of our framework, provide a

brief overview of general linear methods and explain how we design and implement

a software solution written in an object-oriented language (OOL) that meets our

objectives. The chapter is organized in sections as follows. We begin in Section

4.1 by presenting Butcher’s idea of general linear methods. We provide examples

to help the reader appreciate how this framework accommodates the commonly

used multi-step and multi-stage schemes and we show how IMEX schemes can also

be worked into this framework. Section 4.2 describes the design, algorithms and

implementation of the ODE solving framework. In Section 4.3, we then present how

this ODE framework can be modified into a generic PDE time-stepping framework

meeting the objectives. Therefore, we introduce the Method of Lines decomposition

of a model problem and we explain how to deal with time-dependent boundary

conditions in a generic and computationally efficient way. Finally in Section 4.4,

we demonstrate the capabilities of the presented framework by presenting some

examples.

4.1 General Linear Methods

General linear methods (GLM) have emerged as an effort to connect two main

types of time integration schemes: linear multi-step methods and linear multi-stage

methods. Linear multi-step methods, such as the Adams family of schemes, use

the collection of r input parameters from the previous time-levels to obtain the

solution at the next time-level. On the other hand, linear multi-stage methods such

as Runge-Kutta methods, approximate the solution at the new time-level by linearly

combining the solution at s intermediate stages.
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To begin, the standard initial value problem in autonomous form is represented

by the ODE,
dy

dt
= f (y), y(t0) = y0, (4.1)

where f : R
N → R

N . The nth step of the general linear method comprised of r steps

and s stages is then formulated as (Burrage & Butcher 1980):

Y i = ∆t
s∑

j=1

aijF j +
r∑

j=1

uijy
[n−1]
j , 1 ≤ i ≤ s, (4.2a)

y
[n]
i = ∆t

s∑

j=1

bijF j +

r∑

j=1

vijy
[n−1]
j , 1 ≤ i ≤ r, (4.2b)

where Y i are called the stage values and F i are called the stage derivatives. Both

quantities are related by the differential equation:

F i = f(Y i). (4.2c)

The matrices A = [aij ], U = [uij], B = [bij ], V = [vij ] are characteristic of a specific

method, and as a result, each scheme can be uniquely defined by the partitioned

(s+ r) × (s+ r) matrix 

 A U

B V



 . (4.3)

For a more concise notation, it is convenient to define the vectors Y ,F ∈ R
sN and

y
[n−1]
i ,y

[n]
i ∈ R

rN as follows:

Y =





Y 1

Y 2

...

Y s




, F =





F 1

F 2

...

F s




, y[n−1] =





y
[n−1]
1

y
[n−1]
2

...

y
[n−1]
r




, and y[n] =





y
[n]
1

y
[n]
2

...

y
[n]
r




. (4.4)

Using these vectors, it is possible to write Eq. (4.2a) and Eq. (4.2b) in the form



 Y

y[n]



 =



 A⊗ IN U ⊗ IN

B ⊗ IN V ⊗ IN







 ∆tF

y[n−1]



 , (4.5)

where IN is the identity matrix of dimension N × N and ⊗ denotes the Kronecker

product. Note that it is the first element of the input vector y[n−1] and output
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vector y[n] which represents the solution at the corresponding time-level, i.e. y
[n]
1 =

yn = y(t0 + n∆t). The other subvectors y
[n]
i (2 ≤ i ≤ r) refer to the approximation

of an auxiliary set of values inherent to the scheme. These values, in general, are

comprised of either solutions or derivatives at earlier time-levels or a combination

hereof.

4.1.1 Common multi-stage methods

Since multi-stage methods consist only of a single step with many stages, they can

be represented as a general linear method with r = 1. It is sufficient to write

U = [ 1 1 · · · 1 ]⊤, V = [1] and to set the coefficient matrices A and B to

the matrix A and the single row b⊤ of the corresponding Butcher tableau (Butcher

2006) respectively. For example, the classic fourth-order Runge-Kutta method with

Butcher tableau

c A

b⊤
=

0

1
2

1
2

1
2

0 1
2

1 0 0 1

1
6

1
3

1
3

1
6

, (4.6)

has the following GLM representation



 A U

B V



 =





0 0 0 0 1

1
2

0 0 0 1

0 1
2

0 0 1

0 0 1 0 1

1
6

1
3

1
3

1
6

1





. (4.7)

4.1.2 Common multi-step methods

In contrast to multi-stage methods, multi-step methods have a single stage, but the

solution at the new time-level is computed as a linear combination of information at

the r previous time-levels. Linear multi-step methods can be formulated to satisfy
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the relation

yn =

r∑

i=1

αiyn−i + ∆t

r∑

i=0

βiF n−i. (4.8)

This corresponds to the general linear method with input and output

y[n−1] =





yn−1

yn−2

...

yn−r

∆tF n−1

∆tF n−2

...

∆tF n−r





, y[n] =





yn

yn−1

...

yn−r+1

∆tF n

∆tF n−1

...

∆tF n−r+1





, (4.9)

and the partitioned coefficient matrix
[

A U
B V

]
defined as





β0 α1 α2 · · · αr−1 αr β1 β2 · · · βr−1 βr

β0 α1 α2 · · · αr−1 αr β1 β2 · · · βr−1 βr

0 1 0 · · · 0 0 0 0 · · · 0 0

0 0 1 · · · 0 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 0 · · · 1 0 0 0 · · · 0 0

1 0 0 · · · 0 0 0 0 · · · 0 0

0 0 0 · · · 0 0 1 0 · · · 0 0

0 0 0 · · · 0 0 0 1 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 0 · · · 0 0 0 0 · · · 1 0





. (4.10)

Note that in the vectors and matrices above, the solid lines denote the demarcation

of the matrices A, B, U and V whereas the dotted lines merely help to highlight

the typical structure of a linear multi-step method. As an example of a multi-step

scheme consider the well-known third-order Adams-Bashforth scheme

yn = yn−1 + ∆t

(
23

12
f(yn−1) −

4

3
f (yn−2) +

5

12
f(yn−3)

)
, (4.11)
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which has the following GLM representation



 A U

B V



 =





0 1 23
12

− 4
3

5
12

0 1 23
12

− 4
3

5
12

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0





. (4.12)

4.1.3 Beyond common multi-step or multi-stage methods

The general linear methods framework also encompasses methods that do not fit

under the conventional Runge-Kutta or linear multi-step headings. This includes,

for example, the cyclic composite method of (Donelson & Hansen 1971). In addition,

the general linear structure of the GLM in itself gave rise to the development of

new numerical methods. An example of one such class of methods is the class of

Almost Runge-Kutta Methods (Butcher 1997). To appreciate its typical combined

multi-stage multi-step character consider the following third-order scheme due to

(Rattenbury 2005):



 A U

B V



 =





0 0 0 1 1
3

1
18

1
2

0 0 1 1
6

1
18

0 3
4

0 1 1
4

0

0 3
4

0 1 1
4

0

0 0 1 0 0 0

3 − 3 2 0 − 2 0





. (4.13)

4.1.4 Implicit-explicit general linear methods

In this section, we extend the idea of GLM to accommodate in addition implicit-

explicit (IMEX) schemes. IMEX schemes (Ascher, Ruuth, & Wetton 1995; Ascher,

Ruuth, & Spiteri 1997) were introduced to time-integrate ODEs of the form

dy

dt
= f (y) + g(y), y(t0) = y0, (4.14)
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where f : R
N → R

N typically is a non-linear function and g : R
N → R

N is a

stiff term (or where f and g have disparate time-scales). The idea behind IMEX

methods is to combine two different type of schemes: one would like to use an

implicit scheme for the stiff term in order to avoid an excessively small time-step.

At the same time, explicit integration of the non-linear term is preferred to avoid

its expensive inversion.

Following the same underlying idea as discussed in the previous sections, IMEX

linear multi-step schemes (Ascher, Ruuth, & Wetton 1995) and IMEX Runge-Kutta

schemes (Ascher, Ruuth, & Spiteri 1997) can be unified into an IMEX general linear

method formulation, i.e.

Y i = ∆t

s∑

j=1

aIM
ij Gj + ∆t

s∑

j=1

aEX
ij F j +

r∑

j=1

uijy
[n−1]
j , 1 ≤ i ≤ s, (4.15a)

y
[n]
i = ∆t

s∑

j=1

bIMij Gj + ∆t

s∑

j=1

bEX
ij F j +

r∑

j=1

vijy
[n−1]
j , 1 ≤ i ≤ r, (4.15b)

where the stage derivatives F i and Gi are defined as

F i = f (Y i), Gi = g(Y i), (4.15c)

and where the superscripts IM and EX are used to denote implicit and explicit

respectively. Adopting a matrix formulation similar to that shown in Eq. (4.5), this

can be written in the form




Y

y[n]



 =




AIM ⊗ IN AEX ⊗ IN U ⊗ IN

BIM ⊗ IN BEX ⊗ IN V ⊗ IN









∆tG

∆tF

y[n−1]




. (4.16)

To further illustrate the formulation of IMEX schemes as a GLM, consider the

following examples. The first-order Backward Euler/Forward Euler IMEX scheme,

yn = yn−1 + ∆t
(
g(yn) + f(yn−1)

)
, (4.17)
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can be written as a general linear method as




AIM AEX U

BIM BEX V



 =





1 0 1 1

1 0 1 1

0 1 0 0




with y[n] =




yn

∆tF n



 .

(4.18)

The second-order Crank-Nicholson/Adams-Bashforth linear multi-step scheme,

yn = yn−1 + ∆t

(
1

2
g(yn) +

1

2
g(yn−1) +

3

2
f (yn−1) −

1

2
f(yn−1)

)
, (4.19)

can be represented as




AIM AEX U

BIM BEX V



 =





1
2

0 1 1
2

3
2

− 1
2

1
2

0 1 1
2

3
2

− 1
2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0





, (4.20)

with input/output vector

y[n] =





yn

∆tGn

∆tF n

∆tF n−1




. (4.21)

The third-order (2, 3, 3) IMEX Runge-Kutta scheme (see (Ascher, Ruuth, & Spiteri

1997)) is represented by the partitioned coefficient matrix where γ = (3 +
√

3)/6:




AIM AEX U

BIM BEX V



 =





0 0 0 0 0 0 1

0 γ 0 γ 0 0 1

0 1 − 2γ γ γ − 1 2(1 − γ) 0 1

0 1
2

1
2

0 1
2

1
2

1





.

(4.22)
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4.2 A generic ODE solving framework

Just as Butcher’s general linear methods provide a general framework to study the

basic properties such as consistency, stability and convergence of different families

of numerical methods for ODEs, it can also serve as a starting point for a unified

numerical implementation. For maximum generality we base our implementation on

the IMEX-GLM formulation described in Section 4.1.4: for purely explicit methods

we simply define AIM, BIM as well as g(y) equal to zero. For purely implicit schemes

we analogously set AEX, BEX and f(y) to be zero.

4.2.1 Evaluation of general linear methods

Inspecting Eq. (4.15) it can be appreciated that a single step from level n− 1 to n

for an IMEX-GLM formulation can be evaluated through the following algorithm:
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input : the vector y[n−1]

output: the vector y[n]

// Calculate stage values Y i and the stage derivatives F i and Gi

for i = 1 to s do

// calculate the temporary variable xi

(A1.1) xi = ∆t
∑i−1

j=1 a
IM
ij Gj + ∆t

∑i−1
j=1 a

EX
ij F j +

∑r

j=1 uijy
[n−1]
j

// calculate the stage value Y i

(A1.2) solve
(
Y i − aIM

ii ∆tg(Y i)
)

= xi

// calculate the explicit stage derivative F i

(A1.3) F i = f (Y i)

// calculate the implicit stage derivative Gi

(A1.4) Gi = g(Y i) = 1
aIM

ii ∆t
(Y i − xi)

end

// Calculate the output vector y[n]

for i = 1 to r do

// calculate y
[n]
i

(A1.5) y
[n]
i = ∆t

∑s

j=1 b
IM
ij Gj + ∆t

∑s

j=1 b
EX
ij F j +

∑r

j=1 vijy
[n−1]
j

end

Algorithm 1: A GLM-based ODE solving algorithm.

Here we first observe that the algorithm, by virtue of the GLM framework, is inde-

pendent of the actual numerical scheme used – only the values of the coefficients a

and b change for different methods. Further, if we are using a purely explicit scheme

then aIM
ii = 0 and the stage value is equal to the the temporary value computed in

step (A1.1), i.e. step (A1.2) is greatly simplified to Y i = xi. It is also worth noting

that the stage derivative Gi = g(Y i) in (A1.4) need not be explicitly evaluated, but

is given by already computed values, as seen by reordering Eq. (A1.2). Indeed, steps

(A1.2) and (A1.3) are the only instances in the algorithm where specific information

67



from the ODE is required, all other steps in the algorithm simply involve linear

combinations of precomputed information. These two steps are to be considered ex-

ternal parts representing the ODE rather than being a part of the numerical GLM

algorithm. We thus need to define the following external functions:

• If AIM 6= 0 we must supply a routine for solving a system of form (A1.2),

(Y − λg(Y )) = x, (4.23)

for Y ∈ R
N , given as input the vector x ∈ R

N and the scalar λ ∈ R.

I : R
N → R

N denotes the identity function and g : R
N → R

N is the func-

tion prescribing the terms of the ODE that are to be implicitly evaluated. In

general, the solution or fixed point of this system can be found through root

finding algorithms. In the case g is a linear operator, one may opt for a direct

solution method to solve this system through the inverse operator (I −λg)−1.

• If AEX 6= 0 we must also supply a routine for evaluating (A1.3), i.e. a function

f : R
N → R

N that maps the stage values to the stage derivatives for the terms

of the ODE that are explicitly evaluated

F = f(Y ). (4.24)

The external functions are expected to be provided by the user. The decoupling

of the external components from the GLM algorithm naturally leads to a level of

abstraction allowing a generic object-oriented implementation, in a programming

language such as C++, to be discussed in the next section.

4.2.2 Encapsulation of key concepts

As outlined in the introduction, it is our goal to implement an ODE solving toolbox

where switching between numerical schemes is as simple as changing an input pa-

rameter. To accomplish this, we have encapsulated the key concepts observed in the

previous section into a set of C++ type classes. It is not our intention to necessarily
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advocate using only C++ but rather to highlight how any object-oriented language

(OOL) could be used to encapsulate the concepts. We acknowledge that many OOL

exist which could be used for this implementation stage.

An overview of these classes is depicted in Fig. 4.1.

m inputTimeLevels

data members

methods

class

data members

methods

GetSolution

class
TimeIntegrationSolution

data members

m A

m B

class
TimeIntegrationScheme

m implicitSolve

m explicitEvaluate

DefineExplicitEvaluate

DefineImplicitSolve

DoExplicitEvaluate

DoImplicitSolve

TimeIntegrationOperators

m solutionvector

methods

m U

m V

InitializeScheme

TimeIntegrate

Figure 4.1: Overview of the classes in the implementation of the generic

ODE solving framework.

4.2.2.1 The class TimeIntegrationOperators

This class provides a general interface to the external components (see Section 4.2.1)

needed for time marching. As a result, this class can be seen as the abstraction

of the ODE. As data members, it contains two objects which can be thought of

as function pointers: m_explicitEvaluate should point to the implementation of

(4.24) and m_implicitSolve should point to the implementation of solving system

(4.23). The function pointers can be linked to these implementations by means of

the methods DefineExplicitEvaluate and DefineImplicitSolve. Note that it is

up to the user to implement and provide these functions. The encapsulation of these

functions into another class is needed to ensure that both these functions can be

accessed from within the time-stepping algorithms in a unified fashion, independent

of which ODE is being solved. Therefore, the class TimeIntegrationOperators

also contains the methods DoExplicitEvaluate and DoImplicitSolve for internal

use.
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4.2.2.2 The class TimeIntegrationSolution

This class is the abstraction of the vector y[n] as defined in Eq. (4.4). One can think

of it as an array of arrays. The user can obtain its first entry y
[n]
1 = yn representing

the approximate solution at time-level n, by means of the method GetSolution.

4.2.2.3 The class TimeIntegrationScheme

This class can be considered as the main class as it is the abstraction of a general lin-

ear method. As each scheme is uniquely defined by the partitioned coefficient matrix

(4.3), the sub-matrices A, B, U and V are core data members of this class, imple-

mented respectively as m_A, m_B, m_U and m_V. In addition, this class contains the

data member m_inputTimeLevels which reflect the structure of the input/output

vector y[n] associated to the scheme. Based upon the fact that all input vectors can

be ordered such that the stage values are listed first before the explicit stage deriva-

tives and the implicit stage derivatives, m_inputTimeLevels can be seen as an array

existing of three parts that indicate the time-level at which the values/derivatives

are evaluated. As an example, consider the second-order Crank-Nicholson/Adams-

Bashforth scheme with input vector y[n] as defined in Eq. (4.20). The data member

m_inputTimeLevels is then defined as

m_inputTimeLevels =





0

0

0

1




. (4.25)

Furthermore, this class is equipped with the two methods needed for the actual

time-marching. The function InitializeScheme converts the initial value y0 in

an object of the class TimeIntegrationSolution. This object is then going to be

advanced in time using the method TimeIntegrate. This is the function which

actually implements the GLM algorithm in Section 4.2.1 and hence integrates the

ODE for a single time-step. Note that internally, this method calls the functions Do-

ExplicitEvaluate and DoImplicitSolve of the class TimeIntegrationOperators

in order to evaluate Eq. (4.24) and solve Eq. (4.23) respectively.
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4.2.3 Use of the framework

As a first step, it is up to the user to provide a proper implementation of the

functionality described by Eqs. (4.23) and (4.24). Both these functions should be

implemented according to the prototypes below. The function names ExplicitE-

valuate and ImplicitSolve are merely illustrative; the user is free to choose other

names.

double* ExplicitEvaluate(double* x)

{

... // Implemented by the user

}

double* ImplicitSolve(double* x, double lambda)

{

... // Implemented by the user

}

These functions, together with the classes of the toolbox, can then be used to numer-

ically solve the ODE. A typical example of how this can be implemented is shown

below:

TimeIntegrationOperators ode;

TimeIntegrationSolution y_n;

TimeIntegrationScheme scheme;

ode.DefineExplicitEvaluate(ExplicitEvaluate);

ode.DefineImplicitSolve(ImplicitSolve);

scheme = TimeIntegrationScheme(FORWARD_EULER);

y_n = scheme->InitializeScheme(dt,y_0,ode);
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for(n = 0; n < nsteps; ++n)

{

scheme->TimeIntegrate(dt,y_n,ode);

}

In this particular example, the constructor call scheme = TimeIntegrationScheme

(FORWARD_EULER) loads the object with the coefficient matrices of the forward Euler

scheme. However, none of the implementation required by the user changes when

selecting a more advanced time-stepping method. Other schemes can simply be

loaded by changing the input argument (e.g. from FORWARD_EULER to CLASSICAL_

RK_4). This demonstrates that the presented framework indeed does allow the user

to numerically solve an ODE in a unified fashion, independent of the chosen scheme.

