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Abstract

Controlling wakes of flows past bluff bodies is a fundamental problem in a
wide range of engineering applications. In the present work, we investigate
such problems theoretically and numerically using linear stability analysis.
We initially consider a flow past a cylinder in a fully developed vortex shed-
ding regime, and we apply sufficiently high spanwise forcing on the surface
of the cylinder to stabilise the near-wake. The effects on the aerodynamic
forces, the wake topology and the dynamics of the vorticity are investi-
gated using spanwise sinusoidal and Gaussian forcing. Stability analysis
of the linearised Navier-Stokes equations is then performed on the fully
three-dimensional flow to investigate the role of the spanwise modulation
on the absolute instability associated with the von-Kármán street. The
three-dimensional global modes allows us to detect the regions where the
instability acts, and the interactions of the perturbations with the base flow
shed light on the most relevant mechanism for the wake stabilisation. Ad-
ditional relevant information on the design of an efficient control device are
provided by receptivity analysis and the structural sensitivities.
A similar approach is used to study the stability of a flow through a com-
pressor passage at a Re = 138, 500. Due to the complexity of both the
geometry and dynamics of the flow, a phase-averaging technique is used to
generate a globally periodic basic flow, extracting only the organised struc-
tures and neglecting all the background unsteadiness. This approach allows
us to perform Floquet and transient growth analyses to detect the structure
of the global modes and the presence of convective instabilities.
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Chapter 1

Introduction

“ “Begin at the beginning,” the King said, gravely, “and go on
till you come to an end; then stop. ”

Lewis Carroll, Alice in Wonderland

In the last decade there has been a surge of interest to reduce the fuel con-
sumption and the CO2 emissions produced by the civil aviation and road
transport, which are responsible of about 30% of all global emissions. Re-
cent estimations forecast an increase of the fuel consumption in the aviation
of about 160% by 2030, with consequent CO2 emissions rising to 1250 mil-
lion tonnes (Leschziner et al. 2011, Horton 2006, Peters et al. 2005). A
drag reduction of 1% on an aircraft in cruise conditions generates a decrease
of 0.75% in the fuel consumption, leading to a potential reduction of the
pollutant emissions of about nine million tonnes per 1% of drag reduction.
Currently, the skin friction constitutes about 60% of the total drag (Gold-
hammer 2009), therefore it remains the main area of investigation to improve
the design of aircraft.
Driven by the necessity to maximise the drag reduction, several innova-
tive techniques have been developed in laboratories, but most of them are
not suitable for practical applications, which require efficient and reliable
operating conditions over a wide range of parameters. Several engineer-
ing constraints generally inhibit the exploitation of advanced concepts and
techniques in control, hence most aeronautical industries still rely on sim-
ple passive devices, generally riblets and vortex generators, while the only
active control technique of industrial interest is open-loop suction (Spalart
& McLean 2011, Boeing Commercial Airplanes). However, the EU has ap-
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proved a highly demanding plan to reduce the CO2 emission by 50% by 2020
with respect to 2000, forcing both the academic and industrial community
to investigate new control methods.
Currently one of the biggest difficulties in the adoption of novel control tech-
niques in industrial applications is that it is necessary to modify the flows
efficiently and quickly, making the aerodynamic design an intricate problem.
Following Leschziner et al. 2011, at present the research of control strategies
for drag reduction can be classified in three main categories:

1. the delay of transition, which can be achieved by passive techniques
such as roughness elements, or closed-loop control methods, where
sensors detect the instabilities and apply appropriate countermeasures.

2. reduction of the near-wall turbulence using oscillations or travelling-
wave motions induced by wall movement and plasma actuators.

3. suppression of separation and control of vortex shedding from semi-
infinite walls and airfoils by means of open and closed-loop control
techniques.

As will be discussed more in detail in the following sections and chapters, in
this thesis we investigate techniques described in the last point. Specifically,
we will not take into considerations feedback techniques, but we will focus
only on passive and open-loop control methods, which are still preferred
because of their simple implementation and cost-effectiveness. Together
with the adoption of an efficient control technique, gaining a thorough un-
derstanding of the underlying physical phenomena is essential. However,
even at this formative stage, it is important to specify that an exhaustive
knowledge of the involved flow physics is still not available, despite the
remarkable advancement garnered in the last few years. In particular, note-
worthy strides have been achieved thanks to the potential of computational
fluid dynamics (CFD), which has been able to shed light on many unan-
swered questions arising from conflicting results in different experimental
techniques. In this context, spectral/hp element methods offer a promis-
ing computational technique to solve complex problems since they combine
the geometrical flexibility of finite element methods with the superior ac-
curacy and convergence properties of spectral approaches. Therefore, such
numerical methods can be extremely helpful in investigating the dynamics of
several mechanisms exploited by actuators and might represent a good trait
d’union between the flow physics and control theories. Besides this, the fast-
paced evolution of computer hardware and the development of new efficient
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algorithms to solve partial differential equations provide the possibility to
perform accurate DNS of industrial flows. This can lead to a new approach
in the control design, which combines simultaneously the physical insight
into the flow with new control theories. Therefore, in the present work, the
discussion of the design of a suitable control device is intrinsically related to
the evaluation of the physical phenomena, overtaking previous approaches
which considered fluid dynamics and control theory separately. As we will
see, some the control methodologies explicitly exploit certain linear mecha-
nisms typical of transitional flows, and their successful adoption in several
applications suggests the importance of such mechanisms to understand the
dynamics of non-linear flows.

1.1 Stability theory: harbinger of the flow transi-
tion

The main theoretical framework behind flow transition is known as hydro-
dynamic stability theory. A solid understanding of such theory, even in its
simplest formulation, provides important insights into the mechanisms be-
hind some of the successful control methodologies. An explanatory example
is the simple control technique based on the introduction of a small cylinder
in the wake of a bluff body, which was found to reduce, or even suppress,
the vortex shedding in a specific range of Reynolds numbers. Strykowski &
Sreenivasan (1990) studied experimentally and numerically the best place-
ment of the secondary cylinder, but the same results can be achieved if we
think that the effect of the control cylinder is to weaken or eliminate the ab-
solute instability in the near-wake region. These concepts will be explained
more in detail in chapter 4, but should give the reader a hint about the
essential interconnection between control theory and fluid dynamics.
Despite practical applications of the hydrodynamic stability being quite re-
cent, the concept of stability of a state of a physical or mathematical system
dates back to the eighteenth century and is explained clearly by Maxwell
(Drazin & Reid, 1981):

“When...an infinitely small variation of the present state will
alter by an infinitely small quantity the state at future time, the
condition of the system, whether at rest or in motion, is said to be
stable; but when an infinitely small variation in the present state
may bring about a finite difference in the state of the system in
a finite time, the condition of the system is said to be unstable”
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This definition is very general and does not have a direct link to fluid dy-
namics, highlighting that the study of the stability of a fluid state is not dis-
similar to analogous studies in other fields, such as magnetohydrodynamics,
plasma physics, elasticity, rheology, combustion or general relativity. The
main formulation of hydrodynamic stability is due to Helmholtz, Kelvin,
Rayleigh and, above all, Reynolds. In 1883 Osborne Reynolds performed
several experiments on the dynamics of a flow in a pipe1.

Figure 1.1: Configuration of Reynolds’s experiment. Adapted from Drazin
& Reid 1981

Reynolds showed that the smooth flow, typical at sufficiently low velocities,
tends to break down when a specific parameter, UD/ν, exceeds a critical
value2, with the subsequent appearance of flashes at specific points in the
pipe. This experiment is the precursor of our modern classification of lam-
inar and turbulent flows and the parameter UD/ν is now called Reynolds
number. Moreover, Reynolds noticed that:

1The experimental apparatus still survives in Manchester and was used in 1970 to
repeat Reynolds’s experiments.

2D is the diameter of the pipe, U the maximum velocity of the water in the pipe and
ν the kinematic viscosity
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“the critical velocity was very sensitive to disturbance in the wa-
ter before entering the tubes...
This at once suggested that the condition might be one of insta-
bility for disturbance of a certain magnitude and [stability] for
smaller disturbances.”

Reynolds introduced the central problem of hydrodynamic stability: to un-
derstand whether a given laminar flow is unstable when it is perturbed
by a disturbance and if so, how it breaks down into a turbulent or some
other laminar flow. Methods to study the stability of dynamical systems
were known at Reynolds’s time and were widely applied to systems of par-
ticles and rigid bodies. These methods consist in linearising Newton’s or
Lagrange’s equations around the steady state of the system and decompos-
ing the perturbations into independent modes of the form eλt, where λ is
a complex number. It is the evaluation of the real part of λ which pro-
vides information about the stability of the system, since if it is positive
the system is unstable because an arbitrary small perturbation would grow
exponentially. Stokes, Kelvin and Rayleigh extended this method to fluid
mechanics, overcoming the remarkable difficulties related to the presence of
partial differential equations rather than ordinary differential equations.
A comprehensive discussion of hydrodynamic stability analysis is beyond
the scope of this thesis and interested readers may refer to Drazin & Reid
(1981) and Schmid & Henningson (2001). However, in order to provide a
general overview of such a complex field, it is useful to mention the four
different approaches:

1. Linear stability theory: this represents the foundation of the theory
and is the oldest and still most used approach. It consists of linearis-
ing the Navier-Stokes equations around a given base flow and then
evaluating the temporal evolution of arbitrary small perturbations of
the basic state.

2. Weakly non-linear theory: this is an extension of linear stability the-
ory and takes into account the presence of the non-linear effects, which
become gradually more relevant as the amplitude of the perturbations
grows. Assuming a wavelike behaviour for the disturbances, the evo-
lution of each Fourier component is not independent from the others,
but they are all coupled together through wave-triad interactions. In
weakly non-linear theory, the amplitude of the perturbations is as-
sumed to be weakly time-dependent, therefore it varies at a much
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longer time scale than the wavelike part of the disturbance. Rele-
vant investigations on the role of the non-linearities were performed
by means of the non-linear parabolised stability equations. In this
context Haynes & Reed (1996) studied the development of station-
ary crossflow vortices over a 45-degree swept NFL(2)-0415 airfoil and
showed that the adoption of non-linear parabolised stability equations
overcome the differences between experimental results and the linear
stability theory.

3. Theory of bifurcation and chaos: this evaluates the bifurcations of a
dynamical system from one regime to another when a certain param-
eter is increased (i.e. the Reynolds number for fluids). It generally
requires relevant numerical calculations, but the most common routes
to chaos can be detected via the qualitative mathematical theory.

4. Strongly non-linear theory: this is the most rigorous theory and it
assumes arbitrarily large perturbations. It is based on Serrin’s theo-
rem and Liapunov’s direct method, but it is of difficult applicability,
providing generally bound conditions for the stability of flows.

In this project we will only consider linear stability theory, since all the other
approaches are still not mature to be applied to complex flows. Although
we will only focus on the simplest level of hydrodynamic stability theory, a
further discussion is required within the linear approximation. The first ap-
proach is to consider the base flow as a function of just one coordinate, e.g.
y, U = U(y), and then analyse the stability of such profile. This simplifica-
tion is usually valid for several simple flows and it known as local stability
analysis. In the context of local stability, we can distinguish between two
different types of instabilities: absolute and convective respectively. If an
arbitrary small perturbation, localised in space, grows at that fixed spatial
location, the flow is absolutely unstable, whereas if it propagates as it grows,
decaying at any fixed point in space, then the instability is said to be convec-
tive (Huerre & Monkewitz 1995). An illustration of these two possibilities
is shown in figure (1.2).
However, the strong assumption of one-dimensional base flow is not valid for
more complex problems. Thus, the base flow often needs to be resolved in
two or three-dimensions, U(x, y, z, t), and the stability analysis is performed
with respect to two or three-dimensional perturbations u′ = u′(x, y, z, t),
which are assumed to have the modal form u′ = û′(x, y, z) exp(λt). This
approach is called global stability analysis and has been extremely effec-
tive in determining the global instabilities in many complex flows, both
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Figure 1.2: Sketch on the dynamics of the absolute (a) and convective (b)
instabilities. Adapted from (Huerre & Monkewitz 1995)

open and closed (Barkley & Henderson 1996, Blackburn 2002a, Sherwin &
Blackburn 2005). According to the different structures of the base flows,
we can perform a further classification of the possible approaches in global
stability analysis (Theofilis (2011)). TriGlobal stability analysis is the most
generic methodology and assumes a basic state which is inhomogeneous in
all the spatial directions. However, TriGlobal approach is often numerically
demanding and unfeasible for most applications, therefore several simplifi-
cations are required. The three-dimensional parabolised stability equations
(3D-PSE) assume a base flow which shows a slow variations along one spa-
tial direction, leading to an initial value problem to be solved along the slow
direction. On the other hand, BiGlobal approach assumes the basic state to
be purely two-dimensional and the perturbations are assumed to be periodic
in the third direction (§ 4.24). Within the global stability analysis, a distinc-
tion between absolute and convective instabilities cannot be made as easily
as in the local approach because the convective instabilities do not show a
modal behaviour. Therefore, global stability analysis cannot be applied to
detect the convective instabilities which arises in problems with inflow and
outflow conditions; a large-scale eigenvalue analysis does not detect such be-
haviour. These instabilities generally result from the linear transient growth
of the perturbation energy, which is associated to the non-normality of the
eigenmodes. Therefore, an exhaustive study of the global instabilities can-
not disregard the non-modal analysis, which shows that transient response
due to the presence of local convective instabilities is the energy transient
amplification of the infinitesimal perturbations. This leads to an additional
investigation, peculiar of the global stability analysis, which is known as
transient growth analysis. All these concepts will be discussed more rigor-
ously in chapter 4, but they are useful to contextualise the present project
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within the current research on hydrodynamic stability.