4.2.3.1 Initiating multi-step schemes

For multi-step schemes, a slight modification is required to properly start-up the

system. This can be understood by considering the following example for the third-

order Adams-Bashforth scheme.

scheme = TimeIntegrationScheme(ADAMS_BASHFORTH_ORDER3);

startup_scheme1 = TimeIntegrationScheme(FORWARD_EULER);

startup_scheme2 = TimeIntegrationScheme(ADAMS_BASHFORTH_ORDER2);

y_n = scheme->InitializeScheme(dt,y_0,ode);

startup_scheme1->TimeIntegrate(dt,y_n,ode);

startup_scheme2->TimeIntegrate(dt,y_n,ode);

for(n = 2; n < nsteps; ++n)

{

scheme->TimeIntegrate(dt,y_n,ode);

}

72



Underneath, this starting-up procedure is founded upon the data member m_input-

TimeLevels. When making the call startup_scheme1->TimeIntegrate(dt,y_n,

ode), the TimeIntegrate routine recognises that the input vector y_n is initialised

according to another scheme. It is therefore going first to construct an input vector

according to the start-up scheme, and it will map the information from the vector

y_n to the newly constructed input vector, thereby making use of the data member

m_inputTimeLevels. If the start-up scheme requires information in its input vector

that is not available in the provided input vector y_n it will simply assume zero for

these stage values or derivatives. Once the solution is advanced in time for a single

time-step using the start-up scheme, the output vector is mapped back to the vector

y_n, again making use of the information in m_inputTimeLevels.

4.3 Time-dependent partial differential equations

Ordinary differential equations are generally used to model initial value problems.

However, many physical processes can be regarded as initial boundary value prob-

lems which are described by partial differential equations. A first step in solving

time-dependent PDEs consists of reducing the PDE to a system of ODEs through

the Method of Lines approach. We will show that this procedure, which involves the

discretisation of the spatial dimensions, introduces some typical issues which pre-

vent the straightforward application of the ODE framework discussed before. We

distinguish the following issues:

• strongly enforced essential boundary conditions, and

• computational efficiency.
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To facilitate the discussion we will use the scalar advection-diffusion equation as an

illustrative example throughout this section. It is given by

∂u

∂t
+ ∇ · F (u) = ∇2u, in Ω × [0,∞), (4.26a)

u(x, t) = gD(x, t), on ∂ΩD × [0,∞), (4.26b)

∂u

∂n
(x, t) = gN(x, t) · n, on ∂ΩN × [0,∞), (4.26c)

u(x, 0) = u0(x), in Ω, (4.26d)

where Ω is a bounded domain of R
d with boundary ∂Ω = ∂ΩD

⋃
∂ΩN and n denotes

the outward normal to the boundary ∂Ω. Furthermore, we will abbreviate the

advection term as f(u) = −∇ · F (u) in the following sections.

4.3.1 The Method of Lines

We start with a spectral/hp element approach to reduce the advection-diffusion

equation (4.26) to a system of ODEs through the Method of Lines. Following the

standard Galerkin formulation we multiply Eq. (4.26a) by a smooth test function

v(x), which by definition is zero on all Dirichlet boundaries. Integrating over the

entire spatial domain leads to the following variational formulation: Find u ∈ U
such that ∫

Ω

v
∂u

∂t
dx −

∫

Ω

vf(u)dx =

∫

Ω

v∇2udx, ∀v ∈ V, (4.27)

where U and V are suitably chosen trial and test spaces respectively. We obtain the

weak form by applying the divergence theorem to the right-hand-side term yielding:

Find u ∈ U such that
∫

Ω

v
∂u

∂t
dx −

∫

Ω

vf(u)dx = −
∫

Ω

∇v · ∇udx +

∫

∂Ω

v∇u · ndx, ∀v ∈ V. (4.28)

As v(∂ΩD) is equal to zero, only Neumann conditions will give contributions to

the boundary integral, and we enforce the conditions weakly through substituting

∇u = gN in the boundary integral. In order to impose Dirichlet boundary conditions

we adopt a lifting strategy where the solution is decomposed into a known function,

uD and an unknown homogeneous function uH , i.e.

u(x, t) = uH(x, t) + uD(x, t). (4.29)
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Here uD is satisfying the Dirichlet boundary conditions, uD(∂ΩD) = gD, and the

homogeneous function is equal to zero on the Dirichlet boundary, uH(∂ΩD) = 0.

The weak form (4.28) can then be formulated as: Find uD ∈ U0 such that,
∫

Ω

v
∂(uH + uD)

∂t
dx −

∫

Ω

vf(uH + uD)dx = −
∫

Ω

∇v · (∇uH + ∇uD)dx

+

∫

∂ΩN

vgN · ndx, ∀v ∈ V. (4.30)

Following a finite element discretisation procedure, the solution is expanded in terms

of a globally C0-continuous expansion basis Φi that spans the finite dimensional

solution space U δ. We also decompose this expansion basis into the homogeneous

basis functions ΦH
i and the basis functions ΦD

i having support on the Dirichlet

boundary such that

uδ(x, t) =
∑

i∈NH

ΦH
i (x)ûH

i (t) +
∑

i∈ND

ΦD
i (x)ûD

i (t). (4.31)

Finally, employing the same expansion basis ΦH
i to span the test space V, Eq. (4.30)

leads to the semi-discrete system of ODEs

[
MHD MHH

] d
dt



 ûD

ûH



 = −
[

LHD LHH

]


 ûD

ûH



+ ΓH + f̂
H

(4.32)

where

MHD[i][j] =

∫

Ω

ΦH
i ΦD

j dx i ∈ NH, j ∈ ND,

LHD[i][j] =

∫

Ω

∇ΦH
i · ∇ΦD

j dx i ∈ NH, j ∈ ND,

f̂
H

[i] =

∫

Ω

ΦH
i f(u)dx i ∈ NH

ΓH [i] =

∫

∂ΩN

ΦH
i gN · ndx i ∈ NH.

This can be rewritten in terms of the unknown variable ûH as

dûH

dt
=
(
MHH

)−1




−
[

LHD LHH

]


 ûD

ûH



+ ΓH + f̂
H − MHD dû

D

dt




 ,

(4.33)

which, in the absence of Dirichlet boundary conditions, simplifies to

dû

dt
= −M−1 (Lû − Γ) + M−1f̂ (4.34)
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4.3.2 Use of the ODE framework for time integrating PDEs

At first sight, it may seem feasible to apply to ODE solving framework of Section

4.2 to time-integrate Eq. (4.33) (or Eq. (4.34)). However, this straightforward

approach appears to lead to two different problems.

4.3.2.1 Computational efficiency

Considering Eq. (4.34) in the context of the IMEX algorithm of the ODE framework

(Algorithm 1), it can be appreciated that for the explicit advection term, step (A1.4)

requires the calculation of the term

M−1f̂ , (4.35)

while for the implicit diffusion term, step (A1.2) would require solving a system of

the form
(
I + ∆tM−1L

)
û = x̂. (4.36)

It appears that next to the implicit term, the explicit term now also requires a

global matrix inverse due to M−1. This means that the generic ODE time-stepping

algorithm would require two global matrix inverses at every timestep/timestage. For

comparison, let us consider the (single-stage) first-order Backward Euler/Forward

Euler IMEX scheme given by Eq. (4.17). A scheme-specific implementation of this

method (that is, not making use of the proposed framework) can integrate Eq. (4.34)

for a single time-step as

ûn = (M + ∆tL)−1
(
Mûn−1 + ∆tf̂n−1 + ∆tΓn

)
. (4.37)

Clearly, this only involves a single global matrix inversion, i.e. due to (M + ∆tL)−1.

Such global matrix inversions can in general be assumed to be the critical cost

of the time-integration process as they typically –especially for three-dimensional

simulations– require an iterative solution method which induce a far bigger cost

than the other forward operations. Because of this substantial performance penalty,

using the ODE framework to time-integrate PDEs can be considered an impractical

solution.
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4.3.2.2 Time-dependent boundary conditions

The second complication arises from the term
dûD

dt
in Eq. (4.33) which is due to a

strong imposition of the Dirichlet boundary conditions. Although the value ûD(t)

of the Dirichlet boundary conditions is given for arbitrary t (or can be computed

based upon Eq. (4.26b), see (Karniadakis & Sherwin 2005)), no prescription for

its time rate-of-change
dûD

dt
is available in general. This prevents a straightforward

application of the presented ODE framework.

4.3.3 A generic PDE time-stepping framework

In order to alleviate both the issues of efficiency and time-dependent boundary

conditions, we propose a modified framework designed to time-integrate PDEs in a

generic and efficient manner. The new framework is largely founded on the fact that

a spectral/hp element approximation uδ(x, t) can be described not only by a set of

global degrees of freedom û (in coefficient space), but also by a set of nodal values

u (in physical space). These nodal values represent the spectral/hp solution at a set

of quadrature points xi (or collocation points), such that they can be related to the

global coefficients as

u[i] = uδ(x, t) =
∑

j∈N

Φj(xi)ûi(t), (4.38)

which, in matrix notation, can be written as u = Bû, where B[i][j] = Φj(xi). This

can be recognised as the global variant of the elemental backward transformation as

defined in Section 2.2.4.3. In case of a lifted Dirichlet solution, this becomes

u =
[

BD BH

]


 ûD

ûH



 , (4.39)

with BD[i][j] = ΦD
j (xi) and BH [i][j] = ΦH

j (xi).

As commonly the case in spectral/hp methods, we will also use this nodal inter-

pretation for the explicit treatment of the (non-linear) advection term. The term f̂

in Eq. (4.34) will then be computed as

f̂ = B⊤Wf , (4.40)
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where f represents the original advection term evaluated at the quadrature points,

i.e. f [i] = f(u(xi)) and B⊤W is the discrete inner product operator, see Section

2.2.4.3. Such a collocation approach is also known as the pseudo-spectral method

(Gottlieb & Orszag 1977).

4.3.3.1 The Helmholtz problem and the projection problem

Before we derive the new framework, we will first introduce the following two con-

cepts which will facilitate the derivation.

The projection problem Consider the discrete solution space U δ(Ω, t) of C0 con-

tinuous piecewise polynomial functions that satisfy the (possibly time-dependent)

Dirichlet boundary conditions. We define the projection of an arbitrary function

f(x), denoted as

u = P(f, t), (4.41)

as the L2 projection of f onto U δ(Ω). This projection is equivalent to solving the

following minimisation problem using a traditional Galerkin finite element approach:

Find u ∈ U δ(Ω) such that ||u− f ||L2 is minimal. In a nodal/collocated context, this

projection can be computed as:

• in case of strongly enforced Dirichlet boundary conditions

u = P(f , t)

=
[

BD BH

]


 ûD(t)
(
MHH

)−1
{(

BH
)⊤

Wf − MHDûD(t)
}



 , (4.42)

• which in the absence of strongly enforced Dirichlet boundary conditions, sim-

plifies to

u = P(f , t) = BM−1B⊤Wf . (4.43)

The Helmholtz problem Given an arbitrary function f , we define the Helmholtz

problem as finding the Galerkin finite element solution to the (steady) elliptic
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Helmholtz equation

u− λ∇2u = f, in Ω, (4.44a)

u(x) = gD(x), on ∂ΩD, (4.44b)

∂u

∂n
(x) = gN (x) · n, on ∂ΩN . (4.44c)

We will also denote this problem as

u = H(f, λ, t). (4.45)

Again adopting a nodal/collocated interpretation of the spectral/hp expansion, this

problem can be evaluated as:

• in case of strongly enforced Dirichlet boundary conditions

u = H(f , λ, t)

=
[

BD BH

]


 ûD(t)
(
HHH

)−1
{(

BH
)⊤

Wf + λΓH(t) − HHDûD(t)
}



 ,

(4.46)

• which in the absence of strongly enforced Dirichlet boundary conditions, sim-

plifies to

u = H(f , λ, t) = BH−1
(
B⊤Wf + λΓ(t)

)
. (4.47)

In the expressions above, the matrix H represents the Helmholtz matrix defined as

H [i][j] =

∫

Ω

ΦiΦj + λ∇Φi · ∇Φjdx i, j ∈ N . (4.48)

Properties We will use the following properties of the operators P and H in the

subsequent sections:

• In case λ = 0, the operator H reduces to the projection operator P , i.e.

H(f , 0, t) = P(f , t). (4.49)
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• Composition of the operators

P(P(f , tm), tn) = P(f , tn), (4.50)

H(P(f , tm), tn) = H(f , tn), (4.51)

P(g + P(f , tm), tn) = P(g + f , tn), and (4.52)

H(g + P(f , tm), tn) = H(g + f , tn). (4.53)

Concerning the computational complexity, we would like to note that each operator

involves a single global system inverse.

4.3.3.2 Derivation of the framework

According to Eq. (4.15a), the calculation of the ith stage (for convenience of notation

denoted as ûH
i ) of an arbitrary GLM applied to Eq. (4.33) can be represented as

ûH
i =∆t

i∑

j=1

aIM
ij

[
(
MHH

)−1

(

ĝH
j − MHD dû

D

dt

∣∣∣∣
j

)]

+∆t
i−1∑

j=1

aEX
ij

[(
MHH

)−1
f̂

H

j

]
+

r∑

j=1

uijû
H[n−1]
j , (4.54)

where for simplicity we have used the notation

ĝH
j = −

[
LHD LHH

]


 ûD
j

ûH
j



+ ΓH
j . (4.55)

For generality we will assume a GLM with an input/output vector of the form

ûH[n] =





ûH
n

ûH
n−1

∆tGn

∆tGn−1

∆tF n

∆tF n−1





, (4.56)
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which applied to the advection-diffusion example under consideration, leads to

ûH[n] =





ûH
n

ûH
n−1

∆t
(
MHH

)−1
(

ĝH
n − MHD dû

D

dt

∣∣∣∣
n

)

∆t
(
MHH

)−1
(

ĝH
n−1 − MHD dû

D

dt

∣∣∣∣
n−1

)

∆t
(
MHH

)−1
f̂

H

n

∆t
(
MHH

)−1
f̂

H

n−1





. (4.57)

In order to deal with the time-derivative of the Dirichlet boundary condition, we first

would like to note that we have chosen to treat the term involving
dûD

dt
implicitly

in Eq. (4.54). However, this is an arbitrary choice and we could equally well have

chosen to treat this term explicitly, leading to exactly the same framework. If we

then acknowledge that the variable ûD can be understood to satisfy the ODE

(
ûD
)′

=
dûD

dt
, (4.58)

we can apply the same GLM to this ODE as the one we have used for the original

ODE in terms of ûH , i.e. Eq. (4.54), to arrive at

ûD
i = ∆t

i∑

j=1

aIM
ij

dûD

dt

∣∣∣∣
j

+
r∑

j=1

uijû
D[n−1]
j . (4.59)

There are no explicit stage derivatives F j appearing in the equation above (or more

precisely, F j = 0) due to the fact that we also choose to treat the right-hand-side

term
dûD

dt
in Eq. (4.58) implicitly. As a result, the input/output vector of the GLM

under consideration, see Eq. (4.56), applied to Eq. (4.58) takes the form

ûD[n] =





ûD
n

ûD
n−1

∆t
dûD

dt

∣∣∣∣
n

∆t
dûD

dt

∣∣∣∣
n−1

0

0





. (4.60)
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To eliminate the Dirichlet derivative in Eq. (4.54), we substitute Eq. (4.59) into

Eq. (4.54), yielding

ûH
i =∆t

i∑

j=1

aIM
ij

[(
MHH

)−1
ĝH

j

]
+ ∆t

i−1∑

j=1

aEX
ij

[(
MHH

)−1
f̂

H

j

]

+
(
MHH

)−1
MHD

[
r∑

j=1

uijû
D[n−1]
j − ûD

i

]

+

r∑

j=1

uijû
H[n−1]
j , (4.61)

which after rearranging and multiplication with MHH leads to

MHHûH
i + MHDûD

i =∆t

i∑

j=1

aIM
ij ĝH

j + ∆t

i−1∑

j=1

aEX
ij f̂

H

j

+
r∑

j=1

uij

[
MHHû

H[n−1]
j + MHDû

D[n−1]
j

]
, (4.62)

or

HHHûH
i + HHDûD

i =∆t
i−1∑

j=1

aIM
ij ĝH

j + ∆t
i−1∑

j=1

aEX
ij f̂

H

j

+

r∑

j=1

uij

[
MHHû

H[n−1]
j + MHDû

D[n−1]
j

]
+ aIM

ii ∆tΓH
i , (4.63)

where H is the Helmholtz matrix, see Eq. (4.48), with λ = aIM
ii ∆t. This elimination

of
dûD

dt
appears to give rise to a modified input/output vector MHHû

H[n−1]
j +

MHDû
D[n−1]
j , which after combining Eq. (4.57) and Eq. (4.60) can be appreciated

to be equal to

MHHûH[n] + MHDûD[n] =





MHHûH
n + MHDûD

n

MHHûH
n−1 + MHDûD

n−1

∆tĝH
n

∆tĝH
n−1

∆tf̂
H

n

∆tf̂
H

n−1





. (4.64)

Following a collocation approach to calculate the advection term, see Eq. (4.40),

and adopting a nodal interpretation for the solution values at the time-levels n and

n − 1 according to Eq. (4.39), this input/output vector can be considered as the
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inner product of an input/output vector u[n] in physical space, i.e.