1.2 Scope of the research

The maturity of the linear stability theory has led to successful applications
to delay the transition in boundary layers flows (Semeraro et al., 2013) and
attenuate the vortex shedding of flows past bluff bodies (Giannetti & Luchini
2007, Hwang & Choi 2006). This poses the question of whether linear stabil-
ity studies can be applied to more complex cases of direct industrial impact.
The task is surely challenging and it requires a strong interaction between
university-based scientists and engineers in industry, with each group recog-
nising and responding to the priorities and constraints of the others. One of
the main difficulties that hinders the adoption of stability analysis for indus-
trial problems is the necessity to deal with very complex problems, both in
terms of geometries and flow features. Even the most challenging studies by
means of global stability analysis are generally limited to two-dimensional
base flows, assuming that the problem has one direction of homogeneity.
However, the three-dimensionality of the flows has long been recognised to
play a fundamental role in reducing the drag coefficient and weakening the
vortex shedding. For example, wavy trailing edges are a common practice
in engineering, such as in the design of wings in Formula 1, as shown in
figure (1.3). Hence, simplifying assumptions on the two dimensionality of
the base flow might be too restrictive for an adequate control design, in par-
ticular if the potential of the three-dimensional modifications is taken into
consideration.

Therefore, the philosophy that drives the investigations presented in this
thesis is the necessity to extend the stability analysis to three-dimensional
base flows and apply it to the complex geometries found in common engi-
neering applications. This task is obviously very ambitious and it is clear
that providing general conclusions valid in a wide range of applications is
difficult. Moreover, the lack of a solid theoretical understanding on the
dynamics of fully three-dimensional instabilities, even in simple problems,
make such a goal out of reach. However, as a first step, we can deal with
these two aspects separately, directing our efforts to gain the broadest in-
sight into the mechanisms leading to the development of three-dimensional
instabilities and, at the same time, applying the conventional approaches of
the hydrodynamic stability theory to realistic configurations. Although it is
the combination of these two aspects that will lead to noteworthy improve-
ments in the aerodynamic design, these studies are useful to acknowledge
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Figure 1.3: Photo of the rear wing trailing edge of McLaren Mercedes
MP4/22 (courtesy of McLaren Racing).

the possibilities and limitations of each approach.
In the first part of this thesis, we will focus on the characterisation of the
instabilities in fully three-dimensional flows (TriGlobal stability, Theofilis
2011). Such three-dimensionality is not an artificial expedient, but a direct
consequence of the application of spanwise forcing on the surface of a bluff
body; this configuration represents in fact an efficient control technique,
which was seen to generate a noteworthy reduction of the fluctuations of
the aerodynamic forces and an attenuation of the typical unsteadiness that
characterises the vortex shedding (Kim & Choi 2005, Darekar & Sherwin
2001). With the aim of extending the above-mentioned investigations, we
consider then the simple case of a flow past a circular cylinder, since its
extensively studied dynamics lends itself well to be the starting point of our
research. Previous studies (Kim & Choi 2005) detected the optimal inten-
sity of spanwise forcing and the regions where its effects are more relevant.
However, reasonable explanations of the obtained results are still scarce, de-
spite few attempts have been recently given by means of the local stability
analysis (Hwang et al. 2013, Del Guercio et al. 2014). Keeping this in mind,
we investigate the problem from a global stability perspective and we try to
identify how the spanwise modulation, the alteration of the vortex shedding
and the change in the dynamics of the instabilities are intrinsically related.
Besides this, we pose an important question from a control point of view: is
sinusoidal forcing the optimal choice or other functions can lead to a more
efficient control of the instabilities? We remark once again that it is the
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synergy of the stability analysis and control theory that provides adequate
answers to these questions. Ignoring the results provided from the control
theory may lead to effective but highly inefficient manners of controlling
the wake, while disregarding the stability features of the flow hides to the
designer all of the mechanisms which need to be exploited.
If the complexity of the first application presented in this thesis relies on
the advanced instability method, while the geometry is intentionally kept
simple, in the second part of the thesis we will consider the reverse problem:
we will investigate by means of the BiGlobal stability analysis the instabili-
ties arising in a flow through a compressor passage. The adopted geometry
comes in fact from the results of previous experimental investigations on a
linear low-pressure (LP) compressor cascade (Hilgenfeld & Pfitzner 2004).
Starting from the studies of Zaki et al. (2009, 2010), we investigate the role
of transition and the separation in such configuration, where such effects are
enhanced by the strong adverse pressure gradients that the flow experiences,
in contrast with the more commonly studied low-pressure (LP) turbines (Wu
& Durbin 2001, Wissink & Rodi 2006, Abdessemed et al. 2009b). Several
issues were addressed en route, specifically the necessity to extend the con-
ventional Floquet analysis to flows with localised periodicities. Common
engineering applications might not show a well-defined periodic behaviour
all over the computational domain, but just in a specific region. Therefore,
Floquet analysis, which requires a global periodicity of the flow field, cannot
be applied. Such problem was solved using the phase-averaging technique, a
common methodology used especially in experimental fluid-mechanics. This
provides evidence of the fact that the applications of well-established theo-
ries to complex problems are often more than mere academic exercises, but
can actually lead to extensions or revisions of the conventional approaches.

1.3 Computational effort

All the investigations discussed in the present work were performed com-
putationally; the complexity of the considered cases requires the proper
combination of efficient time-integration schemes, spatial discretisation and
a high geometric flexibility. Therefore, the adoption of a suitable numerical
code was a key factor in the success of the present project. With this in
mind, the choice fell on Nektar++ (Kirby & Sherwin 2006), an open-source
software developed at Imperial College London (Department of Aeronautics)
in collaboration with the University of Utah (School of Computing). Since
Nektar++ is an ongoing project, not all the required features for the present
research were present. Therefore, a relevant computational effort has been
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made to implement, validate and debug all the necessary C++ classes and
algorithms. More specifically the following tasks have been performed:

• validation and debugging of the incompressible Navier-Stokes solver
based on the projection method introduced by Karniadakis et al. (1991).

• Implementation,validation and debugging of the additional advection
terms (linearised and adjoint) required for the stability analysis.

• Implementation, validation and debugging of the routines of Arnoldi
algorithms to solve the stability eigenproblems.

• Efficient extension of the code to solve BiGlobal and TriGlobal stability
problems 3

• Temporal Fourier interpolation of the base flow to perform Floquet
stability analysis.

• Development of the necessary post-processing routines to visualise the
results and calculate most relevant physical quantities (such as Q-
criterion, perturbation energy, sensitivities.)

• Implementation, validation and debuugging of specific routines to com-
pute phase-averages.

• Development of basic classes aimed at extending the code to integrate
Navier-Stokes equations in cylindrical coordinates.

1.4 Layout of the thesis

Before concluding this chapter, it is appropriate to provide an overview of
the remaining chapters of this thesis.
Chapter 2 discusses the numerical methodologies used in the present studies.
Despite the plethora of methods that can be used to solve CFD problems,
in the present work the spectral/hp element method was chosen.
In first part of chapter 3, we present the mechanisms behind the onset of
the vortex shedding and, more generally, the wake transition. Herein the

3The implementation of the BiGlobal and TriGlobal stability analysis was performed
via a Fourier interpolation in the third direction (§2.3.6). To study complex geometries, it
was important to implement these techniques efficiently, minimising the number of planes
(two or one for the BiGlobal approach, as described in §4.24) and trying to implement a
parallel implementation of the Arnoldi eigensolver.
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discussion of the problem is more from a physical point of view, without lin-
gering on the underlying mathematical formulation. In the second part of
the chapter the most common techniques to control the flow past bluff bod-
ies are overviewed, discussing their advantages and disadvantages in terms
of both implementation and efficiency. Chapter 4 is dedicated to a math-
ematical introduction to the modal and non-modal hydrodynamic stability
theory; particular emphasis is given to the receptivity analyses and their
implications on the design of controllers. All the concepts are then applied
to a flow past a cylinder, which provides to be an important driving ex-
ample for the following chapters. Chapter 5 presents the studies on the
instabilities arising in a flow subject to spanwise forcing (often referred as
surface bleed). At first, we discuss the results from direct numerical simula-
tions to characterise the optimal features of forcing and to understand the
physical mechanisms involved. TriGlobal stability analyses are then used to
investigate the role of the spanwise modulation on the near-wake instabili-
ties. Energy and receptivity studies are adopted to shed light on the high
efficiency of such approach to control vortex shedding and provide useful
indications on the design of an appropriate controller. Chapter 6 presents
a BiGlobal stability analysis of a flow in a compressor passage. After an
introductory discussion on the main physical mechanisms, a phase-average
technique is used to generate a “globally periodic” base flow, which allows us
to perform Floquet analyses of the periodic orbits and detect the presence
of convective instabilities. Finally, the conclusions of our findings and sug-
gestions for further work are presented in chapter 7. In addition, Appendix
A contains a description of the Arnoldi methods, which were used in the
present thesis to solve the stability eigenproblems.
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Chapter 2

The Spectral/hp element
method

“ It is unworthy of excellent men to lose hours like slaves in the
labor of calculation which could be relegated to anyone else if
machines were used. ”

Gottfried Willhelm von Leibniz, Machina Arithmetica

In this chapter, the fundamental concepts behind the spectral/hp element
method are illustrated. This method was used to discretise the partial dif-
ferential equations that describe all the physical phenomena investigated in
this thesis.

2.1 Introduction to the Navier-Stokes equations

Let us consider an incompressible Newtonian viscous fluid. Its motion is
described by the Navier-Stokes equations which, in a Cartesian coordinate
system, read:

∂u+

∂t+
+ (u+ · ∇)u+ = −1

ρ
∇p+ + ν∇2u+ (2.1)

∇ · u+ = 0 (2.2)

where u+ ≡ u(x+, y+, z+, t+) ≡ (u+, v+, w+)(t+) is the velocity field, t+ the
time, p+ the pressure, ρ the constant density and ν the kinematic viscosity of
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the fluid, which is assumed to be constant. These equations can be rewritten
in the following non-dimensional form:

∂u

∂t
+ (u · ∇)u = −∇p+ 1

Re
∇2u (2.3)

∇ · u = 0 (2.4)

where x = x+/L, y = y+/L, z = z+/L, t = t+u∞/L, u = (u, v, w)(t) =
u+/u∞, p = (p+ − p∞)/(ρu2

∞) and Re = u∞L/ν. Here, L, u∞ and p∞
represent the characteristic length, velocity and pressure respectively.
In this thesis, we will consider these equations just in their non-dimensional
formulation and they will be solved by means of a quasi 3D-approach. As we
will describe in the following sections, this method consists in approximating
the flow variables by a Fourier series along the z-direction, such that the
three-dimensional equations are then reduced to a set of two-dimensional
problems with different wavenumbers. Each set of 2D-equations is then
spatially discretised by means of a spectral/hp element method (Karniadakis
& Sherwin, 2005) and evolved temporally using a velocity-correction scheme
(Karniadakis et al. 1991).

2.2 Numerical discretisations

Before describing in details the spectral/hp element method, we introduce
briefly the Finite Element and the Spectral methods; the spectral/hp ele-
ment methods combine the properties of both finite element and spectral
methods, making it particularly suitable to solve partial differential equa-
tions defined in complex domains, which are typical in a wide range of
applications.

2.2.1 Finite Element Method

The first implementation of the finite element method originated in the field
of structural engineering and it is based on the solution of the Rayleigh-Ritz
problem, expressed by the following theorem:
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Theorem

Given the sufficiently continuous real functions p(x), u(x) and f(x),
the functional

F(u) =
ˆ 1

0

[
p(x)(du

dx
(x))2 + q(x)u2(x)− 2f(x)u(x)

]
dx (2.5)

has a minimum with respect to the variation in u(x), which is given
by the following Euler equation:

− d

dx

(
p(x)du(x)

dx

)
+ q(x)u(x) = f(x) (2.6)

Finding the solution of equation (2.6) is equivalent to finding the func-
tion u(x) that minimise the functional (2.5). The Rayleigh-Ritz approach
consists in approximating the solution using a finite number of functions
u(x) =

∑N
i qiΦi(x) to determine the unknown weights qi that minimise

the functional of equation (2.5). The Rayleigh-Ritz method is the starting
point to introduce the finite element method, and in fact the weak integral
of equation (2.6) gives the Galerkin formulation of the problem, which can
be then reduced to an algebraic system to be solved numerically (Courant
& Hilbert 1989).
Therefore, the main idea behind the finite element method is to divide the
physical domain Ω into a set of subdomains Ωi with a characteristic size h,
usually called elements, and locally approximate the solution by piecewise
interpolation functions. Algebraic convergence is achieved by reducing the
size of the elements (h-type refinement). The error in the numerical solu-
tion decays by refining the mesh, which is equivalent to introducing more
elements while keeping the order of the interpolation fixed. The possibility
to use unstructured meshes makes the method attractive to study problems
defined on complex geometries.

2.2.2 Spectral Method

In spectral methods, the solution is approximated by a global p-expansion
within the whole computational domain. The expansion is generally made of
high-order orthogonal functions, typically Fourier, Chebyshev or Legendre
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series (Gottlieb & Orszag 1977). Exponential convergence is achieved by in-
creasing the number of modes in the expansion (p-type refinment). The main
difficulty of the spectral method is in constructing a continuous expansion
across the computational domain, and so these methods are generally limited
to simple geometries. Spectral methods show better convergence properties
and higher accuracy than traditional finite element methods. Interested
readers can find an extensive overview of spectral methods in Canuto et al.
(2006).

2.2.3 Spectral/hp element method

The spectral/hp element method encompasses the methods previously de-
scribed and aims at combining the geometrical flexibility of the finite ele-
ment methods with the superior convergence and accuracy of the spectral
methods. The computational domain is discretised into a subset of ele-
ments where the solution is locally approximated using high-order functions
(hp-type discretisation). Convergence can be achieved by both h or p-type
refinement. In the following section, the spectral/hp method will be dis-
cussed, starting from the method of the weighted residuals and the deriving
Galerkin formulation.

2.2.4 The method of the weighted residuals

The approximation of the solution of a partial differential equation in a
spatial domain Ω requires the replacement of an infinite series expansion
with a finite representation. The choice of some specific conditions to be
satisfied determines the type of numerical method. Similarly to the finite
element method, the spectral/hp element method relies on the method of the
weighted residuals in order to determine the weight functions which appear
when the weak formulation of a partial differential equations is considered.
Let us consider a linear differential equation in a domain Ω, denoted by

L(u) = 0 (2.7)

and subject to appropriate initial and boundary conditions. The approxi-
mated solution of (2.7) can be expressed as

uδ(x, t) = u0(x, t) +
Ndof∑
i=0

ûi(t)Φi(x), (2.8)

where Φi(x) are analytic functions called trial (or expansion) functions,
ûi(t) are the Ndof unknown coefficients, and u0(x, t) is a function satisfying
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the initial and boundary conditions. The functions Φi(x) need to satisfy
only any homogeneous boundary conditions which are present, since the
boundary conditions are already satisfied by u0(x, t). Substituting (2.8)
into equation (2.7), a non-zero residual R is obtained:

L(uδ) = R(uδ). (2.9)

In order to have a unique way of determining the coefficients ûi(t), a restric-
tion should be applied on the residual R such that equation (2.9) is reduced
to a system of ordinary differential equations in ûi(t). If equation (2.7) is
time-independent then the coefficients ûi can be determined directly from
the solution of an algebraic system.
In the method of the weighted residuals we adopt a restriction on R such
that the inner product of the residual with respect to a weight (or test)
function is equal to zero:

〈v(x), R〉 = 0. (2.10)

where the function v(x) is a test or weight function, while 〈·, ·〉 denotes the
inner product between two C0 functions, f and g, defined over Ω:

〈f, g〉 =
ˆ

Ω
f(x)g(x)dx. (2.11)

Let us choose v(x) as an arbitrary linear combination of a finite set of known
functions vj(x):

v(x) =
Ndof∑
j=1

bivj(x) (2.12)

When Ndof → ∞, the residual R(x) → 0 since the approximated solution
tends to the analytical one, uδ → u(x), independently from the choice of the
test function vj(x). However, due to the finite number of degrees of free-
dom, the nature of the scheme is determined by the choice of the expansion
functions Φi(x) and test function vj .
Let us substitute equation (2.9) into equation (2.10) :

ˆ
Ω

Ndof∑
j=1

vj(x)L(uδ)dx = 0 (2.13)

If we assume that the operator L is time-independent and use expression
(2.8) to evaluate (2.13), we obtain :
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ˆ
Ω

Ndof∑
j=1

vj(x)L

u0(x) +
Ndof∑
i=0

ûiΦi(x)

 dx =

Ndof∑
j=1

ˆ
Ω
vj(x)L(u0(x)) +

ˆ
Ω
vj(x)L

Ndof∑
i=1

ûiΦi(x)

 dx
 = 0

(2.14)

where we used the linearity of the operator L to split (2.14) in two terms, and
the interchangeability of the integral and summation is guaranteed by the
continuity of the inner product. This expression leads to a set of algebraic
equations to determine ûj :

Ndof∑
i=1

[
ûi

ˆ
Ω
vj(x)L (Φi(x))

]
dx = −

ˆ
Ω
vj(x)L(u0(x))dx j = 1, . . . , Ndof

(2.15)
This set of equations can be expressed in a matrix form:

Aû = f (2.16)

where û is the vector of coefficients ûi, A is the system matrix, where
elements are expressed by:

A[i][j] =
ˆ

Ω
vj(x)L (Φi(x)) (2.17)

and the vector f is given by:

f [j] = −
ˆ

Ω
vj(x)L (u0(x)) (2.18)

As previously mentioned, the specific choice of the expansion and test func-
tions defines the numerical scheme. A list of the commonly used test func-
tions and the resulting computational methods is reported in table 2.1. In
this work, the Galerkin scheme, which uses the same function spaces for
both the test and trial functions, is used.

2.3 Generalities on the spectral/hp discretisations

Similarly to finite element methods, the starting point to derive the spec-
tral/hp method is the discretisation of a domain Ω into a subset of elements
Ωi, for example quadrilaterals or triangles. Each element Ωi can be trans-
formed, by means of a unique mapping χ = (χ, χ), from its arbitrary original
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Test/weight function Type of computational method
vj(x) = δ(x− xj) Collocation

vj(x) =

1, inside Ωj

0, outside Ωj
Finite volume (subdomain)

vj(x) = ∂R
∂ûj

Least-squares
vj(x) = Φj Galerkin
vj(x = Ψi(6= Φj) Petrov-Galerkin

Table 2.1: Test function vj(x) used in the method of weighted residuals and
the resulting method.

shape in the physical space (x1, x2) into a standard element Ωst, defined in
a reference space (ξ1, ξ2):

x1 = χ1(ξ1, ξ2), x2 = χ2(ξ1, ξ2). (2.19)

Operations involving elements in the physical space will be referred as local,
while operations in the reference space as standard.

2.3.1 Quadrilateral expansion bases

The quadrilateral standard element is defined as a bi-unit square Q2:

Ωst = Q2 = {ξ1, ξ2 : |ξ1, ξ2| ≤ 1} (2.20)

The simplest way to construct the expansion bases is by taking the tensor
product of a one-dimensional basis. In the present work, two type of basis
will be used:

• Modal (C0 continuous) basis:

φp(ξ) =


ψa0(ξ) = 1−ξ

2 , p = 0,
ψap(ξ) =

(
1−ξ

2

) (
1+ξ

2

)
P 1,1
p−1, 0 < p < P

ψaP (ξ) = 1+ξ
2 , p = P

(2.21)

where ξ represents the one-dimensional local coordinate, spanning
from −1 to 1, whereas P 1,1

p is the Jacobi polynomial of order p, which
has the property of being orthogonal to all polynomials of order less
than p if integrated with respect to (1− ξ)(1 + ξ):
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ˆ 1

−1
(1− ξ)(1 + ξ)P 1,1

n P 1,1
m = 0, n 6= m. (2.22)

A fundamental property of the modal expansion is that it can be de-
composed into boundary and interior modes. Boundary modes are
the modes with non-zero support on the boundaries of the standard
region, while interior modes are modes with zero values on all bound-
aries. This decomposition is convenient when a C0 global expansion
is required, since a a global expansion can be generated from the local
expansions by matching the shapes of the individual boundary modes.

• Nodal (C0 continuous) basis:

φp(ξ) = 1
P (P + 1)Lp(ξp)

(1− ξ2)L′P (ξ)
ξ − ξp

, 0 ≤ p ≤ P, (2.23)

where Lp(ξ) is a Legendre polynomial of order P , while ξp denotes
the Gauss-Lobatto points in [−1, 1]. An important property of the
Legendre polynomial is that they are orthogonal with respect to the
inner product on the interval ξ = [−1, 1].

The two-dimensional expansion functions can be obtained from the tensor
product of these one-dimensional functions:

φpq(ξ1, ξ2) = φp(ξ1)φq(ξ2), 0 ≤ p, q, p ≤ P1, q ≤ P2 (2.24)

Let us note that the polynomial order of the multi-dimensional expansions
may be different in each coordinate direction, in fact P1 and P2 are not
necessarily the same.

2.3.2 Triangular expansion bases

When the mesh is composed of triangular elements, some difficulties arise,
since the Cartesian coordinates (ξ1, ξ2) are not bounded by constant limits,
as in the case for quadrilaterals, but are dependent upon each other. The
structure of the triangular standard element is T 2 = {−1 ≤ ξ1, ξ2 : ξ1 +ξ2 ≤
0}, which does not allow us to define the tensor product expansion as easily
as in §2.3.1. However, we can define an artificial coordinate system where
the local coordinates have independent bounds and define a transformation
that maps the triangular region into a rectangular one. This coordinate
system is called collapsed and it is used to represent the triangles in the
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Figure 2.1: Construction of a two-dimensional modal expansion basis from
the tensor product of two one-dimensional expansions of order P = 4.
Adapted from Karniadakis & Sherwin (2005)

standard region Ωst. A suitable collapsed coordinate system is defined by
the Duffy transformation:

η1 = 21+ξ1
1−ξ2

− 1,
η2 = ξ2

(2.25)

and the respective inverse transformation is:

ξ1 = (1+η1)(1−η2)
2 − 1

ξ2 = η2
(2.26)

The new coordinates (η1, η2) define the standard triangular region by:

T 2 = {(η1, η2)| − 1 ≤ η1, η2 ≤ 1} (2.27)

Figure 2.2: Triangle-to-rectangle transformation. Adapted from Karni-
adakis & Sherwin (2005).

By means of this (2.25), the definition of the triangular region in the col-
lapsed coordinate system is identical to the definition of the standard quadri-
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lateral region we introduced in §2.3.1. It is now possible to define the ex-
pansion bases in the collapsed system similarly to quadrilateral elements:

φpq(ξ1, ξ2) = ψap(η1)ψbpq(η2) (2.28)

where ψpq(η) is the modified one-dimensional expansion base (Karniadakis
& Sherwin (2005)):

ψbpq(η) =



ψaq (η), p = 0, 0 ≤ q ≤ Q,(
1−η

2

)p+1
, 0 < p < P, q = 0,(

1−η
2

)p+1 1+η
2 P 2p+1,1

q−1 (η), 0 < p < P, 0 < q < Q,

ψaq (η), 0 < p < P, 0 < q < Q

(2.29)

Figure 2.3: Construction of a two-dimensional modal expansion basis from
the tensor product of two one-dimensional expansions of order P = 4.
Adapted from Karniadakis & Sherwin (2005).

This basis allows us to perform once again the decomposition into boundary
and interior modes, facilitating the tessellation of the elements into a global
expansion, preserving the C0-continuity of the solution. One of the main
advantage of tensorial bases is the possibility to use the sum-factorisation
technique, which reduces significantly the number of operations, generating
a noteworthy gain in terms of computational efficiency. Further details can
be found in Karniadakis & Sherwin (2005).
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2.3.3 Elemental operations in the standard reference space

As explained in section §2.2.4, the weak Galerkin formulation requires the
differentiation and integration of functions in the computational domain in
order to evaluate the matrix A and the vector f expressed by (2.17) and
(2.18). These operations will be introduced initially in the standard region
Ωst and their value in the local system will be evaluated using the inverse
mapping. Finally, the contributions of each element are summed up to
assemble the global matrix system.