MHHûH[n] + MHDûD[n] =
(
BH

)⊤
Wu[n] =

(
BH

)⊤
W





un

un−1

∆tgn

∆tgn−1

∆tfn

∆tfn−1





, (4.65)

where we have made use of the relationship MHD =
(
BH

)⊤
WBD. In addition, we

have also adopted a nodal interpretation gn of the implicit stage value ĝH
n which will

be further discussed in the next section. Making use of this formulation in physical

space, Eq. (4.63) can be written as

HHHûH
i + HHDûD

i =
(
BH

)⊤
W

{
∆t

i−1∑

j=1

aIM
ij gj + ∆t

i−1∑

j=1

aEX
ij f j +

r∑

j=1

uijuj

}

+aIM
ii ∆tΓH

i . (4.66)

Finally also adopting a nodal interpretation ui for the solution at stage i, the cal-

culation of the ith stage value can be recognised as

ui = H

(

∆t

i−1∑

j=1

aIM
ij gj + ∆t

i−1∑

j=1

aEX
ij f j +

r∑

j=1

uijuj , a
IM
ii ∆t, tn

)

. (4.67)

This formulation allows for a well defined procedure to advance the solution in time

as the calculation of the stage values only involves solving the associated Helmholtz

problem. Note that for a pure explicit method, the Helmholtz problem reduces to

the L2 projection. This solution procedure is very attractive in particularly for the

following three reasons:

• uniform treatment of Dirichlet boundary conditions (i.e. the Dirichlet bound-

ary conditions only come into play when enforcing them while solving the

global matrix system),

• only one global matrix inverse is required per stage, and

• it is sufficiently generic to be extended to the entire range of GLMs (see next

section).
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Note that the derivation of this framework was founded on the following two steps:

• adopting a consistent-order discretisation of the Dirichlet derivative consistent

to the discretisation of the original ODE, and

• formulating the GLM algorithm in physical space.

4.3.3.3 Algorithm

A PDE time-stepping algorithm that time-integrates the advection-diffusion equa-

tion (4.26) from time-level n− 1 to n can then be formulated as:
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input : the vector u[n−1]

output: the vector u[n]

// Calculate stage values U i and the stage derivatives F i and Gi

for i = 1 to s do

// calculate the temporary variable xi

(A2.1) xi = ∆t
∑i−1

j=1 a
IM
ij Gj + ∆t

∑i−1
j=1 a

EX
ij F j +

∑r

j=1 uiju
[n−1]
j

// calculate the stage value U i

(A2.2) U i = H
(
xi, a

IM
ii ∆t, ti

)

// calculate the explicit stage derivative F i

(A2.3) F i = f (U i)

// calculate the implicit stage derivative Gi

(A2.4) Gi = 1
aIM

ii ∆t
(U i − xi)

end

// Calculate the output vector u[n]

if last stage equals new solution then

(A2.5) un = U s

else

(A2.6)

u
[n]
1 = u

[n]
1 = P

(
∆t
∑s

j=1 b
IM
1j Gj + ∆t

∑s

j=1 b
EX
1j F j +

∑r

j=1 v1ju
[n−1]
j , tn

)

end

for i = 2 to r do

(A2.7) u
[n]
i = ∆t

∑s

j=1 b
IM
ij Gj + ∆t

∑s

j=1 b
EX
ij F j +

∑r

j=1 viju
[n−1]
j

end

Algorithm 2: A GLM-based PDE time-stepping algorithm.

The only subtlety that arises in comparison with the derivation as explained in the

previous section is due to the term Gi. To formally fit into the framework, a proper

definition of Gi, denoted as gi in the previous section, should be

gi = BH
(
MHH

)−1
ĝH

i , (4.68)
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which can be appreciated when comparing Eq. (4.64) with Eq. (4.65). By re-

combining the terms in the Helmholtz problem associated to step (A2.2) it can be

demonstrated that this term can be evaluated as

gi = P

(
U i − xi

aIM
ii ∆t

, ti

)
, (4.69)

which corresponds to the L2 projection of our definition of Gi, i.e. gi = P (Gi, t)

However, do due the properties (4.52-4.53) it can be appreciated that using Gi in

steps (A2.1), (A2.6) and (A2.7) is equivalent to the use of gi, thereby keeping the

number of global system inverses per stage to one.

Comparing this PDE time-stepping algorithm with the original ODE algorithm

(Algorithm 1), one can identify the following differences:

• While step (A1.2) of the original algorithm essentially is a pure algebraic

problem (that is, for schemes with an implicit component), step (A2.2) also as

an broader analytical interpretation in the sense that it is the solution of the

elliptic Helmholtz partial differential equation.

• It has been indicated before that for purely explicit time-stepping methods

(i.e. aIM
II = 0), the evaluation of step (A1.1) actually vanishes as it is reduced

to Y i = xi. However, in the new algorithm, step (A2.2) now also requires a

global system inverse, as the Helmholtz problem is reduced to the projection

problem for explicit schemes.

• In addition, step (A2.6) of the new algorithm also requires a L2 projection.

This is necessary to ensure that the solution is in the solution space, as the

right-hand-side cannot be guaranteed to be in this space. Note that this

requires an additional global system inverse.

• In order to possibly eliminate the cost associated to this additional global

system inverse in step (A2.6), we have included an optimisation check in step

(A2.5). In case the last row of coefficient matrices A and U is equal to the

first row of respectively the matrices B and V , the last stage U s is equal

to the new solution un and the (expensive) evaluation of step (A2.6) can be
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omitted. Fortunately, all multi-step schemes – and many more methods as can

be seen from the GLM tableau’s (4.10,4.12,4.13,4.20) – can be formulated to

satisfy this condition. As a result, evaluating any linear multi-step method for

a single time-step based upon the proposed algorithm only requires a single

global system inverse.

In order to evaluate this PDE time-stepping algorithm for an arbitrary general linear

method, the user should supply the framework with the following three external

routines:

• a routine that evaluates the advection term f(u, t) according to the spatial

discretisation scheme at the quadrature/collocation points (in order to evaluate

step (A.2.3)),

• a routine which solves the projection problem of Section 4.3.3.1 (in order to

evaluate step (A.2.2) in case aIM
ii = 0 and step (A.2.6)), and

• a routine that solves the Helmholtz equation of Section 4.3.3.1 (in order to

evaluate step (A.2.2) in case aIM
ii 6= 0 ).

Recall that all three routines should be defined in physical space, i.e. both input

and output arrays correspond to functions evaluated at the quadrature/collocation

points.

Remark 1 Although the framework has been derived by means of the advection-

diffusion equation, it is also applicable for other PDEs as well (see also Section

4.4). The advection term f(u) could in principle also represent a possible reaction

term, while the diffusion term ∇2u could be replaced by a more general term g(u) to

be treated implicitly. In the latter case, the user should supply the framework with a

routine that solves the PDE u− λg(u) = f rather than the Helmholtz equation.

Remark 2 Because the algorithm is formulated in physical space, the proposed

framework is applicable independently of the choice of spatial discretisation tech-

nique. E.g. it can be verified that the algorithm is also valid in case of a Discontin-

uous Galerkin discretisation (see also Section 4.4).
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4.3.3.4 Object-oriented implementation

The class structure presented in Section 4.2.2 that implements the ODE framework

can be slightly modified in order to accommodate this PDE time-stepping frame-

work. An overview of the required classes is shown in Figure 4.2. The underlying

idea remains identical and only the class TimeIntegrationOperators should be al-

tered to take into account the projection operator. Therefore, this class should now

be equipped with an additional function pointer m_project that points to the imple-

mentation of the L2 projection operator, i.e. Eq. (4.42). In order to set and evaluate

this function pointer, the class now also contains the methods DefineProject and

DoProject.

m inputTimeLevels
DefineExplicitEvaluate

DoImplicitSolve

DoProject

DefineImplicitSolve

DefineProject

DoExplicitEvaluate

data members

class

data members

methods

GetSolution

class
TimeIntegrationSolution

m explicitEvaluate

TimeIntegrationOperators

m solutionvector

m implicitSolve

m project

data members

m A

m B

class
TimeIntegrationScheme

methods

m U

m V

InitializeScheme

TimeIntegrate

methods

Figure 4.2: Overview of the classes in the implementation of the generic

PDE time-stepping framework.

4.4 Computational Examples

In this section we present examples demonstrating the capabilities of the PDE time-

stepping framework presented in the previous section. First we verify the algorithm

by considering an advection-diffusion problem and then we apply the framework to

two fluid problems: standing waves in shallow water and vortex shedding around a

cylinder. In all our examples we use the spectral/hp element method for the spa-

tial discretisation. If not mentioned otherwise, we use the standard C0-continuous

Galerkin version in the following.
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4.4.1 Linear advection-diffusion equation

As a first example, we investigate the popular linear advection-diffusion problem

of a Gaussian hill convected with a velocity V while spreading isotropically with a

diffusivity ν (Donea, Giuliani, Laval, & Quartapelle 1984; Noye & Tan 1989). The

analytical solution is given by

u(x, t) =
1

4t+ 1
exp

(
−
(
x− x0 − Vxt

ν(4t+ 1)

)
−
(
y − y0 − Vyt

ν(4t+ 1)

))
. (4.70)

The problem is discretised in space on an unstructured triangular mesh of 84 ele-

ments and using a 12th-order spectral/hp element expansion. The Gaussian hill is

initially located a x0 = [0.5 , 0.5] and is convected with a velocity V = [1 , 1] for one

time unit and the diffusivity is set to ν = 0.05. Time-dependent Dirichlet boundary

conditions given by the analytical solution are imposed on the domain boundaries.

We have applied the time-stepping framework on this equation using two dif-

ferent time-stepping schemes: the 2nd- and the 3rd-order IMEX-DIRK scheme as

respectively presented in (Ascher, Ruuth, & Wetton 1995; Ascher, Ruuth, & Spiteri

1997), see also Eq. (4.22). Therefore, we have supplied the framework with the

three necessary routines as explained in Section 4.3.3.3, i.e. a function that eval-

uates the linear advection term, a projection operator and a Helmholtz solver. In

order to verify that the framework integrates the PDE correctly, we have checked

the order of convergence in function of the time-step ∆t for both the IMEX schemes.

Considering Fig. 4.3, it can be observed that the L2 error converges according to

the expected rate when using the framework.

4.4.2 Shallow water equations

The shallow water equations (SWE) are frequently used for simulating flows in

shallow coastal regions and rivers, for example storm surges, tsunamis and river

flooding. The SWE can be formulated as

∂u

∂t
+ ∇ · F (u) = 0. (4.71)

For an appropriate definition of the flux term F the reader is referred to (Eskilsson

& Sherwin 2004). Due to their hyperbolic nature, explicit methods are typically
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Figure 4.3: Error convergence in function of ∆t for the 2nd- and the 3rd-

order IMEX-DIRK scheme when using the PDE time-stepping

framework of Section 4.3.3.

employed for time-stepping the SWE. As a result, the user should only provide a

proper implementation of the term ∇ · F (u) together with a projection method in

order to use the framework.

The objective of this example is twofold:

• We would like to demonstrate that the framework can be applied with different

spatial discretisation techniques. Therefore, we solve the SWE using both the

discontinuous Galerkin (DG) method and the C0 continuous Galerkin (CG)

method. Note that in the former case, the user-supplied function that evaluates

the flux term should include the numerical flux term typical to the DG method.

• We also want to compare the computational efficiency of the framework.

Therefore, we will compare the run-time of solving the SWE using the frame-

work with a specialised implementation of the chosen time-stepping schemes.

Within the DG community the third-order three-stage Strong-Stability-Preserving

(SSP) RK scheme proposed by (Shu 1987) has emerged as the standard time-

stepping scheme for the SWE. We will therefore select this time-stepping scheme

together with the third-order four-stage SSP-RK scheme (Ruuth & Spiteri 2004) for

the SWE test-case.

We compute the simple case of two super-positioned standing linear waves (one

wave aligned in the x1 direction and wave aligned in the x2 direction) in a basin
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of constant depth with slip conditions at the wall boundaries. For the DG method

the boundary conditions are implemented weakly through the use of the numerical

flux using standard mirroring technique, while for the CG method we apply u = 0,

∂v/∂n = 0, ∂ζ/∂n = 0 at the north/south boundaries and ∂u/∂n = 0, v = 0,

∂ζ/∂n = 0 at the east/west boundaries, respectively.

We are using a 3rd-order spectral/hp element method on a mesh of 16 quadri-

lateral element and we solve the problem for t ∈ [0 , 100T ] wave where T denotes

the wave period. Table 4.1 present the required time step, the measured run-time

and memory usage (based upon the heap profiler Massif of Valgrind’s tool suite) for

obtaining an error less than 1×10−4. First of all, it can be concluded that the frame-

work has been successfully applied for both the spatial discretisation techniques. We

can also see from Table 4.1 that the run-time overhead of using the framework is only

a couple of percent when compared to the scheme-specific implementations while the

memory usage is equal. As a result, we can conclude that next to the high-level of

generality, the framework also is competitive with scheme-specific implementations

in terms of performance. Finally, even though not the topic of this comparison,

one may observe that the superior dispersion properties of the DG method (see e.g.

(Bernard, Deleersnijder, Legat, & Remacle 2008)) compared to the CG method do

not become apparent, witness the fact that a similar discretisation yields a similar

error. This may be explained by the fact that due to the solution’s low wave-number,

both Galerkin techniques resolve the solution in space up to high accuracy and the

error can mainly be attributed to the temporal discretisation.

4.4.3 Incompressible Navier-Stokes equation

As an illustrative example of the use of the time-integration framework to solve

more complex fluid dynamics problems, we consider a DNS simulation of the two-

dimensional flow past a circular cylinder in a free stream. The incompressible Navier-

Stokes (NS) equations are solved using a spectral/hp element discretisation in space

combined with the high-order stiffly stable splitting scheme of (Karniadakis, Israeli,

& Orszag 1991) for the discretisation in time. In this splitting scheme, each time step
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Table 4.1: The SWE for standing waves. Computational results for obtain-

ing an L2 error less than 1 × 10−4.

DG method CG method

SSP-RK(3.3) SSP-RK(3.4) SSP-RK(3.3) SSP-RK(3.4)

∆t T/88 T/70 T/88 T/70

L2 error 9.76E-05 9.70E-05 9.79E-05 9.73E-05

GLM Run-time 20.9 s 22.0 s 15.6 s 16.6 s

framework Storage 10.1 MB 10.1 MB 5.4 MB 5.4 MB

Specialised Run-time 20.4 s 21.4 s 15.4 s 16.3 s

implementation Storage 10.1 MB 10.1 MB 5.4 MB 5.4 MB

is subdivided into three substeps, and the solution of the discretised Navier-Stokes

equation is advanced from time-step n− 1 to time-step n as follows:

ŭ −∑Ji

q=1 αqu
n−q

∆t
= −

Je−1∑

q=1

βq [(u · ∇) u]n−q , (4.72a)

∇2pn =∇ ·
(

ŭ

∆t

)
, (4.72b)

γ0u
n − ŭ

∆t
=ν∇2un −∇pn. (4.72c)

The splitting scheme decouples the velocity field u from the pressure p, leading to an

explicit treatment of the advection term and an implicit treatment of the pressure

and the diffusion term. Ji is the integration order for the implicit terms and Je is

the integration order for the explicit terms. The values of the coefficients γ0 , αq

and βq of this multi-step IMEX scheme are given in Table 4.2 for different orders.

In order to use the PDE time-stepping framework of Section 4.3, we first formulate

the stiffly stable scheme as a general linear method. For the second-order variant
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Table 4.2: Stiffly stable splitting scheme coefficients.

1st-order 2nd-order 3rd-order

γ0 1 3/2 11/6

α0 1 2 3

α1 0 −1/2 −3/2

α2 0 0 1/3

β0 1 2 3

β1 0 −1 −3

β2 0 0 1

for example, this yields




AIM AEX U

BIM BEX V



 =





2
3

0 4
3

− 1
3

4
3

− 2
3

2
3

0 4
3

− 1
3

4
3

− 2
3

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0





, (4.73)

with

y[n] =





yn

yn−1

∆tF n

∆tF n−1




. (4.74)

where the values in the first two rows have been scaled with γ0 compared to the

values in Table 4.2. Furthermore, we need to properly define the external functions

needed for the time-stepping framework:

• For the explicit term, this should be a function f that evaluates the advection

term, i.e.

f (u) = − (u · ∇) u. (4.75)

Because we will follow a pseudo-spectral approach for the advection term, this

term should simply be evaluated at the quadrature/collocation points.
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• The projection operator to be provided to the system is identical to the one

defined in Section 4.3.3.1.

• For the implicit part of the scheme, a routine that solves the following problem

is required. Given an arbitrary function f , a scalar λ and a time-level t, find

the velocity field u such that

∇2p =∇ · (f
λ

), (4.76a)

u − νλ∇2u =f − λ∇p, (4.76b)

and subject to the appropriate boundary conditions. It can be observed that

this problem involves the consecutive solution of three elliptic problems: a

Poisson problem and two (in 2D) scalar Helmholtz problems. This routine

can also be used to solve the unsteady Stokes equations.

Figure 4.4(b) shows the vorticity field of a flow past a cylinder with a Re = 100

after solving the NS equations with the framework presented in Section 4.3. The

solution, which highlights the vortex shedding, has been obtained using the 3rd-order

stiffly stable splitting scheme with ∆t = 0.0001 and 7th-order spectral/hp expansion

on a mesh of 1500 quadrilaterals as shown in 4.4(a). The cylinder has a diameter

D = 0.4 and the domain is defined by a rectangle x ∈ [−4 , 16] × [−5 , 5] as shown

in Figure 4.4. Boundary conditions are of Dirichlet type at the inflow, where a

constant velocity in x-direction is imposed (u = 1 and v = 0) and of Neumann type

(homogeneous) at the outflow and on the upper and lower domain limits. Similar

results have been obtained by different authors with other techniques, e.g. (Song &

Yuan 1990; Souza Carmo 2009).
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(a) Computational mesh

x

y

0 5 10 15

-4

-2

0

2

4

Z Vorticity: -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

(b) Vorticity field

Figure 4.4: Flow past a circular cylinder at Re = 100.
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Chapter 5

Evaluation of Spectral/hp Element

Operators

We have seen in Section 2.1, that when following a standard Galerkin procedure,

the weak form of a partial differential equations often comprise terms of the form

a(v, u), (5.1)

where a(·, ·) is a bi-linear form and u and v are functions respectively belonging to

a suitably chosen trial space U and test space V. After discretising both u and v

using (2.54), this yields expressions of the form

ŷg
i :=

∑

j∈N g

a(Φi,Φj)û
g
j , (5.2)

which should typically be evaluated for all i ∈ N g. Using the matrix associated to

this bi-linear form, this finite element operation can be written as

ŷg = Aûg, (5.3)

where A[i][j] = a(Φi,Φj).