2.3.3.1 Numerical integration

In order to calculate the integrals present in the weak Galerkin formulation,
it is necessary to introduce some discrete integration rules, commonly known
as numerical quadrature. In this thesis, Gaussian quadrature is adopted due
to its high accuracy when sufficiently smooth functions are considered.
Let us consider the integral:

ˆ 1

−1
u(ξ)dξ, (2.30)

and approximate the integral with the following finite summation:

ˆ 1

−1
u(ξ)dξ ≈

Q−1∑
i=0

wiu(ξi) (2.31)

where wi are specified constants that will be referred as weights and ξi are
Q− 1 distinct points in the interval −1 ≤ ξi ≤ 1.
In Gaussian quadrature the integrand is presented as a Lagrange polynomial
hi(ξ) through Q points ξi:

u(ξ) =
Q−1∑
i=0

u(ξi)hi(ξ) + ε(u) (2.32)

where ε(u) represents the approximation error. (2.30) can then be expressed
as:

ˆ 1

−1
u(ξ)dξ =

Q−1∑
i=0

wiu(ξi) +R(u) (2.33)

where:

wi =
ˆ 1

−1
hi(ξ)dξ (2.34)
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R(u) =
ˆ 1

−1
ε(u)dξ (2.35)

Expression (2.34) defines the weights wi in terms of the integral of the La-
grange polynomial, but we still need to evaluate ξi. Since u(ξ) is represented
by a polynomial of order Q − 1, the approximation will be exact if u(ξ) is
a polynomial of order Q− 1 or less (in this case R(u) = 0). However, there
is a choice of zeros which permits the exact integration of polynomials of
order higher than Q− 1 and this is the main idea behind Gaussian quadra-
ture. The zeros used in the Gaussian quadratures are the zeros of the Jacobi
polynomials. There are three different choices of the zeros, leading to three
different types of Gaussian quadratures, known as Gauss, Gauss-Radau and
Gauss-Lobatto. Gauss quadrature uses zeros where the points are interior
to the interval −1 < ξi < 1 for i = 0, . . . , Q − 1 and is able to integrate
exactly polynomials of order less than 2Q− 1. In Gauss-Radau quadrature,
the zeros include one of the end-points, generally ξ = −1 and it is possible to
integrate exactly polynomials up to order 2Q−2. Finally, if the zeros include
both the end-points (ξ = ±1), then we have the Gauss-Lobatto quadrature
and an exact integration is possible for polynomials up to order 2Q− 3.
The extension to two-dimensional problems for the standard quadrilateral
region can be performed easily using two one-dimensional integrals:

ˆ
Q2
u(ξ1, ξ2)dξ1dξ2 =

ˆ 1

−1

{ˆ 1

−1
u(ξ1, ξ2)|ξ2

}
dξ2 '

Q1−1∑
i=0

wi


Q2−1∑
j=0

wju(ξ1i, ξ2j)


(2.36)

where Q1 and Q2 are the number of quadrature points in the ξ1 and ξ2
directions respectively.
The extension for the two-dimensional standard triangular region is a little
bit more complex, requiring the transformation from the Cartesian to the
collapsed system, and it is expressed by (2.25).

ˆ
T 2
u(ξ1, ξ2)dξ1dξ2 =

ˆ 1

−1

ˆ 1

−1
u(η1, η2)

∣∣∣∣ ∂(ξ1, ξ2)
∂(η1, η2)

∣∣∣∣ dη1dη2 (2.37)

where ∂(ξ1, ξ2)/∂(η1, η2) is the Jacobian of the transformation and is ex-
pressed by:

∂(ξ1, ξ2)
∂(η1, η2) = 1− η2

2 (2.38)

Using a one-dimensional Gaussian quadrature for each integral, we obtain:
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ˆ 1

−1

ˆ 1

−1
u(η1, η2)1− η2

2 dη1dη2 =
Q1−1∑
i=0

wi


Q2−1∑
j=0

wju(η1i, η2j)
1− η2j

2


(2.39)

where η1i and η2j are the quadrature points in the η1 and η2 directions re-
spectively. However, it is possible to consider a more general quadrature
rule, which we shall refer as Gauss-Jacobi quadrature which is very conve-
nient for triangles. This quadrature includes the factor (1 − ξ)α(1 + ξ)β in
the integrand:

ˆ 1

−1
(1− ξ)α(1 + ξ)βu(ξ)dξ =

Q−1∑
i=0

wα,βu(ξα,βi ), (2.40)

where wα,β and ξα,βi are the weights and zeros, which both depend on the
choice of the exponents α and β. If α = β = 0, then standard Gaussian
quadrature is recovered. The Gauss-Jacobi is particularly convenient to
define the integration in the standard triangular region since the Jacobian
term (1 − η2)/2 can be directly included into the quadrature weights by
setting α = 1, β = 0. The integration scheme over T 2 is then:

ˆ 1

−1

ˆ 1

−1
u(η1, η2)1− η2

2 dη1dη =
Q1−1∑
i=0

w0,0
i


Q2−1∑
j=0

ŵ1,0
j u(η1i, η2j)

 , (2.41)

where:

ŵ1,0
j =

w1,0
j

2 . (2.42)

For triangles, the Gauss-Jacobi rules uses fewer quadrature points than the
standard Gauss-integration to achieve an equivalent accuracy. Generally the
Lobatto-type quadrature is preferred because it includes the end points of
the interval [−1, 1] , which is helpful in setting the boundary conditions.
However, when triangles are used, the Radau distribution in η2 (which in-
cludes the point at η2 = −1) is preferred because it avoids the explicit cal-
culations of terms at the degenerate vertex (η1 = −1, η2 = 1). This vertex
does not cause problems when integrating over T 2, but adds complications
in the differentiation.

2.3.3.2 Collocation differentiation

The application of the method of the weighted residuals involves the evalu-
ation of the derivatives of a function inside the integral. Therefore, we need
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to evaluate the function derivatives at the quadrature points ξi; in this thesis
we will use a method called collocation differentiation or differentiation in
physical space.
Let us assume that the approximate solution uδ(ξ) is a polynomial of or-
der equal or less than P ; we can express it exactly in terms of Lagrange
polynomials hi(ξ) through a set of Q nodal points ξi:

u(ξ) =
Q−1∑
i=0

u(ξi)hi(ξ), hi(ξ) =
∏Q−1
j=0,j 6=i(ξ − ξj)∏Q−1
j=0,j 6=i(ξi − ξj)

(2.43)

where Q ≥ P + 1. Therefore, we can write the derivative of u(ξ) as:

du(ξ)
dξ

=
Q−1∑
i=0

u(ξi)
dhi(ξ)
dξ

(2.44)

The derivative at the nodal points ξi is therefore given by:

du(ξ)
dξ

=
Q−1∑
j=0

diju(ξj) (2.45)

where:

dij = dhj(ξ)
dξ

∣∣∣∣
ξ=ξi

(2.46)

is the differentiation matrix.

These concepts can be extended to two-dimensional cases. For a standard
quadrilateral region Q2, let us consider the general expansion:

uδ(ξ1, ξ2) =
P1∑
p=0

P2∑
q=0

ûpqφpq(ξ1, ξ2) (2.47)

and write it in terms of Lagrange polynomials:

uδ(ξ1, ξ2) =
Q1−1∑
p=0

Q2−1∑
q=0

upqhp(ξ1)hq(ξ2), (2.48)

where:

upq = uδ(ξ1p, ξ2q), Q1 > P1, Q2 > P2 (2.49)

and ξ1p and ξ2q are the zeros of an appropriate Gaussian quadrature. The
partial derivative with respect to ξ1 is:
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∂uδ

∂ξ1
(ξ1, ξ2) =

P1∑
p=0

P2∑
q=0

upq
dhp(ξ1)
dξ1

hq(ξ2). (2.50)

Noting that the Lagrange polynomials at the nodal points assume the value
of the Kronecker delta, hp(ξi) = δpi, we can write the derivative with respect
to ξ1 at the nodal points (ξ1i, ξ2j) as:

∂uδ

∂ξ1
(ξ1i, ξ2j) =

P1∑
p=0

P2∑
q=0

{
upq

dhp(ξ1)
dξ1

∣∣∣∣
ξ1i

δqj

}
=

P1∑
p=0

upj
dhp(ξ1)
dξ1

∣∣∣∣
ξ1i

(2.51)

The derivative with respect to ξ2 can be evaluated in a similar way:

∂uδ

∂ξ2
(ξ1i, ξ2j) =

P2∑
p=0

uiq
dhp(ξ2)
dξ2

∣∣∣∣
ξ2j

(2.52)

For the triangular region T 2, the polynomial expansion can be represented
in terms of Lagrange polynomials using the collapsed coordinates η1 and η2:

uδ(ξ1, ξ2) =
P1∑
p=0

P2∑
q=0

ûpqφpq(η1, η2) =
P1∑
p=0

P2∑
q=0

upqhp(η1)hq(η2) (2.53)

where upq = uδ(η1p, η2p) and η1p, η2q refer to the nodal points of the La-
grange polynomials. The partial derivative with respect to the Cartesian
system (ξ1, ξ2) is expressed by the following expression:(

∂
∂ξ1
∂
∂ξ2

)
=
( 2

1−η2
∂
∂η1

21+η1
1−η2

∂
∂η1

+ ∂
∂η2

)
(2.54)

Similarly to the quadrilaterals, the extension to triangles can be performed
considering that the partial derivatives with respect to η1 and η2 at the
nodal points are given by:

∂uδ

∂η1
(η1i, η2j) =

P1∑
p=0

upj
dhp(η1)
dη1

∣∣∣∣
η1i

, (2.55a)

∂uδ

∂η2
(η1i, η2j) =

P2∑
p=0

uiq
dhq(η2)
dη2

∣∣∣∣
η2j

. (2.55b)

Substituting equations (2.55a) and (2.55b) into equation (2.54), we obtain
the partial derivative of the function u with respect to the Cartesian coor-
dinates (ξ1, ξ2).

44



CHAPTER 2. THE SPECTRAL/HP ELEMENT METHOD

2.3.3.3 Backward and forward transformation

As discussed in §2.3.3.1 and §2.3.3.2, the derivation and integration might
be performed in two different spaces. Hence, it is necessary to introduce a
transformation to evaluate the physical values from the expansion basis coef-
ficients (backward transformation) and vice-versa (forward transformation).
The backward transformation can be defined as:

uδ(ξ1i, ξ2j) =
∑
p,q

ûp,qφpq(ξ1i, ξ2j) (2.56)

which merely evaluates the spectral/hp element expansion at the quadrature
points. To derive a mathematical expression for the forward transformation,
let us consider a generic function u(ξ1, ξ2) and calculate the error R(u)
between the approximation uδ and u(ξ1, ξ2) :

uδ(ξ1, ξ2)− u(ξ1, ξ2) =
∑
p,q

ûp,qφpq(ξ1, ξ2)− u(ξ1, ξ2) = R(u) (2.57)

Similarly to the method of weighted residuals discussed in §2.2.4, we take
the inner product of both sides by an undefined function v(ξ1, ξ2) and set
〈v,R(u)〉 = 0. We obtain:〈

v,
∑
p,q

ûpqφpq

〉
= 〈v, u〉 . (2.58)

The choice of the function v(ξ1, ξ2) defines the type of projection. In the
collocation projection we choose v(ξ1, ξ2) = δ(ξ1i, ξ2j) where δ(ξi1, ξ2j) is the
Kronecker delta function at the nodal points, implying that R(u(ξ1i, ξ2j) =
0. This technique can be used to interpolate a function within the region
(ξ1, ξ2) ∈ Ωst. In the Galerkin projection the weight functions are chosen to
be the same as the expansion basis, v(ξ1, ξ2) = φrs(ξ1, ξ2). Noting that the
coefficients ûpq are independent of ξ1 and ξ2, equation (2.58) can be then
written as:

∑
p,q

〈φrs, φpq〉 ûpq = 〈φrs, u〉 (2.59)

Equation (2.59) represents a linear system, which can be solved to determine
ûpq, where 〈φrs, φpq〉 represent the components of the coefficient matrix.

2.3.4 Elemental operation within general-shaped elements

In the previous sections, the methodology to integrate and differentiate
within the standard region Ωst was described. However, we need to gen-
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eralise the concepts in order to perform these operation in the elemental
local region Ωe, which can have a generic shape and orientation. The idea
is to define a mapping χe = (χe1, χe2) between the Cartesian coordinates
(x1, x2) and the local Cartesian coordinates in the standard region (ξ1, ξ2),
which can be expressed by:

x1 = χe1(ξ1, ξ2), x2 = χe2(ξ1, ξ2). (2.60)

Let us consider straight-side elements, which require just information of the
vertices. The mapping for a triangle defined by the vertices {(xA1 , xA2 ), (xB1 , xB2 ),
(xC1 , xC2 )} is:

xi = χei (η1, η2) = xAi
1− η1

2
1− η2

2 + xBi
1 + η1

2
1− η2

2 + xCi
1 + η2

2 , i = 1, 2
(2.61)

This mapping can be expressed in the Cartesian coordinate system, recalling
equation (2.25):

xi = χi(ξ1, ξ2) = xAi
−ξ2 − ξ1

2 + xBi
1 + ξ1

2 + xCi
1 + ξ2

2 , i = 1, 2 (2.62)

Similarly, for quadrilateral elements defined by the vertices {(xA1 , xA2 ), (xB1 , xB2 ),
(xC1 , xC2 ), (xD1 , xD2 )}:

xi = χ1(ξ1, ξ2) = xAi
1− ξ1

2
1− ξ2

2 + xBi
1 + ξ1

2
1− ξ2

2 +

xCi
1 + ξ

2
1 + ξ2

2 + xDi
1− ξ1

2
1 + ξ2

2 , i = 1, 2.
(2.63)

To extend these results to curvilinear elements, we define the following map-
ping:

xi = χi(ξ1, ξ2) =
P1∑
p=0

P2∑
q=0

x̂ipqφpq(ξ1, ξ2) (2.64)

Equation (2.64) expresses the geometry of the problem as an expansion with
the same form and polynomial order of the unknown variables; this type of
mapping is called iso-parametric. Mappings (2.62) and (2.63) are particular
cases of (2.64), where the coefficients of all but the vertex modes are zero
(Karniadakis & Sherwin, 2005). The integration within a general-shaped
elemental region Ωe can be expressed as:

ˆ
Ωe
u(x1, x2)dx1dx2 =

ˆ
Ωst

u(ξ1, ξ2)|J |dξ1dξ2. (2.65)
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where J is the Jacobian due to the transformation:

J =
∣∣∣∣∣
∂x1
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ1

∂x2
∂ξ2

∣∣∣∣∣ = ∂x1
∂ξ1

∂x2
∂ξ2
− ∂x1
∂ξ2

∂x2
∂ξ1

. (2.66)

To differentiate, we apply the chain rule:

[
∂
∂x1
∂
∂x2

]
=
[
∂ξ1
∂x1

∂
∂ξ1

+ ∂ξ2
∂x1

∂
∂x2

∂ξ1
∂x2

∂
∂ξ1

+ ∂ξ2
∂x2

∂
∂x2

]
. (2.67)

Since the mapping is iso-parametric, we have that ξi = χ−1
i (ξ1, ξ2), so we

can apply the chain rule directly to ξ1 and ξ2:

[
∂
∂x1
∂
∂x2

]
=
[
∂ξ1
∂x1

∂ξ2
∂x1

∂ξ1
∂x2

∂ξ2
∂x2

] [
∂
∂ξ1
∂
∂ξ2

]
= 1
J

[
∂x2
∂ξ2

−∂x2
∂ξ1

−∂x1
∂ξ2

∂x1
∂ξ1

] [
∂
∂ξ1
∂
∂ξ2

]
(2.68)

In this thesis, collocation differentiation will be used to compute the metric
terms ∂ξi/∂xj and the derivatives with respect to ξ1 and ξ2.

2.3.5 Global operations

All the operations described so far are performed on a single element and
share no information with any other element. However, to calculate the
global solution on the domain Ω some form of continuity or transfer of in-
formation between the elements needs to be imposed. In this thesis, the clas-
sical Galerkin method is adopted, which consists of imposing C0-continuity
between the element boundaries. This is achieved by means of a global
assembly process, often referred as direct stiffness summation or global as-
sembly. At this stage, it is important to recall the decomposition of the
elemental bases into boundary/interior modes, in fact we need to match
only the boundary modes of similar shape. The most advantageous compu-
tational approach for the global assembly is to perform most operations in a
local environment and then assemble all the local contributions into a global
system. This method requires a mapping to relate the global system to the
local one. Let us consider a function u(x1, x2), which can be expanded as:

u(x1, x2) =
Nel∑
e=1

P1∑
p=0

P2∑
q=0

φepq(x1, x2)ûepq, (2.69)

where Nel is the number of elements in the domain, ûepq the local expansion
coefficients and φepq(x1, x2) the expansion modes in a specific element e.
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The vector representing all the local degrees of freedom1 can be obtained by
concatenation of all the local expansion coefficients:

ûl = ûe =


û1

û2

...
ûNel

 , (2.70)

where the underlined vector implies the extension over all the elemental
regions. The mapping from the global to the local degrees of freedom can
be expressed by the matrix A, which is sparse with entries generally ±1 or
0:

ûl = Aûg (2.71)

The global assembly can then be expressed by the transpose of the matrix
A and can be captured by the integral operation. Let us consider the inner
product of a function u(x1, x2) with respect to the global basis Φm(x1, x2):

Îg[m] =
ˆ

Ω
u(x1, x2)Φm(x1, x2)dx1dx2, 0 ≤ m < Ndof (2.72)

Equation (2.72) can be expressed using each elemental contribution:

Îg[m] =
ˆ

Ω
u(x1, x2)Φm(x1, x2)dx1dx2 =

ˆ
Ωe
u(x1, x2)φn(x1, x2)dx1dx2,

(2.73)
where m(n, e) expresses each modal contribution n over each element e. We
can then write equation (2.73) as:

Îg = AT Î l = AT Î
e (2.74)

This methodology is summarised in figure (2.4).

2.3.5.1 Static and multi-level static condensation

Let us consider the following Helmholtz equation:

∇2u− λu = f (2.75)

1the local degrees of freedom are defined as all the elemental expansion coefficients over
all the elements.

48



CHAPTER 2. THE SPECTRAL/HP ELEMENT METHOD

Figure 2.4: Illustration of local to global assembly. If we have a global expan-
sion as represented in figure (a) it can be decomposed into two elemental
contributions multiplied by the same global coefficient û. To integrate a
function f(x1, x2) with respect to the global mode (figure (b)), the integra-
tion in the global region is split into the sum of the integration within the
local regions (Karniadakis & Sherwin, 2005).

defined in a local quadrilateral region Ωe. The weak formulation of the
problem can be written in a matrix notation as

Heûe = [Le + λM e]ûe. (2.76)

Expression (2.76) is similar to (2.16), where Le represents the Laplacian
operator, while M e is called elemental mass matrix and is defined as:

M e[m][n] =
ˆ

Ωe
Φe
m(x1, x2)Φe

n(x1, x2)dx1dx2 (2.77)

Following the procedure described in §2.3.5, we can construct the global
matrix, starting from the elemental contributions using the matrix A:

M = ATM eA, (2.78)

M e is a block diagonal matrix that concatenates the single elemental ma-
trices M e:
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M e =



M1 0 0 · · · 0
0 M2 0 · · · 0
0 0 M3 · · · 0
...

...
... . . . ...

0 0 0 · · · MNel


(2.79)

Each of the elemental matricesM e can be split into four sub-matrices, which
contain the boundary and interior contributions respectively:

M e =
[
M e

b M e
c

(M e
c)T (M)ie

]
(2.80)

whereM e
b represents the components of theM e resulting from the boundary-

boundary interactions, M e
c the components of M e from the coupling be-

tween the boundary-interior modes, and M e
i the components of M e re-

sulting from the interior-interior mode interactions. In the global assembly
operation, when the mapping A is built, the global boundary degrees of
freedom are listed first, followed by the global interior degrees of freedom.
Furthermore, the global interior degrees of freedom are numbered consec-
utively. The resulting system then has the form shown in figure (2.5). In
this figure M b is the global assembly matrix of the elemental boundary-
boundary mode interaction from M e

b, and similarly M c, M i correspond
to the global assembly matrices of the elemental boundary-interior coupling
and interior-interior systems M e

c and M e
i .

Let us assume that we need to solve a system of the form:

Mx = ATM eAx = f . (2.81)

and let us split x and f into the boundary and interior components respec-
tively:

x =
[
xb
xi

]
, f =

[
f b
f i

]
. (2.82)

Therefore equation (2.81) can be rewritten as:[
M e

b M e
c

(M e
c)T (M)ie

] [
xb
xi

]
=
[
f b
f i

]
. (2.83)

If we pre-multiply the system by the matrix:[
I −M cM

−1
i

0 I

]
(2.84)
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Figure 2.5: Structure of the global matrix system. Adapted from Karni-
adakis & Sherwin (2005).

we obtain:[
M b −M cM

−1
i M

T
c 0

(M c)T M)i

] [
xb
xi

]
=
[
f b −M cM

−1
i f i

f i

]
(2.85)

The equation for the boundary unknowns is:

(M b −M cM
−1
i M

T
c )xb = f b −M cM

−1
i f i (2.86)

Once xb is known, xi can be determined from the second row of equation
(2.85):

xi = M−1
i f i −M

−1
i M

T
c xb (2.87)

The solution of the system (2.81) has been split into three operations. The
first is the evaluation and inversion of M b −M cM

−1
i M

T
c (usually referred

to as the Schur complement). The second one is the computation M−1
i ,

while the final step is the evaluation of M cM
−1
i = [M−1

i M
T
c ]T . Both the

second and third operations can be performed at a local elemental level.
The most expensive operation of this procedure is the computation of the
Schur complement, in fact the inverse matrix M−1

i is generally full. This
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method is known as static condensation. A further optimisation can be
achieved by means of the multi-level static condensation (often referred as
subtracting). The same idea behind the static condensation can be applied to
the remaining boundary degrees of freedom to solve the Schur complement
system. An appropriate numbering of the boundary system generates a
block diagonal Schur complement matrix and the static condensation can
be then reapplied to this new level. Further details on this method can be
found in Karniadakis & Sherwin (2005).

2.3.6 Fourier-Spectral/hp element method

In this thesis, the three-dimensional solution of the underlying PDEs (equa-
tions (2.3) and (2.4)) is computed by means of a Fourier-spectral/hp element
method (Karniadakis, 1990). This method consists of a combination of a
spectral/hp element approach to discretise the variables in a series of two-
dimensional planes (x− y for instance) and then a spectral Fourier method
is applied in the third direction, (generally the z direction), as shown in
figure (2.6).
To use a spectral method in the spanwise direction, we need to consider a
periodic solution of equations (2.3)-(2.4) along the span, so that

u(x, y, z, t) = u(x, y, z + Lz, t) (2.88)

where Lz represents the length in the spanwise dimension. Let us expand
the solution in the spanwise direction using a discrete Fourier series with K
modes:

u(x, y, z, t) =
K/2∑

k=−K/2
ûk(x, y, t)ei

2kπ
Lz (2.89)

The equations that describe the evolution of each coefficient ûk can be ob-
tained by taking the Fourier transform F of equations (2.3)-(2.4):

∂ûk
∂t

= F [N(u)]− ∇̃pm + 1
Re
∇̃2uk (2.90a)

∇̃ · ûk = 0 (2.90b)

where N(u) is the non-linear term of the Navier-Stokes equations, while
operators ∇̃ and ∇̃2 are respectively:
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Figure 2.6: Geometric interpretation of the Fourier spectral/hp element
method. Spectral/hp element discretisation is adopted on each xy plane
and a spectral method in the z-direction. Adapted from Bolis (2013)
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∇̃ =


∂
∂x
∂
∂y

iβk

 ∇̃2 = ∂2

∂x2 + ∂2

∂y2 − β
2
k with βm = 2πk

Lz
(2.91a)

Each mode can be evaluated independently from the others and the only
coupling is through the non-linear terms. The solution of the equations is
then reduced to a series of two-dimensional problems over the Fourier planes.
This has important advantages in term of efficiency and it facilitates the
parallelisation of the algorithms (Bolis, 2013).

2.4 Time evolution of the Navier-Stokes equations

In the previous sections, the spatial discretisation using spectral/hp ele-
ment method was introduced, but no mention was made about the method
adopted to evolve the unsteady Navier-Stokes equations (2.3) and (2.4) in
time. In this work, a stiffly stable time splitting scheme (Karniadakis et al.,
1991) was used. This algorithm is a velocity-correction projection scheme
that decouples the velocity from the pressure, leading to an explicit evolu-
tion of the advection term and an implicit evolution of the diffusive terms.
The semi-discrete system is written as:

û−
∑Ji−1
q=0 αqu

n−q

∆t = −
Je−1∑
q=0

βq [u · ∇u]n−q (2.92a)

ˆ̂u− û
∆t = −∇(p′)n+1 (2.92b)

γ0(u)n+1 − ˆ̂u
∆t = ν∇2un+1 (2.92c)

where Je is the order of the time integration for the explicit terms (advection
terms), Ji the implicit ones (diffusion terms), and γ0, αq and βq are the
coefficients of the multi-step implicit scheme, whose values are reported in
table (2.2). The scheme requires the definition of appropriate boundary
conditions for velocity and pressure; for the pressure, the following high-
order boundary condition is adopted:

∂pn+1

∂n
= −

∂u
∂t

n+1
+ ν

Je−1∑
q=0

βq(∇×∇× u)n−q +
Je−1∑
q−0

βq[(u · ∇)un−q
 · n
(2.93)
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Coefficient 1st order 2nd order 3rd order
γ0 1 3/2 11/6
α0 1 2 3
α1 0 -1/2 -3/2
α2 0 0 1/3
β0 1 2 3
β1 0 -1 -3
β2 0 0 1

Table 2.2: Stiffly stable splitting scheme coefficients

The high-order boundary conditions for the pressure are important because
without these conditions the method cannot recover the appropriate tem-
poral convergence (Karniadakis et al. 1991).
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Chapter 3

Wake transition and control
of flows past bluff bodies

“
The more you explain it, the more I don’t understand it.

”
Mark Twain, A Complaint about Correspondents

The scope of this chapter is to outline the different types of instabilities in
wakes of flows past bluff bodies, specifically circular cylinders. In the first
part of the chapter, after a general introduction to the problem, a classi-
fication of the different regimes of vortex shedding is presented, discussing
in details the presence of three-dimensional effects. The second part of the
chapter describes the main techniques used to attenuate or suppress the
instabilities in flows past bluff bodies, focusing on their efficiency.

3.1 Introduction to the problem

In this thesis, we will refer a body immersed in a flow as bluff when, at
sufficiently high Reynolds number, the flow separates over an extended part
of its surface. An alternate shedding of vortices in the near wake is observed
and it is responsible for significant fluctuations of the aerodynamic forces,
with consequent structural vibrations, noise or resonance. Bluff bodies are
encountered in a wide range of engineering applications (heat exchanger
tubes, risers in marine technology, road vehicles, buildings and bridges) and
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the dynamics of their wakes are complex to predict. However, an efficient
control of the unsteadiness of their wakes is a fundamental problem since
it might cause severe damages to the body. A prototype to investigate the
physical mechanisms responsible for the development of wakes is the flow
past a circular cylinder, due to its simplicity for both experimental and
computational investigations; one of the main difficulties of such studies
is related to the different behaviours the wake shows when the Reynolds
number is increased. In the following sections, the wake patterns and the
occurring instabilities in flows past a cylinder will be discussed, laying down
important concepts to understand the background of the present research.