The goal of this chapter is to analyse how the operators of type (5.2) or (5.3) can

be efficiently evaluated for both low- and high-order expansions. As a result, the

focus is not on the matrix A itself, but merely on the action of A. We seek for the

most efficient way of mapping the vector ûg to the vector ŷg, without necessarily

building A explicitly.
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The action of finite element operators is required in various scenarios. Examples

include:

• iterative solution techniques, which are founded on the forward operation of

the matrix to be inverted,

• explicit time-stepping methods, which require an operator evaluation to com-

pute the right-hand-side term of the semi-discrete system (see also Chapter

4), and

• the strong enforcement of non-homogeneous (essential) Dirichlet boundary

conditions (see also Chapter 4 and Section 7.1).

5.1 Evaluation strategies

In this section, we discuss three different strategies to evaluate expressions of the

form (5.2). The first two strategies – referred to as the sum-factorisation technique

and the local matrix approach – have in common that they both exploit the ele-

mental decomposition of the spectral/hp element method. The contribution of each

element is computed separately, where after the different contributions are assem-

bled together using the direct stiffness summation technique as explained in Section

2.3. Both these approaches then evaluate (5.2) in the following three steps:

1. global-to-local mapping: ûl = Aûg, (5.4)

2. elemental evaluation: ŷe
m =

∑

n∈N

ae(φ
e
m, φ

e
n)ûe

n ∀m ∈ N , e ∈ E , (5.5)

3. global assembly: ŷg = A⊤ŷl. (5.6)

The question then becomes: how can the elemental form (5.5) be evaluated effi-

ciently?

The third strategy - using global matrices - differs from both these approaches

in the sense that it is based on the global interpretation of the spectral/hp element

method, rather than on its elemental decomposition.

A graphical representation of the different strategies is shown in Figure 5.1.

The existence of different evaluation strategies has been acknowledged before in
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(Bagheri, Scott, & Zhang 1994; Kirby, Knepley, & Scott 2004). In the present work,

we will elaborate on a detailed cost analysis both from a theoretical (Section 5.2)

as computational (Section 5.3) point of view, and we particularly emphasise on the

difference in results depending on the expansion order.

=

A

A
T

elemental decomposition

global assembly

(a) global matrix approach

AA
T

=

(b) local matrix approach

AA
T

=

=

=

=

=

=

(c) sum-factorisation approach

Figure 5.1: A graphical representation of the different implementation

strategies for evaluating a spectral/hp operator.

5.1.1 The sum-factorisation approach

To introduce the sum-factorisation technique, consider the example of the mass

matrix operator. The elemental bi-linear form appearing in (5.5) is then defined as

ae(φm, φn) =

∫

Ωe

φm(x)φn(x)dx. (5.7)

Making use of the coordinate transformation (2.12), this can be expressed as an

integral over the reference domain Ωst

ae(φm, φn) =

∫

Ωst

φm(ξ)φn(ξ)|J(ξ)|dξ, (5.8)

where J is the Jacobian of the transformation.

The sum-factorisation technique is based upon two concepts: numerical quadra-

ture and the use of tensorial basis functions.
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5.1.1.1 Evaluation using numerical quadrature

Assume a quadrature rule of order Q to evaluate the integral

∫

Ωst

f(ξ)dξ =
∑

r∈Q

f(ξr)ωr. (5.9)

Inserting (5.9) and (5.8) into (5.5) leads to the following expression to be evaluated

ŷm =
∑

n∈N

∑

r∈Q

ωrφm(ξr)φn(ξr)|J(ξr)|ûn, ∀m ∈ N , (5.10)

where for clarity, we have omitted the index e. After rearranging, this yields

ŷm =
∑

r∈Q

φm(ξr)ωr|J(ξr)|
{
∑

n∈N

φn(ξr)ûn

}
, ∀m ∈ N . (5.11)

In matrix notation this simplifies to

ŷ = B⊤WBû, (5.12)

where B[i][j] = φj(ξi) is the discrete representation of the expansion basis and W

is the diagonal matrix with entries W [i][i] = ωi|J(ξi)| as defined in Section 2.2.4.

It can be appreciated that the mass matrix operator can now be evaluated in two

separate steps: a backward transformation u = Bû which evaluates the spectral/hp

expansion at the quadrature points, and the inner product operator ŷ = B⊤Wu

which subsequently takes the inner product of the function u with respect to all

elemental expansion modes.

Remark 3 Despite the typical formulation (5.12) in matrix notation, the numerical

quadrature approach can be classified as a matrix-free approach. It is matrix-free in

the sense that evaluation of the operator is not dependent on the construction of the

matrix associated to the bi-linear form.

5.1.1.2 Sum-factorisation for quadrilateral expansions

If both the spectral/hp expansion basis and the numerical quadrature rule exhibit a

tensor-product structure, the backward transformation as well as the inner product
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can be factorised using the sum-factorisation technique. Consider the backward

transformation u = Bû for a quadrilateral element, defined as

u(ξr) =
∑

n∈N

φn(ξr)ûn ∀r ∈ Q. (5.13)

Acknowledging the tensorial nature of both the expansion and quadrature rule, this

yields

u(ξ1s, ξ2t) =
P∑

p=0

P∑

q=0

ψa
p(ξ1s)ψ

a
q (ξ2t)ûpq

=

P∑

q=0

ψa
q (ξ2t)

{
P∑

p=0

ψa
p(ξ1s)ûpq

}
, ∀s, t ∈ {0, . . . , Q− 1}, (5.14)

where we have factored the term ψa
q (ξ2t) out of the second summation. In matrix

notation, this is equivalent to:

u = Bû = (Ba
2 ⊗ Ba

1) û = (Ba
2 ⊗ IQ)

{
(IP+1 ⊗ Ba

1) û
}
, (5.15)

where Ba
m[i][j] = ψa

j (ξi) represents the one-dimensional basis in direction m, IQ is

the identity matrix of size Q × Q and ⊗ is the Kronecker product. Note that the

relation B = Ba
2⊗Ba

1 reflects the tensorial structure of the expansion. Consequently,

the backward transformation can then be evaluated in two separate steps:

A first step to compute the temporary variable v = (IP+1 ⊗ Ba) û:

vq(ξ2s) =

P∑

p=0

ψa
p(ξ1s)ûpq ∀q, s , (5.16)

followed by the evaluation of u = (Ba ⊗ IQ)v:

u(ξ1s, ξ2t) =

P∑

q=0

ψa
q (ξ2t)vq(ξ2s) ∀s, t . (5.17)

Furthermore, if we respectively consider û and u as the column-major vectorisation

of the matrices Û and U , the notation can be further simplified to (Deville, Fischer,

& Mund 2002)

U = Ba
1ÛBa⊤

2 . (5.18)

As a result, both sub-steps (5.16) and (5.17) can effectively be evaluated as the

matrix-matrix multiplications V = Ba
1Û and U = V̂ Ba⊤

2 respectively. However,

100



note that this does require a lexicographical ordering of the two-dimensional expan-

sion modes ûn(p,q) with the p index running fastest as indicated in Section 2.2.4. Also

the vector ur(s,t) should follow a similar ordering along the first coordinate direction.

Analogously, the inner product operator ŷ = B⊤Wu can be factorised as

Ŷ = Ba⊤
1 w(U)Ba

2, (5.19)

where the function w multiplies each entry U [i][j] = u(ξ1i, ξ2j) with the correspond-

ing quadrature metric ωi,j|J(ξ1i, ξ2j)|. Consequently we can conclude that when

adopting the sum-factorisation approach, the mass matrix operator can be evalu-

ated as:

Ŷ = Ba⊤w
(
BaÛBa⊤

)
Ba. (5.20)

This notation helps to appreciate that from an implementational point of view, this

corresponds to a series of matrix-matrix products.

Remark 4 The use of numerical quadrature is not a necessary prerequisite for the

application of the sum-factorisation technique. The evaluation of the elemental mass

matrix operator can also be factorised as

ŷm(p′,q′) = |J |
P∑

p=0

∫ 1

−1

ψa
p(ξ1)ψ

a
p′(ξ1)dξ1

{
P∑

q=0

∫ 1

−1

ψa
q (ξ2)ψ

a
q′(ξ2)dξ2

}
ûn ∀p′, q′,

(5.21)

or equivalently,

ŷ = |J | (Ma ⊗ Ma) û, (5.22)

where Ma is the mass matrix associated with the one-dimensional reference element.

However, this approach implies that |J | is a constant, which cannot be generally

assumed. That is why in this work, the sum-factorisation technique will always be

combined with the use of numerical quadrature.

5.1.1.3 Sum-factorisation for triangular expansions

For triangular elements, the use of a generalised tensor product expansion, makes the

sum-factorisation technique more complicated. While in Eq. (5.14), both the terms
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could be equally well being factorised out of the inner summation the backward

transformation for triangles can only be factored as:

u(ξ1s, ξ2t) =
P∑

p=0

f(p)∑

q=0

ψa
p(ξ1s)ψ

b
pq(ξ2t)ûpq =

P∑

p=0

ψa
p(ξ1s)






f(p)∑

q=0

ψb
pq(ξ2t)ûpq




 ∀s, t.

(5.23)

In addition, both the summation bound f(p) as the term ψb
pq of the inner summation

now also depends on the index p, which prohibits a formulation similar to (5.15).

Instead, the expression above can be written as

u = (Ba
1 ⊗ IQ)Bbû (5.24)

where Bb is the block-diagonal concatenation of the matrices Bb
p (p = 0, . . . , P )

which are defined as Bb
p[i][j] = ψb

pi(ξ2j). As opposed to the quadrilateral case,

this requires an ordering of the modes ûn(p,q) where q is running fastest. It can be

appreciated that the first sub-step Bbû cannot be implemented as a matrix-matrix

product. Consequently, the implementation of (5.24) consist of P + 1 matrix-vector

multiplications to evaluate v = Bbû, followed by a matrix-matrix multiplication

to evaluate u = (Ba
1 ⊗ IQ)v as U = Ba

1V
⊤ (In this last step we have chosen

U = Ba
1V

⊤ over U = V Ba⊤
1 in order to ensure an ordering of ur(i,j) with the index

i running fastest).

The inner product and mass matrix operators for triangular expansions can be

factorised in a similar way. This is discussed in more detail in Appendix A.

5.1.2 The local matrix approach

The second elemental evaluation strategy is the local matrix approach. In this ap-

proach, the bi-linear form (5.5) is evaluated using the matrix associated with it. The

evaluation of the elemental mass matrix operator then reduces to the matrix-vector

multiplication

ŷ = M eû, (5.25)

where M e[i][j] =
∫
Ωe
φe

iφ
e
jdΩe is the elemental mass matrix. For the scope of this

work, we do not consider the construction of the mass matrix to be part of the
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evaluation. We will assume that M e has been precomputed (e.g. by means of

(5.12) or (5.20)) and is readily available to evaluate (5.25).

5.1.3 The global matrix approach

As opposed to both the previous evaluation strategies, the global matrix approach

acts directly upon the global bi-linear form (5.2). For the mass matrix operator, this

form is then evaluated using the global mass matrix M as

ŷg = Mûg, (5.26)

where M [i][j] =
∫
Ω

ΦiΦjdΩ. The finite element method typically leads to global

matrices which are very sparse. For efficient storage and manipulation of sparse ma-

trices, different formats only storing the non-zero entries of M have been proposed.

Again, we assume that the global matrix M has been precomputed (e.g. through

the global assembly procedure (2.61)) such that the global matrix evaluation only

consist of the (sparse) matrix-vector multiplication.

5.2 Theoretical cost estimates based on operation

count

In order to assess the efficiency of the different strategies, we will first analyse the

operation count associated to each approach by investigating how many floating

point operations each evaluation strategy requires.

5.2.1 Sum-factorisation versus local matrices

When comparing both the elemental strategies for evaluating the quadrilateral

mass matrix, it can be observed that the factorised evaluation replaces the matrix-

vector multiplication (5.25) by a series of matrix-matrix multiplications, i.e. Eq.

(5.20). However, while in the local matrix approach the single matrix M e is of

size O(P 2) × O(P 2), the matrices Ba
m in the sum-factorisation approach are only

of size O(P ) × O(P ). This can also be explained as follows: the elemental mass
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matrix M e truly is a two-dimensional operator while on the other hand, the sum-

factorisation technique exploits the tensorial nature of expansion by applying the

one-dimensional operators Ba
m along all the lines of constant ξn. As a result, the

local matrix approach requires O(P 4) floating point operations to evaluate while

the factorised evaluation only involves O(P 3) operations per matrix-matrix mul-

tiplication. This effectively is the strength of the sum-factorisation approach: it

replaces an O(P 4) operation by multiple O(P 3) operations. This ensures a substan-

tial performance benefit for the limit P → ∞. However for low-order expansions

the coefficients of the leading order terms in the operation count do play an im-

portant role such that an exact operation count is required to assess whether the

sum-factorisation technique truly reduces the number of floating point operations.

A complete operation count analysis for four different finite element operators can

be found back in Appendix A, and the results are summarised in Table 5.1 and Fig-

ures 5.2 and 5.3. From these data, it appears that for the backward transformation

and the inner product operator – which for the factorised evaluation only involve

two matrix-matrix multiplications – the sum-factorisation technique is always more

efficient, except for the linear finite element case (P = 1) on triangular elements.

However, for more complex operators such as the mass matrix operator or the weak

Helmholtz operator defined as

ae(φn, φm) =

∫

Ωe

φn(x)φm(x) + λ∇φn(x) · ∇φm(x)dx, (5.27)

the factorised evaluation respectively requires four and eight matrix-matrix multipli-

cations. Consequently, the sum-factorisation technique only becomes more efficient

from respectively P = 5 and P = 10 in the quadrilateral case. For triangular ex-

pansions, the break-even point may even be as high as P = 27 for the Helmholtz

operator.

From the same data, it can also be observed for all operators that the sum-

factorisation technique leads to a smaller reduction for triangular than for quadri-

lateral elements, both in terms of the break-even point as the reduction factor. This

reduced effectiveness can be attributed to the triangular tensorial expansion not

being constructed as a full tensor product.
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sum-factorisation local matrix break-even

Quad

bwd transf 4P 3 + 18P 2 + 26P + 12 2P 4 + 12P 3 + 26P 2 + 24P + 8 P = 1

inner product 4P 3 + 19P 2 + 30P + 16 2P 4 + 12P 3 + 26P 2 + 24P + 8 P = 1

mass matrix 8P 3 + 37P 2 + 56P + 28 2P 4 + 8P 3 + 12P 2 + 8P + 2 P = 5

Helmholtz 16P 3 + 93P 2 + 184P + 124 2P 4 + 8P 3 + 12P 2 + 8P + 2 P = 10

Tri

bwd transf 3P 3 + 12P 2 + 17P + 8 P 4 + 6P 3 + 13P 2 + 12P + 4 P = 2

inner product 3P 3 + 13P 2 + 20P + 10 P 4 + 6P 3 + 13P 2 + 12P + 4 P = 2

mass matrix 6P 3 + 25P 2 + 37P + 18 0.5P 4 + 3P 3 + 6.5P 2 + 6P + 2 P = 11

Helmholtz 14P 3 + 69P 2 + 113P + 58 0.5P 4 + 3P 3 + 6.5P 2 + 6P + 2 P = 27

Table 5.1: Theoretical operation count (floating point multiplications and

additions) for the elemental evaluation strategies.

Since Orszag’s work (Orszag 1980) in 1980, the sum-factorisation technique has

always been considered the key to the efficient implementation of global spectral

methods (where a polynomial order P = 100 is deemed normal). However, the

analysis in this section indicates that this cannot be considered as generally valid

for the spectral element method in our chosen operational regime of 1 ≤ P ≤ 15.

The results show that sum-factorisation does not necessarily lead to a reduction in

floating point operations, especially when evaluating complex operators for low-order

expansions.

5.2.2 Global matrices versus local matrices

5.2.2.1 Quadrilateral expansions

For a multi-elemental spectral/hp expansion, it can be understood from the previous

section and Appendix A that the local matrix evaluation will require 2|E|(P + 1)4

floating point operations. On the other hand when adopting the global matrix

strategy together with a sparse storage format to store M , the operation count will

scale like nnz, where nnz is the number of non-zero entries in M . An entry M [i][j]

is typically non-zero if the global basis function Φi and Φj are coupled, i.e. they have

overlapping support. Estimates for the operation count are derived in Appendix A.5

and the results are shown in Table 5.2 and Figure 5.2.

The global matrix evaluation appears to be attractive in particular for low-order

elements. In case P = 1 every global mode of a structured quadrilateral mesh
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local matrix global matrix lim|E|→∞
GlobMat
LocMat

Quad
DOFs |E|(P + 1)2

`

|E1d|P + 1
´2

“

1 − 1
P+1

”2

operation count 2|E|(P + 1)4 2
`

|E1d|P (P + 2) + 1
´2

“

1 − 1
(P+1)2

”2

Tri
DOFs 1

2
|E|(P + 1)(P + 2) 1

2
|E|P 2 P2

(P+1)(P+2)

operation count 2|E|
`

1
2
(P + 1)(P + 2)

´2
2|E| 1

4

`

P 4 + 6P 3 + 7P 2
´

P4+6P3+7P2

((P+1)(P+2))2

Table 5.2: Operation count estimates of the local matrix and global ma-

trix approach to evaluate a global bi-linear form on a structured

quadrilateral mesh (|E1d|× |E1d| = |E| elements) and an unstruc-

tured triangular mesh (|E| elements).

is coupled to its nine neighbouring global modes (including itself), leading to nine

multiply-add pairs per global DOF. However, every global mode corresponds to four

local modes which each are coupled to the four linear elemental modes. As a result,

the local matrix evaluation then requires 4 × 4 = 16 multiply-add pairs per global

DOF. This implies that for P = 1 using global matrices only requires a fraction

9/16 = 0.5625 of the floating point operations needed for the local matrix approach

(assuming a sufficient mesh size).

When increasing P, relatively more interior modes than edge modes will be added

to each element. As there exist a one-to-one mapping between elemental interior

modes and global expansion modes, the effect of the multiplicity of the elemental

boundary modes will decrease. As a results, when neglecting the cost of assembly

of the local matrix approach, the complexity of the global matrix evaluation will

asymptotically approach to the complexity of the local matrix evaluation for P → ∞.

This can also be observed in Figure 5.2.

5.2.2.2 Triangular expansions

For unstructured triangular meshes, it is more difficult to estimate the non-zero

entries of the global matrix M as it depends on the distribution of the triangles

within the mesh. Estimates have been made in (Bagheri, Scott, & Zhang 1994) and

the results are presented in Table 5.2 and depicted in Figure 5.3. A similar trend as

for structured quadrilateral meshes can be observed, but the advantage of the global

matrix approach is even greater in the triangular case. This can be explained by
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the larger boundary modes to interior modes ratio for triangles, resulting in greater

dominance of the multiplicity of global DOFs.

Remark 5 Although the Helmholtz and mass matrix operators share an identical

operation count for both the local and global matrix approach, their results differ

from the backward transformation and inner product operators. This is because

one dimension of the backward transformation and inner product is in terms of the

quadrature points, which are not being assembled. The global matrix evaluation then

only benefits from assembly in one direction. However, it appears that this assembly

does not lead to a reduction in non-zero entries such that the local matrix approach

and global matrix operation have similar operation counts for these operators. On

the other hand, the assembly does decrease the rank of the operator.

5.2.3 Optimal strategy

Based upon the operation count estimates summarised in Figures 5.2 and 5.3, one

may conclude that for low-order expansions the global matrix evaluation strategy

is superior, while for high-order expansions, the sum-factorisation technique is pre-

ferred.

5.3 Computational cost based on run-time

The previous section indicates that the application of different evaluation strategies

depending on P leads to a reduction in operation count. Here, we analyse whether

this reduction in operation count leads to more efficient algorithms by directly com-

paring the resulting run-time. This may not be guaranteed as the efficiency of a

certain implementation is not only quantified by the number of floating point op-

erations. Various other factors such as the number of memory references, memory

access time, caching effects, data structures and chip architecture do play an impor-

tant role as well. Furthermore the role of possibly optimised linear algebra packages

such as BLAS (Dongarra, Du Croz, Hammarling, Hanson, & Duff 1988) should not

be forgotten. As it is a cumbersome, if not impossible, task to estimate the cost of
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Figure 5.2: Operation count results (scaled by the local matrix evalua-

tion operation count) of the different evaluation strategies for a

structured quadrilateral mesh. The boxes with encircled tags S

(sum-factorisation), L (local matrix) or G (global matrix) indi-

cate the optimal strategy for the corresponding range of P .

108



P

C

C
L

o
c
M

a
t

Sum-factorisation

Local Matrix

Global Matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

2

mS
mL

m
G

(a) backward transformation

P

C

C
L

o
c
M

a
t

Sum-factorisation

Local Matrix

Global Matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

2

mSmL

m
G

(b) inner product operator

P

C

C
L

o
c
M

a
t

Sum-factorisation

Local Matrix

Global Matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

mS

mG

(c) mass matrix operator

P

C

C
L

o
c
M

a
t

Sum-factorisation

Local Matrix

Global Matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

14

16

mG

(d) Helmholtz operator

Figure 5.3: Operation count results (scaled by the local matrix evaluation

operation count) of the different evaluation strategies for an un-

structured triangular mesh. The boxes with encircled tags S

(sum-factorisation), L (local matrix) or G (global matrix) indi-

cate the optimal strategy for the corresponding range of P .
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these separate parameters, the efficiency of the different strategies will be assessed

by comparing the total computational cost (quantified by the actual run-time) of

the different strategies.
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Figure 5.4: Computational cost (i.e. run-time scaled by the local matrix

evaluation run-time) of the different evaluation strategies for

a structured quadrilateral mesh of 1000 elements. The boxes

with encircled tags S (sum-factorisation), L (local matrix) or

G (global matrix) indicate the optimal strategy for the corre-

sponding range of P .

The results are summarised in Figures 5.4 and 5.5. We will now compare these

results with Figures 5.2 and 5.3 respectively leading to the following two important

observations:

• The performance benefit of the sum-factorisation technique is reduced, shifting

the break-even point between the elemental approaches to the right in favour of
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(c) mass matrix operator
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(d) Helmholtz operator

Figure 5.5: Computational cost (i.e. run-time scaled by the local matrix

evaluation run-time) of the different evaluation strategies for

an unstructured triangular mesh of 1032 elements. The boxes

with encircled tags S (sum-factorisation), L (local matrix) or

G (global matrix) indicate the optimal strategy for the corre-

sponding range of P .
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the local matrix approach. This can probably be explained by the fact that the

sum-factorisation technique requires temporary storage, which induces some

additional cost from a computational point of view.

• Although the global matrix technique is still preferable for low-orders, it

rapidly becomes excessively expensive for higher-orders. This is most likely

due to the inability to exploit the locality of the data which cancels the reduc-

tion in operation count.

Both these factors contribute to the rise of an intermediate regime between low- and

high-order expansions, where the local matrix approach now is the optimal strategy.

This is clearly visible in both Figure 5.4 and Figure 5.5

All tests presented in this section were run on an Intel MacBook Pro (2.33 GHz

dual core processor, 2GB RAM) and the performance tests were based upon the

implementation of the different strategies within the Nektar++ framework. The

computational kernel for the sum-factorisation technique and local matrix approach

was based upon the reference implementation of the BLAS routines dgemm and dgemv

respectively (Dongarra, Du Croz, Hammarling, Hanson, & Duff 1988). The global

matrix evaluation was implemented using the dcsrmm routine of the NIST sparse

BLAS library (Remington & Pozo 1996). Validation tests were run on machines with

different specifications, and although the results may differ slightly in terms of the

break even points, the general trends and principles observed have been confirmed.

5.4 Lessons learned

In order to efficiently implement the spectral/hp element method for a broad range

of polynomial orders, one should distinguish three different regimes:

• a low-order regime where the global matrix approach is most efficient,

• an intermediate-order regime where the local matrix approach is most efficient,

and

• a high-order regime where the sum-factorisation approach is most efficient.
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Note that efficiency is defined here in a computational sense, i.e. minimizing the

actual run-time. Remember that we have assumed the use of tensorial expansion

bases in the analysis. For non-tensorial expansions such as the nodal triangular spec-

tral/hp expansions (Hesthaven & Warburton 2008), only the first two regimes will

be applicable as the sum-factorisation technique cannot be applied. Consequently,

non-tensorial expansion will not benefit from the observed performance gain due to

the sum-factorisation technique in case of high-order expansions.

It can be observed that selecting a non-optimal evaluation strategy can lead

to very inefficient code. When for example evaluating the Helmholtz operator for a

4th-order triangular spectral/hp expansion, applying the sum-factorisation technique

rather than the global matrix approach will increase the run-time by a factor 15.

For a linear expansion, this factor has even been observed to be as high as 150.

The break-even points between the different regimes will in general depend on:

• the operator to be evaluated,

• the shape of the element (quadrilateral versus triangle), and

• the computer on which the code is run.

Although the theoretical operation count may have given an indication of these

regimes, the results in Section 5.3 show the importance of performance tests to

determine the computer-specific break-even points, especially when operating in the

intermediate regime between low-order and high-order. For example, based upon

operation count, Figure 5.2(c) would suggest that sum-factorisation is the optimal

technique to evaluate the mass matrix for a 5th-order expansion. However, Figure

5.4(c) shows that the application of the local matrix approach leads to a reduction in

run-time with a factor 1/3. This also supports the idea of a self-tuning library (such

as the ATLAS (Whaley, Petitet, & Dongarra 2001) implementation of BLAS): in

order to obtain optimal performance, a set of tests should be run during installation

in order to determine the machine-specific break-even points.
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Chapter 6

Multi-level Static Condensation

As outlined in Section 1.1, an important step in the solution process of the advection-

diffusion equation consists of solving the linear system due to the implicit treatment

of the elliptic diffusion operator. In this chapter, we will focus on different direct

solution strategies of such linear systems, with a special emphasis on the static

condensation technique and substructuring. These techniques may be applied to

any general non-symmetric matrix system, but we will here introduce the different

concepts through the example of the Helmholtz matrix.

6.1 Static condensation

Assume we have to solve a linear system of the form

Hu = f , (6.1)

where u = ûg is the vector of unknown global coefficients (for simplicity, we will omit

the circumflex to denote a vector of coefficients in this chapter) and H is the global

Helmholtz matrix. Like most system matrices due to a finite element discretisation,

H is typically very sparse, but it may have a full bandwidth. It is therefore very

inefficient, if not impossible, to store the full matrix so that it can be directly

inverted. One possibility is to follow an iterative solution technique based upon the

elemental interpretation of the global Helmholtz matrix. Another possibility is to
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use direct solution techniques that exploit the structure of the spectral/hp element

discretisation. In this chapter, we will elaborate on this latter approach.

The static condensation technique is based upon the boundary-interior decom-

position of the spectral/hp expansion basis. If we order the global boundary degrees

of freedom in the vector ûg (that is, those constructed from the local boundary

modes) first, followed by the global interior degrees (that is, an element-by-element

ordering of the elemental interior modes), the vectors u and f can be decomposed

as

u =



 uB

uI



 , f =



 fB

f I



 , (6.2)

where the indices B and I respectively refer to boundary and interior. Then Eq.

(6.1) can be written in its constituents parts as


 HBB HBI

HIB HII







 uB

uI



 =



 fB

f I



 , (6.3)

The foundation of the static condensation technique now lays in the observation

that, due to the chosen ordering of coefficients, the interior-interior matrix HII is

block-diagonal, as can be seen in Fig. 6.1 where the matrix
[

HBB HBI

HIB HII

]
is represented

as
[ Mb Mc

M⊤
c Mi

]
. This arises from the fact that the elemental interior modes are non-

overlapping and are therefore orthogonal at elemental level. As a result, HII can

be inverted elementally, i.e. block-by-block, which is a cheap operation.

In order to apply the static condensation technique, we perform a block elimi-

nation by pre-multiplying Eq. (6.3) with


 I −HBIH
−1
II

0 I



 , (6.4)

to arrive at


 HBB − HBIH
−1
II HIB 0

HIB HII







 uB

uI



 =



 fB − HBIH
−1
II fI

f I



 . (6.5)

The system can now be solved by first solving the first block-row for the boundary

degrees of freedom, followed by solving the second block-row for the interior degrees

of freedom. This essentially comes down to a solution procedure consisting of the

following four steps:
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Figure 6.1: Structure of the global matrix system when the degrees of free-

dom are ordered appropriately in order to apply the static

condensation technique. Courtesy of (Karniadakis & Sherwin

2005).

1. Calculate the modified right hand-side vector gB

gB = fB − HBIH
−1
II f I . (6.6)

2. Solve

SuB = gB, (6.7)

for the boundary degrees of freedom uB, where the matrix S = HBB −
HBIH

−1
II HIB is known as the Schur complement.

3. Calculate the modified right hand-side vector gI

gI = f I − HIBfB. (6.8)

4. Solve

HIIuI = gI , (6.9)

for the interior degrees of freedom uI by evaluating uI = H−1
II gI .

The only four matrices needed in this static condensation solution procedure can be

collected together as 

 S R

HIB H−1
II



 , (6.10)
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where R = HBIH
−1
II . Thus in order to solve Eq. 6.1 we only need to construct and

store this matrix system above (this maybe does not hold for the Schur complement

for which we somehow need the inverse but that will be the subject of the following

sections). Furthermore, it is possible not to work with the global interpretation

of the matrices R and HIB, but only to store and use the respective elemental

equivalents (see also Fig. 6.1)

• Re =
[
He

BI [He
II ]

−1
]
, which is the block-diagonal concatenation of the prod-

uct of the elemental matrices He
BI and [He

II ]
−1, and

• He
IB, which is the block-diagonal concatenation of the elemental matrices

He
IB.

Note that the notation of an underlined matrix refers to the block diagonal extension

of elemental matrices. It can also be appreciated that the global interior-interior

matrix H−1
II is equal to its elemental equivalent [He

II ]
−1 as the global and elemental

interpretations do coincide in this case. The matrix operators R and HIB can then

be evaluated elementally, respectively as

HBIH
−1
II fI = A

⊤
BHe

BIH
−1
II fI , (6.11)

HIBfB = He
IBABfB, (6.12)

where AB and A
⊤
B respectively are the boundary scatter operator (from global

boundary degrees of freedom to local boundary degrees of freedom) and boundary

assembly operator (from local boundary degrees of freedom to global boundary

degrees of freedom).

The fact that three out of four matrices can be stored and evaluated elementally

makes the static condensation technique very effective for the spectral/hp element

technique. As a result, the majority of the storage requirement and computational

effort is needed for the global Schur complement system. This can be further opti-

mised by either using bandwidth minimising techniques such as the Cuthill-McKee

algorithm or by adopting a multi-level static condensation approach. This will be

elaborated in the remainder of this chapter.
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6.2 Multi-level static condensation

Once we have condensed out the elemental interior modes of the spectral/hp expan-

sion, we can apply the same idea of static condensation to the remaining boundary

degrees of freedom in order to solve the Schur complement system. In the field of

structural mechanics, this idea of multi-level static condensation is also known as

substructuring (Smith, Bjorstad, & Gropp 1996). Recently, a few articles have been

published (Elssel & Voss 2008; Gao, Xiaoye, Chao, & Zhaojun 2008; Rachowicz

& Zdunek 2009) that study the concept of substructuring in the context of sparse

eigenproblems. To facilitate the introduction of the multi-level static condensation

technique, consider Fig. 6.2(a) where we have given a graphical interpretation of the

global boundary modes associated to the Schur complement matrix for a structured

quadrilateral mesh of 8 × 8 = 64 elements. In this figure, one can make a distinc-

tion between the boundary vertex modes and the boundary edge modes. We have

omitted the degrees of freedom on the boundary of the domain assuming Dirich-

let boundary conditions (see also Section 6.5) for a detailed discussion of Dirichlet

boundary conditions. Note that for expansion orders of P > 2, there will be more

than one mode on every edge. But because the connectivity pattern of these multi-

ple edge modes is identical, we will always collect them in a single node of the graph

that represents the boundary degrees of freedom and their connectivity.

The idea behind multi-level static condensation is to order the boundary degrees

of freedom such that submatrices appear that are block-diagonal after which the

static condensation technique can be applied on this new level. To accomplish this,

we will have to collect several boundary modes in different patches. The modes that

are interior to such a patch are then orthogonal with respect to the interior modes

of the other patches and the coupling only exists through the degrees of freedom

that form the interfaces between the patches. A patch-by-patch numbering of the

degrees of freedom will then result in the desired block-diagonal structure. Although

such a reordering and division in patches can be intuitively constructed for simple

meshes, we aim for an automated procedure that can be applied to unstructured

and arbitrary meshes. That is why we will use the nested bisection algorithm from
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the Metis (Karypis & Kumar 1998) graph partitioning package. We will later come

back to discuss the advantages of this algorithm, see Section 6.4. This partitioning is

based on the graph representation of the boundary modes. All boundary modes are

nodes in the corresponding graph and their connectivity (two nodes are connected if

their corresponding modes have overlapping support) define the edges of the graph.

As such, the sparsity pattern of the resulting system matrix (i.e. the Helmholtz

matrix in this case) can also be seen as a graphical interpretation of the graph. As

a result, the nested bisection algorithm to partition the graph can be considered as

a reordering of the system matrix (and degrees of freedom). It is also important

to know that the boundary-boundary matrix HBB and the corresponding Schur

complement matrix S share the same graph and, as a result, the same sparsity

pattern (that is, if you neglect any orthogonality that may exist in the elemental

expansion basis).

Starting from the idea of a nested bisection algorithm, the static condensation

technique can be applied in two different ways: following a top-down approach or

following a bottom-up approach. We will investigate both approaches in the sections

below.

6.2.1 Top-down multi-level static condensation

A single step of the bisection algorithm divides the degrees of freedom in two dif-

ferent patches with an interface in between as can be observed in Fig. 6.2(b). It

is customary to consider the (boundary) modes interior to the patch as interior

degrees of freedom and the (boundary) modes on the interface, or separator, as the

boundary degrees of freedom. The first step in the top-down approach is to number

the interface degrees of freedom first, followed by a patch-by-patch numbering of

the interior degrees of freedom. Similar as in Eq. (6.3), the Schur complement out

of Eq. (6.7) can then be decomposed as

S0 =



 A1 B1

C1 D1



 , (6.13)
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(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

(e) Level 4 (f) Level 5

Figure 6.2: The different patches and the corresponding division between

boundary and interior modes for the different levels of the top-

down multi-level static condensation technique. Given is the

example for an 8 × 8 mesh and an expansion order of P = 2.
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where the subscripts 0 and 1 respectively refer to the level. After applying the static

condensation technique on this system, we end up with the following matrices (see

also Eq. (6.10)) needed to solve the Schur complement system associated to S0, i.e.



 S−1
1 R1

C1 D1



 , (6.14)

where the new Schur complement S1 is equal S1 = A1 −B1D
−1
1 C1 to and R1 can

be constructed as R1 = B1D
−1
1 . The sparsity pattern of this matrix system (6.14)

for the example of Fig. 6.2(b) is given in Fig. 6.3(b) where we can clearly observe a

block diagonal structure in the submatrix D1 (consisting of two blocks). Compared

to Eq. (6.10), we have deliberately replaced the Schur complement S1 by its inverse

S−1
1 and D−1

1 by D1. This is because in the multi-level top-down approach, we

will explicitly calculate the inverse of the Schur complement (due to its limited size)

and continue to the next level by applying the static condensation technique to the

diagonal blocks in the matrix D1 (in order to solve systems of the type D1u = f).

Therefore, both patches of the first level will each have to be split again in the

second level. This strategy is displayed in Fig. 6.2 and naturally fits the concept

of the nested bisection algorithm. It also allows for a recursive application of the

static condensation technique to the interior-interior matrices Di. Fig. 6.3 depicts

the sparsity patterns of the corresponding system matrices (6.14) of this top-down

approach up to the maximum level of 5 recursions for the example in question. In

the last level, the matrices D5 can be directly inverted.