3.2 Vortex dynamics in the wake of the flow past
a cylinder

The study of flows past a circular cylinder has been widely studied in the last
two centuries. The first experimental investigations date back to Strouhal
in 1878, who studied the effect of the wind blowing over a wire or a string
(Aeolian tones). The pitch of the aeolian tone, generated by the relative
motion of the wire and the air, was found to be independent from the length
and the tension of the wire, but it is related just to the diameter D and the
speed of the relative motion U . Within certain limits, the relation between
the frequency n and the ratio U/D can be expressed by:

n = 0.185U/D (3.1)

In 1879 Lord Rayleigh discussed Strouhal’s work in light of the dimensional
analysis, introducing a non-dimensional number known as Strouhal number
St = nD/U and showed that this non-dimensional parameter is a function
of the Reynolds number of the flow, Re. His final formula, introduced in
1915 is:

St = 0.195
[
1− 20.1

Re

]
(3.2)

At the beginning of the 20th century, Bénard and other scientists performed
some experiments in water by towing a cylinder and noticed the presence
of several dimples on the surface of the cylinder, produced by the presence
of a staggered array of vortices rotating with opposite sign. This periodic
phenomenon was called vortex shedding and it was found to be responsible
for the Aeolian tones. However, the theoretical connection between vortex
shedding and the oscillation of the drag of the bluff body was presented
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by von-Kármán only in 1912. He was convinced that the wake oscillations
and the alternate generation of vortices were strictly related and he inves-
tigated the linear stability of the vortex street. He found that two rows of
opposite-signed vortices were unstable in both symmetric and antisymmetric
configuration, with the exception of a particular arrangement characterised
by b/a = 0.28056, where a is the distance between to vortex rows and b the
inter-vortex spacing between two rows.
The analyses performed by von-Kármán left several open questions, in par-
ticular how these results were related to the vortex formation or the periodic
shedding. A first physical description of the vortex formation in the near-
wake was formulated by Gerrard (1966). Gerrard suggested that a forming
vortex draws the opposite shear layer across the wake, eventually cutting off
the supply of vorticity to the growing vortex. A better understanding of the
this phenomen was given by Perry et al. (1982) and it is summarised in figure
(3.1). At the beginning of the process, a symmetrical pair of equal and op-
posite recirculating-flow regions is present; when the vortices start to shed,
these regions are disrupted and instantaneous patterns of fluid penetrate
into the wake. According to Gerrard’s interpretation, the counterclockwise
vortex A grows from (a) to (d), gaining circulation from its connected shear
layers, until a saddle point S is formed at the lower side of the body (e),
interrupting the supply of circulation. The vortex is then shed and advected
downstream.
Huerre & Monkewitz (1990) provides a description of the wake dynamics in
terms of local and global modes, which are related to absolute and convec-
tive instabilities and the near wake of a bluff body is identified as a region
of absolute instability. This view is crucial for this thesis and will be de-
scribed in details in §5.6. Several physical quantities influence the dynamics
of wakes, specifically the Strouhal number, the drag and lift coefficients, the
base pressure coefficient Cpb = (pb−p∞)/

(
1
2ρU

2
∞

)
(where pb is the pressure

at a point located at 180 degrees from the stagnation point and p∞ the static
pressure at infinity), the location of the separation points, the surface shear
stress, the mean velocity, the Reynolds stresses and estimates of the length
and width of the domain of the vortex formation region. Bearman (1965)
using a splitter place discovered that the base suction coefficient −Cpb is in-
versely proportional to the formation length1 Lf . More generally an increase
in the formation length was found to be associated with a decrease in the
level of the velocity fluctuations u′rms/U∞ , the two-dimensional Reynolds

1the vortex formation length is the point downstream of the bluff body where the
velocity fluctuations are grown to maximum (Bearman 1965, Griffin & Ramberg 1974)
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Figure 3.1: Model of vortex shedding from Perry et al. (1982)
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stresses (−ρu′v′), and in the base suction, which generates a drag reduction.
However, the main parameter that governs the dynamics of the system is
the Reynolds number Re = U∞D/ν. The dependence of vortex shedding on
the Reynolds number will be extensively discussed in the next section.

3.3 Classification of vortex shedding regimes

The first classification of the flow regimes as function of the Reynolds number
Re is due to Roshko (1955a). A wide range of Reynolds numbers was investi-
gated, from 40 to 10,000, together with measurements of the velocity fluctua-
tions and the shedding frequency. A stable periodic laminar vortex shedding
was detected for 47 < Re < 150, a transition regime for 150 < Re < 300 and
an irregular regime for 300 < Re < 10, 000, where the velocity fluctuations
showed distinct irregularities. Similar results were obtained later by Bloor
(1964). Significant information about the physical mechanisms involved in
the formation of vortex shedding can be obtained by plotting the variation
of the base pressure coefficient Cpb, or the Strouhal number St, over the
Reynolds number Re (figure (3.2) and (3.3) respectively). The base suction
coefficient was seen to be sensitive to the process of vortex formation in the
near-wake, which itself is strongly affected by the evolution of the two and
three-dimensional instabilities. Increasing the Reynolds number the flow
shows different types of laminar and three-dimensional transition regimes,
affecting significantly the dynamics of vortex shedding.

3.3.1 Laminar Steady Regime, 0 < Re ≈ 49

When the Reynolds number is below around 49, the flow is steady, so the
Strouhal number is zero. In particular for very low Reynolds number Re < 5,
the inertial effects are negligible, thus viscous phenomena are dominant.
This type of regime is called Stokes flow. Above Re = 5, the boundary
layers separate from the surface and two symmetrical vortices are present on
each side of the wake. The near-wake is closed and becomes more elongated
when the Reynolds number is increased.

3.3.2 Laminar Vortex Shedding Regime, 49 < Re < 140− 194

If the Reynolds number is around 49, the behaviour becomes very different
from the steady wake regime previously described. Instabilities arise at the
end of the near-wake and their strength and amplification grow with Re.
The onset of the wake instability near Re = 49 (often referred as primary
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Figure 3.2: Plot of the base suction coefficient −Cpb over Reynolds number
(Williamson, 1996b).

Figure 3.3: Plot of the Strouhal number over Reynolds number (Williamson,
1996b).
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instability) was found to be a Hopft bifurcation2 and the flow can be mod-
elled as a dynamical system using the Stuart-Landau equation (Provansal
et al., 1987). As the instabilities arise, the Reynolds stresses in the near-
wake region increase and the formation length decreases, together with a
relevant increase in the base suction. The flow is two-dimensional, lami-
nar and the wake oscillation are purely periodic, with a single frequency
if vortex shedding is parallel in the spanwise direction3. Furthermore, the
Strouhal number increases with the Reynolds number as a consequence of
the unsteadiness of the flow.

3.3.3 3-D Wake Transition, 190 < Re < 1000

Transition phenomena occur when the Reynolds number approaches 190 and
the wake develops a secondary instability, which is three-dimensional and
streamwise vortex pairs appear (Williamson 1996b, 1996a); this type of in-
stability is referred as “Mode A” and can be detected from the discontinuity
in the variation of the Strouhal number or the base suction, as shown in
figures (3.3) and (3.2). Increasing further the Reynolds number, a second
discontinuity appears over a range of Re from 230 to 250, where there is a
gradual transfer of energy from Mode A to a new mode, known as “Mode B”,
characterised by finer scale streamwise vortices, with a spanwise length scale
of around one diameter. In this regime, local shedding-phase dislocations
along the span cause large-scale spots, which are known as vortex disloca-
tions (Williamson 1992a, Lewis & Gharib 1992). The appearance of Mode
A and B was confirmed by the results obtained by Barkley & Henderson
(1996) using stability analysis, as we will discuss in details in §3.4.2.

3.3.4 Shear-Layer Transition regime, 1000 < Re < 200, 000

In this regime, the boundary layer is still laminar and separation effects are
observed at around 80◦. In the free shear-layers a Kelvin-Helmholtz insta-
bility is developed and small vortices are observed, known as Bloor-Gerrard
vortices. Bloor (1964) showed that these vortices generate a frequency in the
wake which varies roughly as Re3/2, differently from the Karman vortices,
which cause a frequency with a linear dependence on the Reynolds num-
ber. In this regime, the base suction and the Reynolds stress level increase
again, while the Strouhal number and the formation length both decrease.

2A Hopf bifurcation typically occurs when a complex conjugate pair of eigenvalues of
the linearised dynamical system at a fixed point becomes purely imaginary

3This condition can be achieved by a proper manipulation of the boundary conditions
(Henderson 1994, 1995).
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Three-dimensional structures on the scale of the shear layer vortices are
present, as well as on the scale of the von-Kármán vortices (Wei & Smith
1986, Williamson et al. 1995).

3.3.5 Critical Transition Regime, 200, 000 < Re < 700, 000

In the critical transition regime, a separation/re-energisation bubble is ob-
served; this bubble re-energises the boundary layer, which separates further
downstream at about 140◦, and produces a reduction of the width of the
downstream wake with respect to the laminar case. This phenomenon gen-
erates a noteworthy reduction of drag and base suction. The separation/re-
energisation bubble might occur on only one side of the bluff body, causing
a bistable configuration with large mean lift forces (CL = 1), as found by
Bearman (1969) and Shewe (1983).

3.3.6 Supercritical regime, range G-H

In the supercritical regime, the flow is symmetric and presents two separation-
reattachment bubbles on each side of the body. The wake is particularly
thin and fluctuations are observed at large Strouhal numbers (around 0.4),
as shown by Bearman in 1969. The Reynolds stresses of the boundary layer
are considerably high, allowing the boundary layer to survive the strong
adverse pressure gradient (Roshko, 1993).

3.3.7 Post-Critical Regime, range H-J

When the Reynolds number is further increased, the transition point moves
further upstream, until the flow becomes turbulent.

As discussed in this section, the progressive increase of the Reynolds number
is associated with three main types of shear flow instabilities, namely a
wake transition, followed by the shear layer transition and boundary layer
transition. In the present work, we will consider just the first stage (wake
transition); in the next section we will describe the three-dimensional effects
of the laminar vortex shedding, which is important for the studies we will
perform in the following chapters.
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3.4 Three-dimensionality in the laminar vortex shed-
ding regime

An important feature of the nominally two-dimensional flows around bluff
bodies is the presence of relevant three-dimensional effects. A flow is said
to be nominally two-dimensional if the physical quantities show anisotropic
irregularities along the span, therefore only their time-averaged values are
zero in the spanwise direction. As discussed by Williamson (1996b), there
are two mechanisms responsible for the three-dimensional effects observed
in the laminar vortex shedding regime: external effects, which are generally
end effects associated with the aspect ratio of the bluff body, and the natural
instabilities arising in the flow.

3.4.1 End effects: oblique shedding

Evidence that vortices can shed at an oblique angle with respect to the axis
of the cylinder has been recognised since the seventies; this phenomenon
is known as oblique shedding and it was first discussed by Berger & Wille
in 1972, who found typical oblique angles of 15-20◦. Earlier experiments
performed by Tritton in 1959 showed discontinuities in the dependence of the
Strouhal number on the Reynolds number in the laminar shedding regime.
The relation between these two phenomena was investigated for over thirty
years, producing a large amount of scattered measurements, until in 1989
Williamson showed that the discontinuity observed by Tritton is caused
by a change from one mode of oblique shedding to another. The boundary
conditions at the end of the cylinder are the critical factor and are responsible
for the angle of shedding over the span. Williamson performed experiments
in a towing tank and wind tunnel and found that the initial parallel shedding
is distorted by the end effects of the cylinder. The vortices formed an oblique
or periodic chevron pattern and the St−Re discontinuity seen in figure (3.4)
was observed.
In the context of oblique waves, an interesting result was obtained by means
of the Squire’s transformation (1933). For a given wake profile and Reynolds
number, in a parallel flow, if the frequency and the temporal growth of the
most unstable 2D-wave are fo and σo, then for an oblique wave at angle θ,
the most unstable frequency and growth are fθ = fo cos θ and σθ = σo cos θ.
respectively. From such theoretical considerations, Williamson showed it
is possible to define a universal Strouhal curve and the oblique shedding
Strouhal number Stθ can be collapsed onto the parallel shedding Strouhal
number Sto by the transformation Sto = Stθ/ cos θ. These results suggested
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Figure 3.4: Oblique shedding mode in the wake of a circular cylinder at
Re = 85 (flow is upwards past a horizontal cylinder). The oblique vortices
have propagated inwards from the end to form a chevron-shaped pattern
that covers the whole span of the cylinder (Williamson, 1989).
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that it is possible to promote parallel shedding by manipulations of the
end conditions. This phenomenon can be achieved by several mechanical
devices: angling inwards the leading endplates (Williamson 1988a, 1989),
ending the span with larger coaxial cylinder (Eisenlohr & Eckelmann 1989),
using suction tubes from downstream (Miller & Williamson 1994) or us-
ing control cylinders orthogonal to the test cylinder (Hammache & Gharib
1991). These techniques are shown in figure (3.5).

Figure 3.5: Parallel two-dimensional shedding induced by manipulations
the end boundary conditions: (a): angled end (Williamson, 1988a), (b):
coaxial end cylinder (Eisenlohr & Eckelmann, 1989), (c: control cylinders
orthogonal to the test cylinder (Hammache & Gharib, 1991), (d): suction
tubes from downstream (Miller & Williamson, 1994).
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3.4.2 Natural three-dimensional effects in the transition regime

A second type of three-dimensional effects arising in flows past cylinders are
independent from the boundary conditions and are instead associated with
the natural instabilities of the wake. Roshko (1955a) suggested the presence
of transitional phenomena in the separating shear layers, before the vortices
were fully formed and shed from the cylinder, and detected high frequency
oscillations of the velocity. Hama (1957) related these oscillations to the
appearance of three-dimensional effects in the near-wake, which appeared
as a three-dimensional waviness on the primary von-Kármán vortices, which
Gerrard (1978) called “fingers of dye”. Williamson (1988b, 1992a) showed
that these “fingers” are associated with the vortex loops and streamwise
vortices, similarly to other free shear flows. Further investigations were
carried on in the eighties: Wei & Smith (1986) related the high-frequency
velocity oscillations to the development of secondary vortices, hypothesis-
ing that the 3D-stretching of these secondary vortices are responsible for
the appearance of the streamwise vortices in the wake. Williamson (1988b,
1992a) performed a wide range of experiments to determine the variation
of the Strouhal number with the Reynolds number (see figure (3.3)), not-
ing that the wake has a two-dimensional behaviour until a critical Reynolds
number is reached (Re = 180− 194), with a consequent discontinuity in the
curve. This behaviour is called mode A (see section § 3.3.2) and it is charac-
terised by a wavy deformation of the vortices along the spanwise direction,
with characteristic wavelengths around 3-4 diameters. This process is self-
sustaining due to the Biot-Savart induction from one loop to the next and
shows similar length scales to the “in-phase” mode, related to the formation
of the vortex loops in an unseparated wake (Meiburg & Lasheras, 1988).
When the Reynolds number is further increased (Re = 230 − 250), a new
type of three-dimensional instability appears, which is known as mode B.
This instability presents finer-scale vortices, which are more regulara than
those found in Mode A and have smaller wavelengths, usually around one
diameter. The structures of these two instabilities are reported in figure
(3.6).
A peculiar feature of the three-dimensional transition is the appearance of
large-scale structures, of order 10-20 diameters, between spanwise cells with
different shedding frequencies. These structures were widely investigated by
Williamson (1992a), Lewis & Gharib (1992), Bearman (1992), Eisenlohr &
Eckelmann (1989), Papangelou (1992) and they are called vortex disloca-
tions. Their presence helps to explain the large intermittent velocity irregu-
larities found by Roshko (1955a) in 1954 and they have a prominent role in

67



CHAPTER 3. WAKE TRANSITION AND CONTROL OF FLOWS
PAST BLUFF BODIES

Figure 3.6: Experimental visualisation of mode A (left) and mode B (right)
instabilities. The flow streams from the bottom to top (Williamson, 1992a).

explaining the mechanism leading to turbulence. To study the structure of
the vortex dislocations Williamson (1992) forced the generation of the dislo-
cations using a small ring on a cylinder, creating spanwise cells shedding at
different frequencies. The ring generated low-frequency periodic structures
fR, which evolved into the vortex dislocations with a frequency fC − fR,
where fC is the frequency associated with the main cylinder. Vortex dislo-
cations were found to spread rapidly along the spanwise direction and tend
to be generated in the regions where the vortex loops evolve.

The first computational studies of the wake transition were performed by
Karniadakis & Triantafyllou in 1992 using spectral/hp element methods,
but the main conclusions were later proved to be incorrect due to the small
size of the domain, which was incapable of capturing the underlying phys-
ical mechanisms. Zhang et al. in 1995 repeated the computations with a
larger domain and were able to reproduce the mode A and B instabilities in
accordance with the experimental investigations. Furthermore, they found
an additional three-dimensional instability (mode C); this instability was
observed when a thin wire was placed parallel to the cylinder axis in the
near wake, slightly offset from the wake centreline. This mode was seen to
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Figure 3.7: Vortex dislocation induced by means of a small ring disturbance
around the cylinder. Flow is upwards past an horizontal cylinder at Re=140
(adapted from Williamson, 1992a).
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affect the forces acting on the cylinder more intensely than mode A and B,
and it was suggested it was not related to the asymmetry in the wake.
From the middle nineties, computational investigations of the flow past a
cylinder were combined with results from the global stability analysis (we
will discuss it in chapter §4), providing fundamental improvements in the
description of the relevant mechanisms behind the instabilities. Barkley &
Henderson (1996) performed a three-dimensional Floquet stability analysis
of the wake in a specific range of Reynolds numbers (140 ≤ Re ≤ 300).
They showed that the two-dimensional wake becomes absolutely unstable
via a secondary instability. The main parameters that characterise the in-
stability are the Reynolds number, Re, and the wavenumber of the span-
wise perturbations, β = 2π/λz, where λz is the corresponding wavelength.
A first critical Reynolds number was found at Re = 188.5 and a critical
spanwise wavelength λz = 3.96D. This corresponds to Mode A reported
by Williamson (1988). A second instability was detected at Re = 259 for a
spanwise length λz = 0.822D, which corresponds to Mode B. The important
role of the end effects was discussed and the hysteresis in bifurcation behind
Mode A, already detected in the experiments, was confirmed. Despite the
extensive investigations on the structure of the three-dimensional wakes in
the transition regime, the physical mechanisms responsible for the onset of
the instabilities were highly debated. Brede et al. (1996) proposed that
Mode A is a centrifugal instability of the braid region between the primary
vortices, while Mode B is caused by the three-dimensional effects of the
separated shear layers in the near-wake. Williamson (1996) suggested in-
stead that Mode A originates from an elliptic instability in the vortex cores,
while Mode B is due to a hyperbolic instability of the braid shear layer.
However, Henderson (1997) pointed out that the classification of Mode A
as elliptic is not appropriate since the Floquet analysis shows that the max-
imum amplification occurs between the vortices rather than in their cores.
Thompson et al. (2000) showed that despite Mode A is not purely elliptic,
it shows some distinctive elliptic features. Starting from a Floquet analysis,
the leading mode was split into two mutually exclusive parts. The first part
is characterised by a velocity field which is zero in the region where the
elliptic instability indicated that the flow as not elliptic. For the second,
the reverse was done. Therefore, the velocity field was split into an ellip-
tic and hyperbolic component. The evolution of these components, showed
that after many shedding cycles they both evolve back to the Floquet mode.
However, the first component evolved more quick than the second one. A
quantitative comparison showed that mode A is 2/3 elliptic and 1/3 hy-
perbolic and the dominance of the elliptic instability in the initiation and
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maintenance of the perturbations was further confirmed in 2001 by Thomp-
son, Leweke & Williamson.
Finally, Blackburn & Lopez (2003a) investigated an additional unstable
mode in the wake of a cylinder at higher Reynolds number, Re = 377.
This mode is called mode QP, for quasi-periodic, and has a wavenumber
between those of mode A and B; Blackburn et al. (522) used the concept
of the symmetry theory, introduced by Marques et al. (2004), to study the
bifurcations of wakes of bluff bodies.

3.5 Control of flows over bluff bodies

As mentioned at the beginning of the chapter, the presence of vortex shed-
ding in wakes of bluff bodies generates a significant pressure drop on the
rear of the body in a wide range of Reynolds number, causing structural
vibrations, acoustic noise and resonance, enhanced mixing and a significant
increase in the the drag and lift fluctuations. Therefore, an effective control
to weaken or suppress vortex shedding is fundamental in many applications;
in the following section, an overview of the most significant control methods
is given.

3.5.1 Overview and classification of the control methods

Control methods of flows past bluff bodies can be classified in three main
categories: passive, active open-loop and active closed-loop (or feedback con-
trol) respectively (Choi et al., 2008). Passive controls are characterised by
the absence of a power input, while a power input is always present in active
control techniques. Active open-loop controllers do not use any feedback to
control the output, while close-loop controllers use sensors to monitor the
system output and then feed the data back to the controller where the
signal is adjusted properly. Another important classification can be intro-
duced considering the presence of eventual geometric modifications in the
spanwise direction. Two-dimensional control techniques are characterised
by a constant control input in the spanwise direction; an example is the in-
troduction of a short splitter plate, of about one diameter in length, behind
the bluff body. Roshko (1955b) was the first to adopt this technique and
showed that the splitter plate was able to create a strong interference with
vortex shedding, which was eventually suppressed. Base bleed is another
two-dimensional control technique and its application dates back to Wood
(1964) and Bearman (1967). The introduction of bleed air through a hole
in the centre of the base generates a profile of vorticity of opposite sign with
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respect to the one introduced by the boundary layers separating from the
body surface, leading to the suppression of vortex shedding. Other successful
two-dimensional passive control techniques include the end plates (Nishioka
& Sato 1974; Stansby 1974) and secondary small cylinders (Strykowski &
Sreenivasan, 1990). Three-dimensional control techniques are characterised
instead by a variation of the actuation property along the spanwise direction;
some examples are reported in figure (3.8): Zdravkovich (1981) introduced
helical strakes to reduce the fluctuations of the aerodynamic forces, which
were recently studied in a linear stability context (Gomez et al. 2014), Tan-
ner (1972), Rodriguez (1991), Petrusma & Gai (1994) studied the effect of
a segmented trailing edge. Tombazis & Bearman (1997) introduced a wavy
trailing edge and found that the waviness produces vortex dislocations in
the wake, with a subsequent increase in the base pressure. Bearman & Owen
(1998) used a spanwise waviness in the front stagnation face of a rectangular
cylinder, obtaining a complete suppression of vortex shedding. However, a
waviness on the rear surface was found not to reduce the drag since the sep-
aration occurs at the front edge. Owen et al.(2000, 2001) applied the same
methodology to a circular cylinder and obtained similar results inserting a
waviness along the axis of the cylinder and spirally attaching hemispherical
bumps on the surface. Darekar & Sherwin (2001) performed DNS of a flow
past a cylinder with a wavy stagnation face at low Reynolds number and
showed that the von-Kármán street can be suppressed into a steady and
symmetric structure. They pointed out that the suppression is caused by
a distortion of the shear layers and found that the optimal wavelength is
close to the wavelength of Mode A instability. Park et al. (2006) proposed
a small-size tab on the upper and lower trailing edges. The height (ly) and
width (lz) of the tabs were changed, together with the spacing between two
adjacent tabs (λ). The drag was seen to be reduced and the optimal configu-
ration produced an increase of 3% in the base pressure. The presence of the
tabs caused the vortices to lose their eventual two-dimensional nature and
vortex dislocations occurred. Vortex shedding completely disappeared right
behind the bluff body but occurred weakly at farther downstream locations.
The main mechanism of drag reduction related to the adoption of tabs was
found to be the introduction of a phase mismatch in vortex shedding, which
can break the nominally two-dimensional nature of the phenomenon. Yoon
(2005) applied tabs to stabilise the wake of a flow past circular cylinder and
found that tabs located near the separation point attenuate vortex shed-
ding, and the optimal spacing of the adjacent tabs is similar to the optimal
wavelenght of the waviness found by Darekar & Sherwin (2001).
However, active open-loop control techniques have not attracted the atten-
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Figure 3.8: Three-dimensional passive control technique: (a) helical strake,
(b) segmented trailing edge, (c) wavy trailing edge, (d) wavy stagnation face,
(e) sinusoidal axis, (f) hemispherical bump (g),(h) small-size tab. Adapted
from Choi et al. (2008).

tion of the scientific community until the nineties, with the exception of the
base bleed (Bearman 1967, Wood 1964). The main reason is probably their
complexity and rather low efficiency, despite their effectiveness to reduce the
drag (Choi et al. 2008). The first theoretical studies on active controllers
were performed by Blevins (1990), who showed that, when a time-periodic
open-loop force is applied on the surface of the bluff body, vortex shedding
is locked in phase to the forcing, hence the forcing strengthens the von-
Kármán street and increases the mean drag and lift fluctuations. Tokumaru
& Dimotakis (1991) were able to suppress vortex shedding in a flow past a
circular cylinder by means of high-frequency rotations. More recently Kim
& Choi (2005) investigated the effect of a three-dimensional forcing on the
surface a circular cylinder. In their analysis they considered a wide range
of Reynolds number (47 < Re < 3900) and imposed a steady blowing and
suction profile on two slots, located at the upper and lower surfaces of the
cylinder, expressed by the following equation:

φ1(z) = φ2(z) = φ0 sin
(2πz
λ

)
(3.3)

where φ1 and φ2 are the radial velocities at the upper and slower slots, re-
spectively, z is the spanwise direction, φ0 the forcing amplitude and λ the
forcing wavelength. This technique was seen to be very effective, leading to
a complete suppression of vortex shedding at moderate/low Reynolds num-
bers, while it weakly reappears in the far wake for higher Reynolds numbers.
Kim et al. (2004) applied the distributed forcing to a turbulent flow over a