6.2.2 Bottom-up multi-level static condensation

As opposed to the previous approach, this approach starts from the bottom of the

nested bisection algorithm. It takes all the patches of the last level of the nested

bisection as the patches of the first level of the multi-level static condensation tech-

nique. This is depicted in Fig. 6.4(b). Again, a distinction can be made between

interior degrees of freedom and boundary degrees of freedom. Note that in this

first step, we have a large number of boundary degrees of freedom compared to the

first step of the top-down approach. Also note that there are much more patches
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(a) Level 0: matrix S0 (b) Level 1

(c) Level 2 (d) Level 3

(e) Level 4 (f) Level 5

Figure 6.3: The sparsity pattern of the matrix systems given by Eq. (6.14)

for the top-down multi-level static condensation technique ap-

plied to the example of Fig. 6.2.
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as compared to the first level of the top-down approach, but that every patch only

has one interior mode (remember that this mode may represent more than one de-

gree of freedom in case P > 2). Introducing an appropriate ordering of the degrees

of freedom where all the boundary degrees of freedom are followed by a patch-by-

patch numbering of the interior degrees of freedom allows us to decompose the Schur

complement matrix S0 as given by Eq. (6.13)

After the application of the static condensation technique, we will need the

following matrix system in order to invert S0, i.e.



 S1 R1

C1 D−1
1



 , (6.15)

where S1 and R1 are defined as in the previous section. The sparsity pattern of

this matrix is shown in Fig. 6.5(b). Note that we now do save the inverse matrix

D1
1 as it can be trivially inverted. The new Schur complement S1 still is big in size

and consequently expensive to invert. That is why in the bottom-up approach, we

recursively apply the static condensation technique on the Schur complement. On

every level, we make use of the nested bisection algorithm to identify the patches

and make a distinction between the boundary and the interior degrees of freedom.

The complete bottom-up multi-level approach for the example of the regular 8 × 8

mesh is depicted in Fig. 6.4. The corresponding sparsity patterns of the resulting

system matrices are depicted in Fig. 6.5.

6.3 Theoretical cost estimates

In the previous sections, it has been indicated that for the application of the multi-

level static condensation technique, you need to evaluate either the matrix depicted

in Fig. 6.3(f) (that is, for the top-down approach) or the matrix given in Fig. 6.5(f)

(that is, for the bottom-up approach). As the number of floating point operations

required to evaluate a sparse matrix scales like the number of non-zero entries in the

matrix, it can be appreciated that we can make a theoretical cost estimate of both

approaches based upon the fill-in associated to the respective sparsity patterns.
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(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

(e) Level 4 (f) Level 5

Figure 6.4: The different patches and the corresponding division between

boundary and interior modes for the different levels of the

bottom-up multi-level static condensation technique. Given is

the example for an 8×8 mesh and an expansion order of P = 2.
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(a) Level 0: matrix S0 (b) Level 1

(c) Level 2 (d) Level 3

(e) Level 4 (f) Level 5

Figure 6.5: The sparsity pattern of the matrix systems given by Eq. (6.15)

for the bottom-up multi-level static condensation technique ap-

plied to the example of Fig. 6.4.
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However, it is important to emphasize that this does not necessarily requires the

use of sparse matrix storage formats to apply multi-level static condensation. For

the boundary-boundary and interior-interior blocks on the diagonal, this is obvious.

For the off-diagonal sub-matrices Ri (bottom-up) and Ci (top-down and bottom-

up), we can adopt an elemental interpretation of the degrees of freedom similar as in

Eq. (6.11) and Eq. (6.12) to circumvent the use of sparse matrix storage. Therefore,

we need to consider the patches at a certain level as if they were elements. This

allows for the use of storage efficient block-diagonal matrices, without increasing the

cost as the number of non-zero entries do not change.

We have calculated the number of non-zero entries (denoted by C) in the matrices

out of Fig. 6.3(f) and Fig. 6.5(f) and displayed the ratio

Ctopdown

Cbottomup
(6.16)

in Fig. 6.7 in order to theoretically assess the cost associated to both approaches.

For comparison, we have also included the solution strategy in which we apply a

bandwidth minimisation algorithm to the matrix S0 rather than the multi-level

static condensation technique. Fig. 6.6(a) shows the sparsity pattern of S0 in case

the degrees of freedom are ordered for minimal bandwidth (which corresponds to a

lexicographical ordering for the 8× 8 mesh under consideration). As the bandwidth

(or the skyline more generally) is preserved when factorising a matrix (but the band

may be filled), it can be appreciated that solving the banded system scales like the

number of matrix elements within the band. This can also be observed in Fig. 6.6(b)

where the sparsity pattern of the matrix L + U is shown, L and U being the result

of the LU factorisation of S0.

In Fig. 6.7(a), it can be seen for the 8× 8 mesh, the top-down approach and the

bandwidth minimisation approach are more expensive than the bottom-up multi-

level static condensation technique. The difference is smaller for low expansion

orders, but the overhead cost goes to a factor 1.4 and 2 respectively for higher-

orders. Note that for orders higher than P > 2, the multiplicity of the edge modes

comes into play favouring the bottom-up approach. We have done a similar analysis

for bigger meshes. A mesh of 2m × 2m theoretically allows for 2m − 1 levels of
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recursions. In Figs. 6.7(b), 6.7(c) and 6.7(d), it can be observed that the cost

advantage of the bottom-up technique increases with the number of elements. For

a mesh of 64 × 64 = 4096 elements, the application of the bottom-up multi-level

static condensation technique leads to a theoretical saving up to a factor 5 and 6.5

compared to respectively the top-down technique and the banded matrix approach.

Note that this cost comparison for the number of required floating point operations

in principal also holds for the storage requirements.

From this theoretical analysis, we conclude that the bottom-up approach is the

superior multi-level static condensation technique when compared to the top-down

approach. This mainly is due to high cost associated to the complete fill-in of the off-

diagonal blocks Ri as can clearly be observed in Fig. 6.3(f). This can be explained

by the fact that the largest part of the resulting matrix in the top-down approach

basically is a reordering of the original matrix S0. A big part of the coupling between

modes is transferred to Ri blocks, hence its density. The bottom-up multi-level

approach on the other hand implicitly transfers the coupling information from level

to level by every time calculating the Schur complement of the Schur-complement,

thereby completely transforming the original matrix. This clearly turns out to be

best strategy. Therefore, we will choose the bottom-up approach as the preferred

multi-level static condensation in the remainder of this chapter.

(a) matrix S0 (b) LU decomposition of S0

Figure 6.6: The sparsity patterns of the Schur complement S0 and its fac-

torisation after minimisation of the bandwidth for the example

mesh of Fig. 6.2(a).
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(c) 32 × 32 = 1024 elements

P

C

C
B

o
t
t
o

m
U

p

Top-down

Bottom-up

Bandwidth

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

(d) 64 × 64 = 4096 elements

Figure 6.7: Operation count results (scaled by the bottom-up approach) of

the different direct solution strategies for structured quadrilat-

eral meshes of 2m × 2m elements.

6.4 Computational cost

In this section, we will investigate whether the observed benefit of the bottom-up

multi-level static condensation technique over the more traditional approach of band-

width minimisation also persists when implemented within a computer environment.

The implementation of the nested bisection algorithm needed to partition the graph

is based upon the onmetis routine of the Metis software package (Karypis & Ku-

mar 1998). This routine essentially is designed to compute fill-reducing orderings of

sparse matrices, which in light of the discussion above, happens to corresponds to

our needs. However, we will use a slightly modified version developed by Gao et al.
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(Gao, Xiaoye, Chao, & Zhaojun 2008), that in addition to reordering also returns

the separator tree. This is needed to construct the different block-matrices at every

level of multi-level static condensation technique. The evaluation of the different

block matrices is based upon the dgemv routine of the BLAS package. We observed

that for the 8×8 example mesh, the Metis multi-level bisection algorithm resulted in

exactly the same partitioning as the intuitive partitioning of the previous sections.

As in chapter 5, we will only consider the run-time needed to evaluate the stati-

cally condensed matrix system, thereby neglecting any computational effort needed

to construct the matrices or performing the partitioning. The same holds for the

banded matrix solution technique for which we rely on LAPACK (Anderson, Bai,

Bischof, Blackford, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling, McKen-

ney, & Sorensen 1999) routines dptrf and dptrs.

The results that compare the computational cost (quantified by the measured

run-time needed to solve the system associated to S0) of both approaches are shown

in Fig. 6.8 for the same quadrilateral meshes as studied in Fig. 6.7. It can be ob-

served that for small meshes, the banded matrix technique is superior for low-orders.

This makes sense as these problems only involve a limited number of degrees of free-

dom and the large amount of function calls associated to the multi-level recursive

algorithm clearly affect the run-time (despite the lower operation count). For the

more relevant examples of the bigger meshes, we see that multi-level static conden-

sation technique is superior in almost all cases. Only for linear finite elements, the

banded matrix technique is faster. For higher-orders, the multi-level static conden-

sation technique may be up to 4.5 (for the mesh of 32×32 = 1024 elements) to more

than 6 (for the mesh of 64 × 64 = 4096 elements) times faster. This also indicates

why the technique of substructuring is more attractive for high than for low-order

elements: the greater multiplicity of the edge modes makes it more efficient to con-

dense out these degrees of freedom. A similar behaviour can be observed when

applying the multi-level static condensation technique on unstructured triangular

meshes, as can be seen from Fig. 6.9.
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Figure 6.8: Computational cost (i.e. run-time scaled by the bottom-up ap-

proach run-time) of the different direct solution strategies for

structured quadrilateral meshes of 2m × 2m elements.
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Figure 6.9: Computational cost (i.e. run-time scaled by the bottom-up ap-

proach run-time) of the different direct solution strategies for

unstructured triangular meshes

6.5 Dirichlet boundary conditions

In case of numerically solving a problem subjected to Dirichlet boundary conditions,

it is customary adopt a lifting strategy as for example explained in Section 4.3.1. If

in the solution vector u, we first number the degrees of freedom associated to the

Dirichlet boundary before all other (homogeneous) degrees of freedom, the system

given by Eq. (6.1) can be decomposed as



 HDD HDH

HHD HHH







 uD

uH



 =



 fD

fH



 , (6.17)

where the index D denotes the Dirichlet degrees of freedom and the index H refer

to the homogeneous degrees of freedom. This system can be solved for the unknown

degrees of freedom uH by solving the linear system

HHHuH = fH − HHDuD. (6.18)

The (multi-level) static condensation technique can then be applied to the matrix

HHH . This is what we have implicitly assumed in Section 6.3

It should be noted that the modification of the right-hand-side can be an expen-

sive operation. It is explained in Section 7.1 that, because the matrix HHD is not
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explicitly available in our implementation, we calculate the Dirichlet forcing

fDIR
H = HHDuD, (6.19)

by means of the forward operation of the entire Helmholtz operator H , i.e.


 fDIR
D

fDIR
H



 = H



 uD

uH



 , (6.20)

after which we subtract fDIR
H from fH . Note that the Helmholtz operation above

can be evaluated globally, elementally or using the sum-factorisation approach (see

Chapters 5 and 7). However, it is possible to circumvent this rather expensive

operation by taking along the Dirichlet degrees of freedom in the (multi-level) static

condensation process. To appreciate this point, consider the following decomposed

version of system (6.1), i.e.




HDD HDB HDI

HBD HBB HBI

HID HIB HII









uD

uB

uI




=





fD

fB

f I




, (6.21)

where we have separated the Dirichlet boundary modes (index D), the homogeneous

boundary modes (index B) and the homogeneous interior modes (index I). We can

now apply the static condensation technique on all the boundary modes (that is,

Dirichlet and homogeneous boundary modes) to arrive at




HDD − HDIH
−1
II HID HDB − HDIH

−1
II HIB 0

HBD − HBIH
−1
II HID HBB − HBIH

−1
II HIB 0

HID HIB HII









uD

uB

uI



 = (6.22)





fD − HDIH
−1
II f I

fB − HBIH
−1
II f I

f I




, (6.23)

If only applying a single level of static condensation, the homogeneous boundary

modes uB can be computed by solving the equation

(
HBB − HBIH

−1
II HIB

)
uB = fB − HBIH

−1
II f I −

(
HBD − HBIH

−1
II HID

)
uD,

(6.24)

132



which, in terms of the Schur complement matrix S, can be written more concise as

SBBuB = fB − HBIH
−1
II f I − SBDuD. (6.25)

Note that compared to Eq. (6.6), the right-hand-side contains the additional Dirich-

let forcing term fDIR
B = SBDuD. Again, because the matrix SBD may not be

available explicitly, it is possible to evaluate this Dirichlet forcing as



 fDIR
D

fDIR
B



 = S



 uD

uB



 . (6.26)

This Schur complement matrix S can be significantly smaller than the original

system matrix H needed to calculate the Dirichlet forcing as in Eq. (6.20), leading

to a corresponding performance benefit. The other steps in the static condensation

solution procedure are unaffected by this approach. Because we have adopted an

elemental evaluation strategy for the off-diagonal blocks, see Eqs. (6.11) and (6.12),

there will be no difference in operation count. It is only the local-to-global mapping

that should be slightly modified to include the Dirichlet degrees of freedom.

This type of treatment of the Dirichlet boundary conditions can be recursively

applied in case of the multi-level static condensation technique. The Dirichlet bound-

ary conditions will then only have to be transferred to the right-hand-side as a forcing

function at the innermost level. And due to the limited size of the Schur complement

at the last level, it can be appreciated that this is a relatively cheap operation com-

pared to the original calculation of the Dirichlet forcing at the top-level, as given by

Eq. (6.20). Therefore, we can conclude that recursively incorporating the Dirich-

let boundary conditions in the application of the multi-level static condensation

technique is the preferred approach.

6.6 Concluding remarks

Finally we would like to finish this chapter with some concluding remarks.

• Although the performance focus in this work was mainly on operation count

and execution time, we would like to remark that the theoretical analysis of
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Section 6.3 also holds for memory storage. Therefore, bottom-up multi-level

static condensation technique can also be considered as the optimal approach

in that sense.

• The multi-level static condensation technique (that is, the prevailing bottom-

up approach) on its innermost level is reduced to a relatively small Schur com-

plement to be inverted. Considering Fig. 6.4(f), it can be appreciated that this

Schur complement corresponds to the degrees of freedom of the interface in the

first step of the nested bisection algorithm. This means that the multi-level

static condensation technique essentially reduces the original two-dimensional

problem to a one-dimensional problem. However, it should be emphasised

that this one-dimensional system to be inverted is fully coupled. This explains

why the multi-level static condensation technique can be expected to be more

efficient for two-dimensional problems than for three dimensional problems.

In 3D, the original three-dimensional problem will be reduced to a fully cou-

pled two-dimensional system which still can be too expensive to solve (at least

directly). This means that the lower the dimensionality of the problem, the

bigger the savings that can be expected from the multi-level static condensa-

tion technique.

• In relation to the previous remark, it can be appreciated that the multi-level

static condensation technique may be more efficient for meshes of a slender

domain (such as e.g. for pipe-flows). The small number of elements in one

dimension of the mesh allow for bisecting interfaces that are small in size. This

implies that even for the innermost levels of recursion, the subsystems can be

limited in size (even for three-dimensional problems).
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Chapter 7

The optimal spectral/hp element

discretisation

Now we have determined the most efficient implementation for both low- and high-

order expansions, we may ask the following question: Given the most efficient imple-

mentation, what is the optimal spectral/hp discretisation for a given error tolerance?

We define the optimal discretisation as the (h, P )-pair – the specific combination of

mesh size h and polynomial order P – which requires the minimal run-time to ap-

proximate the exact solution up to a predefined accuracy. Answers to this question

have been presented before in (Rønquist 1988; Fischer & Gottlieb 1996; Hesthaven

1997; Hesthaven 1998; Wasberg & Gottlieb 2000). In these previous works, the

computational cost of the algorithms have been estimated by analytical models.

However, based upon the results of the previous section, we believe that an analysis

from a purely analytic point of view may not be able to correctly model all factors

that make up the actual run-time. Therefore, we adopt a fully computational ap-

proach where we base our analysis on the measured run-time of a set of performance

test. In addition, note that we do not aim to provide a universal statement to answer

this question as it will highly depend of the problem under consideration. Instead

we have identified a few examples and demonstrate how the results of the previous

section may influence the discussion. Therefore, we have chosen to solve the scalar

Helmholtz equation for four different test cases.
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7.1 Test problem: the scalar Helmholtz equation

The two-dimensional scalar Helmholtz problem on a domain Ω is given by the equa-

tion

u(x, y) − λ∇2u(x, y) = f(x, y), λ ≥ 0. (7.1)

The problem is supplied with Dirichlet boundary conditions on the entire boundary

of the domain, i.e. u(x, y)|∂Ω = gD(x, y) and we for simplicity we assume λ = 1. We

have chosen not to consider a more complex test case as we believe the simplicity of

this problems enables us to unambiguously investigate the influence of the mesh-size

h and polynomial order P . If for example selecting a time-dependent problem such

as the advection-diffusion equation, the time-step ∆t will depend on the mesh-size h

through the CFL-condition. It can be appreciated that this additional dependency

will quickly complicate the analysis.

To solve Eq. (7.1) we follow a standard Galerkin procedure together with a lifting

strategy to impose the Dirichlet Boundary conditions similar as in Section 4.3.1 to

arrive at the discrete system in terms of the unknown homogeneous coefficients ûH ,

HHHûH =
(
BH

)⊤
Wf − HHDûD, (7.2)

where H is the Helmholtz matrix with entries

HHD[i][j] =

∫

Ω

ΦH
i ΦD

j + ∇ΦH
i · ∇ΦD

j dx i ∈ NH , j ∈ ND. (7.3)

In order to obtain the answer in physical space rather than in coefficient space, we

can perform a backward transformation on the result above, yielding

u = Bû =
[

BD BH

]


 ûD

ûH



 ,

=
[

BD BH

]


 ûD

(
HHH

)−1
{(

BH
)⊤

Wf − HHDûD
}



 . (7.4)

From an implementational point of view, Eq. (7.4) can typically be solved in four

major steps (thereby neglecting the steps involving linear combinations of vectors):

1. Calculate the inner product of the forcing function, i.e.
(
BH

)⊤
Wf .
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2. Calculate the Dirichlet forcing, i.e. HHDûD.

3. Solve the linear system HHHûH = f̂ .

4. Transform the coefficients back to physical space, i.e. u = Bû

Note that because the operators
(
BH

)⊤
and HHD are not explicitly available within

the Nektar++ framework, we have adopted an implementation strategy where these

operators are evaluated using the equivalent operators in terms of all the global

degrees of freedom. As a result, steps 1 and 2 above are evaluated as B⊤Wf and

Hû respectively where after we only consider the homogeneous part of the solution

vector. Consequently, steps 1,2 and 4 in the solution procedure above respectively

correspond to the inner product operator, the weak Helmholtz operator and the

backward transformation as defined in Chapter 5. This implies that these three

sub-steps of the solution procedure may benefit from the different implementation

strategies introduced in Chapter 5. It is therefore through these routines that the

influence of the different implementation strategies on the definition of optimal hp-

discretisations may become apparent. Finally note that for the implementation of

the third step is based upon the (single-level) static condensation technique with

bandwidth minimisation.

7.2 Test problem 1: Quadrilateral spectral/hp dis-

cretisations for a smooth solution

The first example we consider is a smooth solution on the unit square Ω = [0, 1] ×
[0, 1]. The forcing function f and the Dirichlet boundary conditions gD are chosen

such that the exact solution satisfies

uex(x, y) = sin(10πx) cos(10πy). (7.5)

Our aim is to find the quadrilateral hp-discretisation which minimises the run-time

for a certain error-tolerance. Therefore we let the mesh-size between and the poly-

nomial order respectively vary between 1 ≤ 1/h = |E1d| ≤ 25, 1 ≤ P ≤ 15 and solve
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the corresponding Helmholtz equation for all 375 possible (h, P ) combinations. Note

that the spatial uniformity of the solution justifies the uniform adaptation of the

expansion. The L2 approximation error defined as

||ǫ||L2 =

[∫

Ω

(uex − u)2 dx

] 1
2

, (7.6)

is depicted in Figure 7.1(a) for all discretisations. Predictably, low-order expansions

on a coarse mesh exhibit a large error while high-order expansions on a fine mesh

lead to the most accurate results. The computational cost – quantified by the run-

time – of every (h, P ) pair is plotted in a similar style in Figure 7.1(b) where the

error plots are overlaid. We here show the run-time result based upon the optimal
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Figure 7.1: Error and run-time of the different quadrilateral spectral/hp

discretisations used for approximating the Helmholtz problem

with smooth exact solution (7.5).

implementation, i.e. an implementation where depending on the polynomial order P

we have selected the most efficient evaluation strategy for each individual operator

following the results of Section 5.3. Although both the error and cost contours follow

a similar trend, they are not parallel. Note that although all data are essentially

discrete, we have interpolated the data in the presentation of these results to obtain

a continuous representation.

If we now fix the error-tolerance to 10%, we can ask how these plots may help

us to find the optimal discretisation (h, P ) satisfying this tolerance? Therefore,
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we want to know which point on the 10% error contour line depicted in Figure

7.1(a) induces the minimal run-time. Therefore we can use the arc-length of this

contour line as the horizontal axis and plot the corresponding computational cost

from Figure 7.1(b) as a function of this arc-length, i.e. we extract the data along

the solid black line in 7.1(b). This is shown in Figure 7.2(a). Besides the cost due
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Figure 7.2: Minimal run-time at fixed error-level of the different quadri-

lateral spectral/hp discretisations used for approximating the

Helmholtz problem with smooth exact solution (7.5).

to the optimal implementation, this figure includes different lines all corresponding

to a different interpretation of the computational cost. The dashed line defines the

computational cost as the total number of global degrees of freedom while the other

lines are due to a single implementation strategy using either a global matrices, local

matrices or the sum-factorisation approach. Note that all four lines lead to a different

minimum and that the one due to the optimal implementation truly minimises the

run-time of all the different implementation strategies. Table 7.1 (Test problem 1)

summarises the hp-discretisations to which these minima relate back. It appears

that hp-expansion employing 3 × 3 elements and a sixth-order expansion can be

regarded as the optimal discretisation for our computational test. Note that this

expansion is notably different from the one that minimises the number of degrees

of freedom for the given error tolerance. For the example under consideration, this

would suggest a spectral-type approach employing only a single element but with
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Test problem 1 Test problem 2 Test problem 3

|E| P |E| P |E| P

minimal run-time

Optimal implementation 3 × 3 P = 6 6 × 6 P = 6 38 P = 6

Sum-factorisation 2 × 2 P = 9 4 × 4 P = 9 10 P = 11

Local Matrix 5 × 5 P = 4 10 × 10 P = 4 22 P = 8

Global Matrix 6 × 6 P = 3 12 × 12 P = 3 84 P = 4

minimal degrees of freedom 1 × 1 P > 15 1 × 1 P > 15 22 P = 8

Table 7.1: Quadrilateral spectral/hp discretisations to approximate the

Helmholtz problem with smooth exact solution (7.5) within 10%

accuracy in minimal run-time.

a sufficiently high-order P > 15. As expected from Section 5, an implementation

based upon global matrices has a tendency towards h-type low-order finite elements

while the use of sum-factorisation based routines would advocate a more spectral

approach.

Figure 7.2(a) also illustrates the importance of supporting different implementa-

tion strategies within a single code. As the curve due to the optimal implementa-

tion strategy could be considered as the envelope of the three single-implementation

curves, selecting another hp-discretisation along the horizontal axis does not drasti-

cally increases the computational cost. However, adopting only a single implemen-

tation strategy it can be seen that the optimum is much sharper and deviating from

this optimal discretisation is severely penalised. Perhaps, another performance indi-

cator that may be of interest to consider is the computational performance in flops

as it would highlight to which extent a certain implementation strategy exploits all

the available computer resources.

In Figure 7.3, we again have plotted the run-time due to the optimal implemen-

tation strategy along the 10% error contour. In addition, we have indicated which

fraction of the run-time is due to the solution of the linear system, i.e. the third step

in the solution process of the Helmholtz equations as explained in Section 7.1. It

can be observed that along this error contour, solving the linear system is more effi-

cient for the expansions that combine fewer elements with higher P . This may be a

direct consequence of the smaller number of global degrees of freedom as observed in

Figure 7.2(a). As a result, it are the three remaining steps in the evaluation process
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which shift the minimum towards a lower-order expansion employing a more refined

mesh. This behaviour will probably be reflected when using an iterative rather than

direct solver.
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Figure 7.3: Decomposition of the run-time due to the optimal (hybrid) im-

plementation strategy along the 10% error contour when ap-

proximating the Helmholtz problem with smooth exact solution

(7.5).

We can follow a similar analysis for a broad range of error tolerances. This leads

to the path of minimal run-time as depicted in Figure 7.2(b). This figure does con-

firm the well-known feature of exponential p-convergence of the spectral/hp element

method for smooth solutions. When aiming for a high-accurate approximation, one

should increase the polynomial order rather than refining the mesh. It appears that

for this example, a 3 × 3 mesh is the optimal h-discretisation and the polynomial

order P should be varied according to the desired accuracy. This typical behaviour

has been acknowledged before and it is widely appreciated that the spectral/hp ele-

ment method is particularly efficient for obtaining high accuracy in smooth problems

(Deville, Fischer, & Mund 2002; Karniadakis & Sherwin 2005). However, by focus-

ing on a engineering accuracy of 10%, we have shown that the high-order methods

can also be justified for relatively low accurate approximations.

Finally, we would like to couple this path of minimal run-time to an earlier

observation made by Gottlieb and Orszag. In (Gottlieb & Orszag 1977), they showed

that for a one-dimensional problem with exact solution

u(x) = sin(Mπx) on [−1, 1], (7.7)
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a single-element spectral expansion should retain at least N > Mπ modes in or-

der to achieve exponential p-convergence. Translated to the two-dimensional prob-

lem under consideration, this would suggest that for exponential p-convergence, the

multi-elemental spectral/hp element discretisation should satisfy

N > 10 π
h

2
, (7.8)

where N = P +1. This condition is graphically represented in Figure 7.4 as the area

above the Gottlieb-Orszag threshold. Heuristically, this may lead to the following

discretisation strategy: use h-type refinement until crossing this Gottlieb-Orszag

threshold and subsequently increase the polynomial order P according to the desired

accuracy. This leads to the convergence path also shown in Figure 7.4. Although

this approach may provide a simple rule of thumb, the results show that the resulting

convergence path is different from the path of minimal run-time defined earlier and

hence will be computationally less efficient. The problem is that in this approach,

it has been assumed that one should follow an h-type refinement strategy (with

P = 1) in the unresolved regime. Although this indeed leads to the least expensive

point on the Gottlieb-Orszag threshold on Figure 7.4, this point certainly does not

minimise the run-time on the corresponding error contour. Instead, our analysis

shows that for minimal run-time one should combine both ideas of h-refinement and

p-enrichment to select an initial discretisation along the Gottlieb-Orszag threshold.

Hereafter, the polynomial order P can be increased for higher accuracy.

7.3 Test problem 2: Quadrilateral spectral/hp dis-

cretisations for a smooth solution with high

wave-number

As a second example, we consider the Helmholtz equation with a similar solution

but with a higher wave-number

u(x, y) = sin(20πx) cos(20πy). (7.9)
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presented by Gottlieb and Orszag when approximating the

Helmholtz problem with smooth exact solution (7.5).

Obviously, the computational cost for each specific spectral/hp expansion is the

same as in the previous example but it now will require more degrees of freedom

to obtain a specific error tolerance as can be seen from Figure 7.5(a). Following a
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Figure 7.5: Quadrilateral spectral/hp discretisations to approximate the

Helmholtz problem with smooth exact solution (7.9).

similar approach as in the previous example, it can be derived that for an engineer-

ing accuracy of 10%, the optimal hp-discretisation minimising the run-time again

comprises a sixth-order expansion but now on a 6 × 6 mesh, see also Table 7.1 and

Fig. 7.5(b) . As in the previous case, the most efficient way of enhancing the accu-

racy is by increasing the polynomial order and keeping the mesh fixed. The analogy
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with the previous example seems to suggest that for the type of exact solution under

consideration, i.e.

u(x, y) = sin(Mπx) cos(Mπy), (7.10)

the optimal quadrilateral h-discretisation consists of 3M
10

× 3M
10

elements, independent

of the desired accuracy. Hence, it is the polynomial order that should be varied

accordingly to satisfy a predefined error tolerance.

7.4 Test problem 3: Triangular spectral/hp dis-

cretisations for a smooth solution

Next we consider exactly the same problem as in Section 7.2 for the first test problem.

However, rather then using structured quadrilateral meshes we now use unstructured

triangular meshes. A typical unstructured triangular mesh with h = 1/20 is shown

in Figure 7.6. Figure 7.7(a) depicts the error and cost contours lines across the entire

Figure 7.6: Unstructured triangular mesh with h = 1/20.

set of different hp-configurations. Although the trend is similar to the quadrilateral

case, note that the data are not as smooth. This may be accounted to the fact that

1/h does not linearly scale with log2(E) as in the quadrilateral case. However, this

does not prevent a similar analysis to derive the path of minimal run-time as in
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Figure 7.7: Triangular spectral/hp discretisations to approximate the

Helmholtz problem with smooth exact solution (7.5).

the previous examples. This result is summarised in Figure 7.7(b). We can observe

that for a 10% error, again a sixth-order spectral/hp expansion with characteristic

mesh-size h = 1/5 – which corresponds to 38 triangles – is the computationally

most efficient hp-discretisation (see also Table 7.1). The run-time associated with

this optimal triangular hp-discretisation appears to more than twice the run-time

needed for the optimal quadrilateral expansion. As a result, for the uniform test-

case under consideration, the quadrilateral sixth-order expansion employing 3 × 3

elements can be considered as the true optimal spectral/hp expansion. However, we

would like to remark that this apparent superiority of the quadrilateral expansion is

reinforced by the tensorial structure of the exact solution. Indeed, if we rotate the

exact solution with 30◦, the overhead of the triangular expansion is reduced with

20%. Regarding the convergence of the error in this triangular case, we can draw

analogous conclusions as for the quadrilateral case.

7.5 Test problem 4: Quadrilateral spectral/hp dis-

cretisations for an irregular solution

Finally, we include an example which exact solution is not infinitely smooth. There-

fore, we consider the L-shape domain problem shown in Figure 7.8. The forcing
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Figure 7.8: Quadrilateral spectral/hp discretisations to approximate the

Helmholtz problem with exact solution (7.11).

function f and Dirichlet boundary conditions are chosen such that the Helmholtz

equation (7.1) yields the exact solution

u (x(r, θ), y(r, θ)) = r
2
3 sin(

2

3
θ +

π

3
), (7.11)

where (r, θ) are the traditional polar coordinates. Because of the term r
2
3 , the

gradient of the solution will exhibit a singularity at the re-entrant corner. This

problem has been extensively studied in a FEM and hp-FEM context, often with an

emphasis on adaptive refinement, see e.g. (Babuška & Suri 1994). In this study, we

do not consider adaptivity but adopt a discretisation strategy where we account for

the locality of the singularity by using a radical rather than equispaced mesh. The

grid-points in each interval [0,±1] of a radical mesh are located at

xi = ±
(

i

|E|1d

)β

, i = 0, 1, . . . , |E|1d , (7.12)

where the parameter β is chosen as β = 3 (according to (Seshaiyer & Suri 2000))

and |E|1d is the number of elements in one dimension. The error and cost contours

are depicted in Figure 7.8(b). Note that the error contours follow a different pattern

than for the cases with a smooth solution. This problem therefore has an entirely

different path of minimal run-time, see Figure 7.9(b). There are various remarkable

features in this figure. First it can be seen that for a given error tolerance, all
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Figure 7.9: Quadrilateral spectral/hp discretisations to approximate the

Helmholtz problem with exact solution (7.11).

strategies appear to suggest almost the same (h, P ) discretisation. This includes

the discretisation which minimises the number of degrees-of-freedom rather than

the run-time. This may be appreciated by considering Figure 7.9(a) which shows

that the minimum – based upon DOFs – along the 10−4 error contour is now much

sharper than for the smooth test-problems, see for example Figure 7.2(a). From

Figure 7.9(b) it appears that the effect of the different implementation strategies

do not cause significantly different run-time to overcome the overhead of additional

DOFs. As a result, all minima seem to coincide around the same discretisation.

Secondly, it can be observed that the path of minimal run-time converges along

the h-direction, rather than the P -direction. This is plausible as the spectral/hp

element method does not exhibit exponential error-convergence with respect to the

polynomial order because of the singularity in the solution present at the corner of

the domain. In addition the use of a radical mesh, which has been shown to be

optimal for h-type FEM in this context, and so may contribute to this observation.

Finally, Figure 7.9(b) clearly indicates that a fifth-order expansion is now optimal

and that the mesh-size should be varied according to the desired accuracy. Although

this type of h-type convergence for non-smooth problems is typically associated to

low-order finite element methods (P = 1, or sometimes 1 ≤ P ≤ 3), the resulting

fifth-order optimum indicates that high-order finite element methods also have their
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use in solving singular problems.
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Chapter 8

Conclusions

8.1 Summary

This thesis considered optimising the implementation of the spectral/hp element

method. We therefore have studied some of the aspects that may contribute to this

goal. All these aspects can be related to the following issues, which we have identified

as two of the major challenges that arise in developing an efficient implementation

of the spectral/hp element method:

• implementing the mathematical structure of the technique in a digestible,

generic and coherent manner, and

• designing and implementing the numerical methods and data structures in

a matter so that both high- and low-order discretisations can be efficiently

applied.

We have seen in the introduction that when applied to the implementation of the

advection-diffusion equation, both objectives above have lead to the following five

questions below. In this chapter, we want to conclude the thesis by formulating an

answer to these questions, thereby summarising each of the previous chapters of this

thesis.
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How to encapsulate the fundamental concepts related to the spectral/hp

element method? We have started by describing how the mathematical con-

struction of a spectral/hp discretisation can be emulated in an object-oriented envi-

ronment. We have demonstrated how we have chosen to encapsulate the spectral/hp

element discretisation in a collection of carefully designed libraries and classes, re-

sulting in a generic, flexible and modular software library that allows user to im-

plement their own spectral/hp solvers. We have also given a list of good coding

practices that may help to enhance the efficiency of an algorithm.

How to apply the time-stepping in a generic and efficient way? We pro-

posed a generic framework, both in terms of algorithms and implementations, that

facilitates the application of a broad range of time-stepping schemes in a uniform

way. We based our algorithm on Butcher’s unifying theory of General Linear Meth-

ods, a concept widely accepted within the ODE community but little known from

a PDE point of view. The framework should allow CFD users, who often tend

to limit themselves to a single (family of) schemes, to explore the plethora of dif-

ferent methods that exist – implicit versus explicit, multi-stage versus multi-step

– without any additional effort. We illustrated that the abstract character of the

framework allows for an object-oriented implementation where switching between

different schemes is as simple as changing an input parameter. Although we first

presented an generic ODE solving framework, the main emphasis of this work is on

time-integrating PDEs. Therefore, we first showed how IMEX schemes – a family of

time-stepping schemes popular within the CFD community – can be formulated as

a General Linear Method. Then we demonstrated how through some modifications,

the framework can be adapted to accommodate the time-integration of PDEs in a

generic and computationally efficient way. Overall we believe this study provides

the essential building blocks for time-integrating PDEs in a unified way. Finally,

please note that even though we mainly followed a finite element procedure for the

spatial discretisation the presented techniques are believed to be general and can be

used within a finite volume or finite difference context.
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How to optimise the evaluation of the spectral/hp element operators

We have shown that in order to implement the spectral/hp element method for

a broad range of polynomial orders (1 ≤ P ≤ 15), a spectral/hp element code

should ideally support three different implementation strategies to evaluate the finite

element operators. This allows a hybrid strategy based upon the polynomial order.

For low-order expansions, as is common practice we have shown that the evaluation

using global matrices is most efficient while for high-order expansions, one should

preferably employ the sum-factorisation technique. If operating in the intermediate

regime between low and high-order, the evaluation using local matrices is often the

most efficient option. Furthermore, we demonstrated that the break-even points

between these different polynomial regimes depend on the operator to be evaluated,

the shape of the element and the computer on which the code is run. We have

presented both theoretical estimates as well as computational test confirming this

behaviour for different two-dimensional finite element operators.

How to optimise the solution of the linear system? We have acknowledged

that there are two distinct ways of applying the idea of multi-level static conden-

sation or substructuring in order to solve linear systems. Both the bottom-up and

the top-down approaches are based upon a nested bisection algorithm to reorder

the degrees of freedom. A theoretical analysis clearly showed that the bottom-up

approach is preferred above the top down-approach. A computational comparison

has also shown that for high-order expansions, adopting the (bottom-up) multi-

level static condensation technique leads to a significant reduction in run-time when

compared to the more traditional approach of a bandwidth minimised single-level

static condensation technique. This reduction factor may be as high as a factor six.

Only for linear finite elements, the technique of bandwidth minimisation prevails.

We have also demonstrated that the idea of multi-level static condensation is fully

compatible with Dirichlet boundary conditions.

What is the optimal hp-discretisation at which to run your code? In the

Chapter 7, we have investigated how to select the parameters (h, P ) of a spectral/hp
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discretisations in order to minimise the run-time when solving an elliptic problem

up to predefined accuracy. As expected, the numerical results indicate that in

case of smooth solutions, one should fix the mesh and vary the polynomial order

according to the desired accuracy (p-convergence). In addition, our computational

investigation has however highlighted the not quite so intuitive result that for a

low error level of 10% a reasonably coarse mesh with a sixth-order spectral/hp

expansions minimised the run-time. For non-smooth solutions on the other hand,

and consistent with theory, we observed that the run-time can be minimised by

fixing the polynomial order of the expansion and refining the mesh according to the

desired error tolerance (h-convergence). However, for the non-smooth test problem

under consideration, we observed that a polynomial order of as high as P = 5

was optimal, thereby promoting the use of high-order expansions for problems with

corner-type singularities, at least when using a radical mesh distribution.

8.2 Recommendations

The results from this thesis should provide any spectral/hp element code developer

a fundamental insight into various aspects that may contribute to an efficient im-

plementation of this high-order method. We put particular emphasis on designing

algorithms that allow the user to go from h to p efficiently, that is, algorithms which

are both efficient for low-order methods (h-type finite elements) and high-order

methods (p-type finite element methods). This can be accomplished by accommo-

dating different implementation strategies depending on the polynomial order of the

expansion.

For the scope of this work, we did only consider direct solution methods to solve

the linear systems that arise in the spectral/hp element method. However, some of

the results can also be thought to be relevant for iterative solution methods such as

the conjugate gradient method. As this iterative method is based upon the action

of the operator rather than on its inverse, the observed performance differences of

the various implementation strategies, see Chapter 5, can certainly be exploited

to enhance the efficiency of iterative solution techniques. Moreover, adopting an
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iterative solution method is also assumed to lead to different results for the analysis

in Chapter 7, where we searched for the (h, P ) discretisation that minimises the

run-time for a predefined level of accuracy. This can be appreciated considering the

fact that the required run-time to solve the linear system due to a certain (h, P )

discretisation will then also depend on the implementation strategy. Something

which is not the case for the direct solution strategy we adopted and which does not

depend on the implementation strategy. One can therefore expect that adopting a

iterative solution for such an analysis will lead to more pronounced differences in

the results. In addition, the multi-level static condensation technique may be of use

for preconditioning the conjugate gradient method.

As we have restricted ourselves in this thesis to two-dimensional expansions only,

it would also be interesting to perform a similar analysis for three-dimensional ex-

pansions. Not only is the advantage of the sum-factorisation known to be stronger in

three dimensions, this can also be used as an opportunity to explore these strategies

in the context of parallel computing. There, other factors such as memory consider-

ations and again iterative solution techniques will come into play. It is expected that

the techniques which require less memory such as the matrix-free sum-factorisation

technique, may have an advantage over the other methods. Memory intensive tech-

niques such as the global matrix approach may even be too expensive as the required

global matrices may become to big to store. As already mentioned in Chapter 6,

the presented multi-level static condensation technique can be readily applied in 3D.

The underlying implementation is based upon a matrix reordering algorithm and

as such, it does not distinguish between a matrix due to a two-dimensional or a

three-dimensional problem. However, we have also indicated in Chapter 6 that the

technique may be less efficient in 3D than in 2D. This can be appreciated by the

fact that the matrix reordering uses a nested bisection algorithm and consequently,

it effectively reduces a 2D problem to a 1D problem and a 3D problem to a 2D one.

Relatively, this reduction is more favourable for the 2D than for the 3D case.

The ingredients presented in this method should also facilitate other studies

that try to answer one of the most pertinent questions related to the application

of the spectral/hp element method or any other high-order finite element method:
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what is the best mesh-resolution and expansion order to run our simulations? We

believe this choice currently is largely based on tradition, intuition or experience

rather than on theoretically founded arguments. The principles presented in this

thesis should provide a basis for performing such comparative studies. We have

given a first attempt in Chapter 7 by investigating this for the simple example

of the steady Helmholtz equation. An interesting extension would be to repeat

this study for a time-dependent partial-differential equation such as the advection-

diffusion equation. This time-dependency will, next to the parameters (h, P ) due

to the spatial discretisation, introduce two more parameters due to the temporal

discretisation, the time-step ∆t and the order of the time-stepping scheme. To

further complicate things, both parameter pairs are known to depend on each other.
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Appendix A

Theoretical operation count

A.1 Notation and assumptions

A.1.1 Definitions

With regard to a two-dimensional spectral/hp expansion, we define

• P1 as the expansion order of the basis in direction 1,

• P2 as the expansion order of the basis in direction 2,

• N1 = P1 + 1 as the number of modes of the basis in direction 1,

• N2 = P2 + 2 as the number of modes of the basis in direction 2,

• Ntot as the total number of modes of the expansion,

• Q1 as the number of quadrature points in direction 1,

• Q2 as the number of quadrature points in direction 2, and

• Qtot as the total number of quadrature points on the element.

For a quadrilateral expansion, the total number of modes is equal to Ntot = N1N2

while for a triangular expansion we assume N1 ≤ N2 such that Ntot = 1
2
N1(N1+1)+

N1(N2 −N1). In both cases, we use a tensorial quadrature rule with Qtot = Q1Q2.
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A.1.2 Matrix operators

Table A.1.2 gives an overview of all the matrix operators that will be used in this

appendix.

A.1.3 Operation count of matrix operators

For

• a dense matrix A of size m× n,

• a dense matrix B of size n× k, and

• a vector b of size n,

we will assume the following operation counts:

Operation Count

multiplications additions total

matrix-vector product Ax mn mn 2mn

matrix-matrix product AX mnk mnk 2mnk

Note that it in principle is possible to evaluate the matrix-vector multiplication

using only m(n− 1) additions. However, for simplicity we will follow the operation

count displayed in the table above.

Furthermore, for (block-)diagonal matrices, we only count the floating point

operations due to the diagonal entries.

A.2 The sum-factorisation approach

We will first determine the operation count required for the factorised evaluation of

the two core operators, i.e. the operator B and its transpose B⊤. This will facilitate

the operation count for the finite element operators afterwards.

A.2.1 The operator B and its transpose operator B⊤

Quadrilateral expansions According to Section 5.1.1, the operation

u = Bû, (A.1)
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matrix type dimension definition name

B dense Qtot ×Ntot B[i][j] = φj(ξi) discrete 2D basis

Ba
m dense Qm ×Nm Ba

m[i][j] = ψa
j (ξi) discrete 1D basis in direction m

Bb
p dense Q2 × f(p) Bb

p[i][j] = φb
pj(ξi) generalised 1D basis

D1d
m dense Qm ×Qm D1d

m [i][j] =
dhj(ξi)

dξ
1D derivative matrix in direction m

M dense Ntot ×Ntot M [i][j] = (φi, φj) mass matrix

H dense Ntot ×Ntot H [i][j] = (φi, φj) + λ (∇φi,∇φj) Helmholtz matrix

B̄ dense Qtot ×Ntot B̄[i][j] = φj(ξi)ωi |J(ξi)| weighted discrete 2D basis

W diagonal Qtot ×Qtot W [i][i] = ωi |J(ξi)| quadrature metric

Gmn diagonal Qtot ×Qtot Gmn[i][i] = ωi |J(ξi)|
∑

j={1,2}

∏
k={m,n} djk(ξi) Laplacian metric

Bb block-diagonal N1 ×N1 Bb[i][i] = Bb
p generalised 1D basis

D1 sparse Qtot ×Qtot D0 = I ⊗ D1d
1 derivative matrix in direction 1

D2 sparse Qtot ×Qtot D0 = D1d
2 ⊗ I derivative matrix in direction 2

Table A.1: Overview of the matrix operators used in this section. Note that djk(ξ) is the derivative metric respectively

defined as ∂ξk

∂xj
and ∂ηk

∂xj
for quadrilateral and triangular elements.
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can be evaluated as

U = Ba
1ÛBa⊤

2 . (A.2)

This yields the operation count:

Operation Count

multiplications additions

step 1 V = ÛBa⊤
2 NtotQ2 NtotQ2

step 2 U = Ba
1V N1Qtot N1Qtot

total
NtotQ2 + N1Qtot NtotQ2 + N1Qtot

2(NtotQ2 + N1Qtot)

Analogously, the transpose operator

û = B⊤u, (A.3)

can be evaluated in an equal number of floating point operations:

Operation Count

multiplications additions

step 1 V = Ba⊤
1 U N1Qtot N1Qtot

step 2 Û = V Ba
2 NtotQ2 NtotQ2

total
NtotQ2 + N1Qtot NtotQ2 + N1Qtot

2(NtotQ2 + N1Qtot)

Triangular expansions For triangular expansions, it has been shown in Section

5.1.1 that (A.1) can be evaluated as

u = (Ba
1 ⊗ I) Bbû, (A.4)

This requires the following number of floating point operations:

Operation Count

multiplications additions

step 1 v = Bbû NtotQ2 NtotQ2

step 2 degenerate vertex Q2 Q2

step 3 U = Ba
1V ⊤ N1Qtot N1Qtot

total
NtotQ2 + N1Qtot + Q2 NtotQ2 + N1Qtot + Q2

2(NtotQ2 + N1Qtot + Q2)
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The second step is required to properly take into account the degenerate vertex

mode of the C0 continuous modal expansion, see (Karniadakis & Sherwin 2005).

Analogously, for the transpose operator (A.3) we can derive:

Operation Count

multiplications additions

step 1 V = U⊤Ba
1 N1Qtot N1Qtot

step 2 degenerate vertex Q2 Q2

step 3 û = Bbv NtotQ2 NtotQ2

total
NtotQ2 + N1Qtot + Q2 NtotQ2 + N1Qtot + Q2

2(NtotQ2 + N1Qtot + Q2)

A.2.2 Backward transformation

Evaluated as:

u = Bû. (A.5)

Operation count:

Operation Count

multiplications additions

total
NtotQ2 + N1Qtot + γQ2 NtotQ2 + N1Qtot + γQ2

2(NtotQ2 + N1Qtot + γQ2)

where γ = 0 for quadrilateral elements and γ = 1 for triangular elements.

A.2.3 Inner product

Evaluated as:

û = B⊤Wu. (A.6)

Operation count:

Operation Count

multiplications additions

step 1 v = Wu Qtot

step 2 û = B⊤v NtotQ2 + N1Qtot + γQ2 NtotQ2 + N1Qtot + γQ2

total
NtotQ2 + (N1 + 1)Qtot + γQ2 NtotQ2 + N1Qtot + γQ2

2(NtotQ2 + N1Qtot + γQ2) + Qtot

where γ = 0 for quadrilateral elements and γ = 1 for triangular elements.
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A.2.4 Mass matrix operator

Evaluated as:

ŷ = B⊤WBû. (A.7)

Operation count:

Operation Count

multiplications additions

step 1 v1 = Bû NtotQ2 + N1Qtot + γQ2 NtotQ2 + N1Qtot + γQ2

step 2 v2 = Wv1 Qtot

step 3 ŷ = B⊤v2 NtotQ2 + N1Qtot + γQ2 NtotQ2 + N1Qtot + γQ2

total
2(NtotQ2 + N1Qtot + γQ2) + Qtot 2(NtotQ2 + N1Qtot + γQ2)

4(NtotQ2 + N1Qtot + γQ2) + Qtot

where γ = 0 for quadrilateral elements and γ = 1 for triangular elements.

A.2.5 Helmholtz operator

Evaluated as

ŷ = B⊤




[

D⊤
ξ1

Dξ2⊤
]


 G11 G12

G21 G22







 Dξ1

Dξ2



+ W



Bû (A.8)

Operation count:

Operation Count

multiplications additions

step 1 v1 = Bû NtotQ2 + N1Qtot + γQ2 NtotQ2 + N1Qtot + γQ2

step 2 v2 = Wv1 Qtot

step 3 V 3 = D1d
1 V 1 QtotQ1 QtotQ1

step 4 V 4 = V 1(D
1d
2 )⊤ QtotQ2 QtotQ2

step 5 v5 = G11v3 + G12v4 2Qtot Qtot

step 6 v6 = G21v3 + G22v4 2Qtot Qtot

step 7 V 7 = (D1d
1 )⊤V 5 QtotQ1 QtotQ1

step 8 V 8 = V 6D1d
2 QtotQ2 QtotQ2

step 9 v9 = v1 + v7 + v8 2Qtot

step 10 ŷ = B⊤v9 NtotQ2 + N1Qtot + γQ2 NtotQ2 + N1Qtot + γQ2

total
2(NtotQ2 + N1Qtot + γQ2) +

Qtot(2Q1 + 2Q2 + 5)

2(NtotQ2 + N1Qtot + γQ2) +

Qtot(2Q1 + 2Q2 + 4)

4(NtotQ2 + N1Qtot + γQ2) + Qtot(4Q1 + 4Q2 + 9)

where γ = 0 for quadrilateral elements and γ = 1 for triangular elements.
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A.3 The local-matrix approach

A.3.1 Backward transformation

Evaluated as:

u = Bû. (A.9)

Operation count:

Operation Count

multiplications additions

total
NtotQtot NtotQtot

2(NtotQtot)

A.3.2 Inner product

Evaluated as:

û = B̄
⊤
u. (A.10)

Operation count:

Operation Count

multiplications additions

total
NtotQtot NtotQtot

2(NtotQtot)

A.3.3 Mass matrix operator

Evaluated as:

ŷ = Mû. (A.11)

Operation count:

Operation Count

multiplications additions

total
N2

tot + γQ2 N2
tot

2N2
tot
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A.3.4 Helmholtz operator

Evaluated as:

ŷ = Hû. (A.12)

Operation count:

Operation Count

multiplications additions

total
N2

tot + γQ2 N2
tot

2N2
tot

A.4 A standard uniform case

Consider a uniform spectral/hp expansion such that N = P + 1 = N1 = N2 with

the following Gaussian quadrature rule:

• Quadrilateral expansion

– Q = Q1 = Q2 = N + 1 (Gauss-Lobatto-Legendre points).

• Triangular expansion

– Q1 = N + 1 (Gauss-Lobatto-Legendre points), and

– Q2 = N (Gauss-Radau-Legendre points).

We have chosen the minimal amount of quadrature points needed to exactly integrate

the linear operators, as e.g. explained in (Karniadakis & Sherwin 2005). This

standard case yields the following operation count:
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sum-factorisation local matrix

Quad

backward

transformation

4N3 + 6N2 + 2N 2N4 + 4N3 + 2N2

4P 3 + 18P 2 + 26P + 12 2P 4 + 12P 3 + 26P 2 + 24P + 8

inner product
4N3 + 7N2 + 4N + 1 2N4 + 4N3 + 2N2

4P 3 + 19P 2 + 30P + 16 2P 4 + 12P 3 + 26P 2 + 24P + 8

mass matrix

operator

8N3 + 13N2 + 6N + 1 2N4

8P 3 + 37P 2 + 56P + 28 2P 4 + 8P 3 + 12P 2 + 8P + 2

Helmholtz

operator

16N3 + 45N2 + 46N + 17 2N4

16P 3 + 93P 2 + 184P + 124 2P 4 + 8P 3 + 12P 2 + 8P + 2

Tri

backward

transformation

3N3 + 3N2 + 2N N4 + 2N3 + N2

3P 3 + 12P 2 + 17P + 8 P 4 + 6P 3 + 13P 2 + 12P + 4

inner product
3N3 + 4N2 + 3N N4 + 2N3 + N2

3P 3 + 13P 2 + 20P + 10 P 4 + 6P 3 + 13P 2 + 12P + 4

mass matrix

operator

6N3 + 7N2 + 5N 0.5N4 + N3 + 0.5N2

6P 3 + 25P 2 + 37P + 18 0.5P 4 + 3P 3 + 6.5P 2 + 6P + 2

Helmholtz

operator

14N3 + 27N2 + 17N 0.5N4 + N3 + 0.5N2

14P 3 + 69P 2 + 113P + 58 0.5P 4 + 3P 3 + 6.5P 2 + 6P + 2

A.5 The global matrix approach for a structured

quadrilateral mesh

Consider a structured quadrilateral finite element mesh of |E1d| × |E1d| = |E| el-

ements. The modes of a P th-order uniform spectral/hp expansion can then be

classified as depicted in Figure A.1. This classification helps us to determine the

interior vertex modes

interior edge modes

interior modes

boundary vertex modes

boundary edges modes

boundary corner modes

Figure A.1: Possible classification of the modes (or nodes) of a 3rd-order

uniform spectral/hp expansion on a structured 5×5 quadrilat-

eral mesh.
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number of non-zero entries in the global finite element operator A, defined as

A[i][j] = a(Φi,Φj). (A.13)

where a(·, ·) is a bi-linear operator. An entry A[i][j] is typically non-zero if the

global basis-functions Φi and Φj are coupled, i.e. they have overlapping support

(that is if we do not taking into account the possible orthogonality of the basis).

The table below summarises the coupling between the different modes:

ai (number of modes) bi (number of modes coupled to)

interior vertex modes (|E1d| − 1)2 (2N − 1)2

interior edge modes 2|E1d|(|E1d| − 1)(N − 2) N(2N − 1)

interior modes |E1d|2(N − 2)2 N2

boundary vertex modes 4(|E1d| − 1) N(2N − 1)

boundary edge modes 4|E1d|(N − 2) N2

boundary corner modes 4 N2

nnz =
P

i aibi

ˆ

|E1d|(N2 − 1) + 1
˜2

As a result, when using a sparse matrix storage format, the global matrix evaluation

strategy requires
[
|E1d|(N2 − 1) + 1

]2
floating point multiplications and

[
|E1d|(N2 − 1) + 1

]2

floating point additions leading to a total operation count of 2
[
|E1d|(N2 − 1) + 1

]2
=

2
[
|E1d|P (P + 2) + 1

]2
.
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