73



CHAPTER 3. WAKE TRANSITION AND CONTROL OF FLOWS
PAST BLUFF BODIES

two-dimensional model vehicle with a blunt trailing edge, obtaining a note-
worthy drag reduction. Due to the effectiveness and versatility of this control
method, a similar technique will be used in the chapter 5 to investigate the
main features underlying to the suppression of the von-Kármán street.
Feedback control methods require a further classification, specifically single-
sensor feedback controls, optimal/suboptimal controls and controls based on
ROMs. Since at Reynolds numbers just above the critical value, the wake
has generally just one unstable mode, resulting from the von-Kármán vortex
shedding, a single-sensor actuator feedback loop is sufficient. The first ap-
plications date back to 1967 when Berger actuated a bimorph cylinder with
signals from a hot-wire sensor located in the wake. Williams & Zhao (1989)
reduced the velocity fluctuations of vortex shedding at Re = 400 using a
loudspeaker controlled by the velocity phase of a specific point of the wake.
Roussopoulos in 1993 conducted a similar experiment and came to the con-
clusion that a single-sensor feedback loop cannot stabilise the wake at high
Reynolds numbers. Huang (1996) used a control device that measured the
velocity in the region of the upper shear layer of a circular cylinder and
used it to drive a loudspeaker, which generated sound from the slot on the
upper surface. The feedback sound was able to suppress vortex shedding
even if the controller acted just one side of the cylinder, demonstrating that
vortex shedding is associated with an instability involving two parallel shear
flows. More recently, Zhang et al. (1995) developed an efficient proportional-
integral-derivative (PID) controller to suppress the in-phase vortex shedding
and vortex-induced vibrations on a spring supported square cylinder at the
resonance conditions.
Optimal control theory4 has sparked noteworthy interest recently, but its
applications in real situations is not possible since it requires the knowledge
of the full flow field, for a global time period, to solve the adjoint equations.
A feasible approach is instead the suboptimal feedback control algorithm,
which consists of seeking an optimal condition over a short time period.
Min & Choi (1999) applied this method to a circular cylinder at Re = 100
and 160; they chose the difference of the real and potential pressures on the
surface of the cylinder as a cost function to be minimised, while the control
input was the instantaneous surface pressure. One of the main difficulties of
the suboptimal approach relies on its strong dependance on the cost func-
tion. For example, as shown by Min & Choi (1999), the reduction of the
drag is better achieved when the cost function is the difference of the real

4It is a mathematical optimisation method, firstly derived by Pontryagin. It generally
involves the solution of an adjoint system of equations. Further information can be found
in Abergel & Teman (1990)
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and potential flow surface pressures rather than the drag itself. The expla-
nation is the non-linearity of the cost function with respect to the control
input, requiring an a priori physical knowledge of the flow physics. Single-
sensor measurement is a suitable technique at low Reynolds numbers, when
the wake has just one unstable mode resulting from the von-Kármán vortex
shedding. However, at higher Reynolds numbers multiple unstable modes
are present, hence several feedback sensors to estimate the flow field are re-
quired. The main technique used in these cases is the Reduced-Order Models
(ROM); the idea is to extract the most relevant energetic modes from the
flow field by means of a proper orthogonal decomposition, often referred as
POD, and use them to design a low-dimensional controller (Holmes et al.
1996). Graham et al. (1999) used this method to control the flow past a
rotating circular cylinder at Re = 100. The control input was the cylin-
der rotation and they were able to reduce the unsteadiness of the wake,
although the prediction errors were seen to increase during the control, so,
to overcome this problem, they had to reset the ROM periodically. Other
applications of ROM are the adoptions of vortex models when the wake is
mainly governed by vortices. Such approach was firstly used by Cortelezzi
(1996) in a boundary layer context and then extended to bluff bodies by Li &
Aubry (2003) , who successfully suppressed the lift fluctuations at Re = 100
and 200 (Föppl’s potential flow model). The main problem of ROM comes
from its non-equivalence to the full Navier-Stokes equations and this issue
might lead to a local optimum of the original dynamical system. Besides,
controllability and observability of the retained modes are two important
problems of ROM.
A last important classification of the control methods considers what re-
gion needs to be modified: the boundary layer or the wake respectively. In
boundary layer control methods the drag reduction is achieved by chang-
ing the structure of the boundary layer from laminar to turbulent, delaying
the separation. This control is particularly suitable for bluff bodies with
a movable separation points and an important application is the adoption
of a surface roughness. Achenbach (1972, 1974) showed that the introduc-
tion of a roughness element on the bluff body results in a local minimum
of the drag coefficient at a specific critical Reynolds number, which was
seen to decrease with the increasing effect of the roughness. Another tech-
nique to enhance the direct transition to turbulence is a vortex generator at
the leading edge, which introduces streamwise vorticity into the boundary
layer, causing strong near-wall momentum and a consequent delay of the
main separation. A further boundary layer control is based on the gener-
ation of strong near-wall momentum by early separation and reattachment

75



CHAPTER 3. WAKE TRANSITION AND CONTROL OF FLOWS
PAST BLUFF BODIES

of the flow, which generates a separation bubble above the surface of the
bluff body. This effect can be achieved by means of a trip wire at the front
surface (Maxworthy, 1969), transverse groove (Kimura & Tsutahara, 1991),
free-stream turbulence (Blackburn & Melbourne 1996, Kiya et al. 1982),
surface dimples (Choi et al., 2006). Conversely, another methodology to
control vortex shedding is by a direct-wake modification, delaying the inter-
action of the shear layers (splitter plates and base bleed) or changing the
wake directly, through geometric or dynamic change in the system (wavy
trailing edge and distributed forcing).
A last interesting control device is the synthetic jet, which was introduced
by Glezer and his co-workers in the nineties (Glezer & Amitay 2002, Smith
& Glezer 1998). The main idea is to generate vortices at the edge of an
orifice by the time-periodic motion of a flexible diaphragm in a seal cavity;
a non-negligible amount of momentum is transferred to the flow, despite
the net mass flux is zero. The synthetic jet was applied to a flow over
a circular cylinder at several high Reynolds numbers (Re = 31, 000 and
131, 000), and the application of a high-frequency forcing from the synthetic
jet produced a noteworthy drag reduction, despite the lift was increased
due to the installation of the actuator at just one side of the cylinder. The
problem was found to be insensitive to the forcing frequency.

3.5.2 Estimation of the control efficiency

An important problem is the definition of a suitable efficiency for the control
method. This issue is particularly complex for active controllers since it de-
pends on the specific device. Choi et al. (2008) defined the control efficiency
as the ratio of the saved power to the control input power, neglecting any
additional loss inside the mechanism of the controller. If the control input
is a forcing over the bluff body surface, similar to the method adopted in
chapter 5 of this thesis , the ideal control efficiency is given by:

η1 = (Du −Dc)u∞´
A

(
1
2ρφ

3 + pwφ
)
dA

(3.4)

where Du and Dc are the drags of the uncontrolled and controlled problem
respectively; A is the body surface, ρ the density, pw the surface pressure
and φ the control velocity. The first term inside the integral represents
the energy convection, whereas the second the pressure work. However,
this definition describes an ideal efficiency, since it is hypothesised that the
control can fully utilise all the available power sources. A slightly different
definition can then be introduced, which takes into account the fact that it

76



CHAPTER 3. WAKE TRANSITION AND CONTROL OF FLOWS
PAST BLUFF BODIES

is not possible to use entirely the power sources available in the flow system:

η2 = (Du −Dc)u∞´
A

(∣∣∣12ρφ3
∣∣∣+ |pwφ|) dA (3.5)

Equation (3.5) is a good method to evaluate the efficiency of a controller
and, if η2 � 1, the additional losses inside the device are not particularly
relevant. Kim & Choi (2005) showed that the suppression of the shedding
via distributed forcing is highly efficient, in fact η1 ≈ 150 and η2 ≈ 30. For
the base bleed, η2 ≈ 3.8, while η1 is negative because pwφ < 0.

77



Chapter 4

Hydrodynamic stability
theory

“ Philosophy is written in that great book which ever lies before
our eyes - I mean the universe - but we cannot understand it
if we do not first learn the language and grasp the symbols,
in which it is written. This book is written in the mathe-
matical language, and the symbols are triangles, circles and
other geometrical figures, without whose help it is impossible
to comprehend a single word of it. ”

Galileo Galilei, The Assayer

In this chapter the hydrodynamic stability theory is introduced; this theory
is useful to investigate both qualitatively and quantitatively the dynamics
of the instabilities and provides useful information on the implementation
of efficient controllers. In the first part of the chapter the theoretical frame-
work of the direct stability analysis is outlined, starting from the problem
of defining the stability of a given flow and then introducing the local and
global approaches. The second part of the chapter is dedicated to the in-
troduction of the adjoint Navier-Stokes equations and the solution of the
adjoint stability problem, which is directly connected to the receptivity of
the flow to momentum forcing and mass injection. The concomitant eval-
uation of the direct and adjoint modes leads to the concept of structural
sensitivity, which is necessary to detect the core of the instabilities. Besides,
the transient growth methodology is explained in order to study the dynam-
ics of the convective instabilities within the global stability analysis. Finally,
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all these concepts are applied to a two-dimensional flow past a cylinder, and,
in particular, emphasis is given to their implications on the passive control
of the wake.

4.1 Derivation of the linearised Navier-Stokes equa-
tions

Hydrodynamic instability is a field of fluid mechanics which deals with the
response of a laminar flow to disturbances of small or moderate amplitudes.
A first intuitive approach to the concept of stability is to check if a given flow,
perturbed by arbitrary small perturbations, returns to its original state or
evolves into a new different state. In the former case, we can define the flow
as stable, in the latter as unstable. Instabilities can often result in a turbu-
lent flow, but sometimes they lead to a different laminar state. The equations
which describe the evolution of disturbances can be obtained considering a
base flow (or basic state) (U , P ) and a perturbed state (U + εu′, P + εp′),
with ε � 1, which both satisfy the Navier-Stokes equations. Substituting
the perturbed state into the Navier-Stokes equations (2.3)-(2.4), we obtain:

∇ ·U + ε∇ · u′ = 0 (4.1a)

(
∂U

∂t
+U · ∇U +∇P − 1

Re
∇2U

)
+

+ ε

(
∂u′

∂t
+U · ∇u′ + u′ · ∇U + εu′ · ∇u′ +∇p′ − 1

Re
∇2u′

)
= 0.

(4.1b)

Since the base flow (U , P ) satisfies the Navier-Stokes equations, the first
terms on the left hand sides of (4.1a) and (4.1b) are zero; the non-linear
terms u′ ·u′ ∼ o(ε2) are one order of magnitude smaller than the other ones,
hence they can be neglected. These considerations lead to the linearised
Navier-Stokes equations:

∇ · u′ = 0 (4.2a)

∂u′

∂t
+U · ∇u′ + u′ · ∇U = −∇p′ + ν∇2u′ (4.2b)

However, to describe properly the evolution of an initial disturbance, it is
important to define a quantity to measure its size. A suitable choice is the
kinetic energy of the disturbance EV contained in a control volume V :
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EV = 1
2

ˆ
V
u′ · u′dV. (4.3)

The choice of the control volume V generally depends on the particular
geometry of the flow.

4.2 Definition of stability and critical Reynolds
numbers

The formal definition of stability of a flow state is based on the distur-
bance kinetic energy EV , which is expressed by expression (4.3) (Schmid &
Henningson, 2001). A first definition considers an asymptotic limit of the
disturbance kinetic energy for large times.

Definition

A solution U to the Navier-Stokes equations is asymptotically sta-
ble to perturbations if the perturbation kinetic energy satisfies the
following condition:

lim
t→∞

EV (t)
EV (0) = 0; (4.4)

According to this definition, the stability of a system depends only on the
asymptotic behaviour of the ratio of the disturbance energy with respect to
its value at the initial time. However, the stability of the problem could
depend on the initial energy of the perturbation, therefore a definition of
conditional stability is required:

Definition

A solution U to the Navier-Stokes equations is said to be condition-
ally stable if there exists a threshold energy δ > 0 such that the flow
is stable when E(0) < δ.

A special case of conditional stability is the concept of global stability:
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Definition

If a flow is conditionally stable and the threshold energy is infinite
(δ →∞), the flow is said to be globally stable.

Finally, one last definition can be given, considering a flow whose perturba-
tion energy decreases for all times, not just in the asymptotic limit.

Definition

A solution U to the Navier-Stokes equations is said to be monoton-
ically stable if:

dEV
dt

< 0, ∀t > 0 (4.5)

From these definitions of stability, it is possible to introduce the critical
Reynolds numbers, which provide information about the physical conditions
that destabilise a flow. A first critical Reynolds number, ReE , can be defined
such that the flow is monotonically stable if Re < ReE . This value can be
deduced from the energy theory using the Reynolds-Orr equation, which will
be introduced in §4.3. Another critical Reynolds number, ReG, is the value
below which the flow is globally stable, Re < ReG. This value is difficult
to derive analytically and it can be determined by means of the bifurcation
analysis. Sometimes it is assumed to be the lowest Reynolds number for
which turbulence can be sustained. However, this assumption is not valid
for all flows, so it is necessary to introduce an additional critical Reynolds
number, ReT , below which the flow relaminarises. A last definition considers
a Reynolds number, ReL, above which the flow is linearly unstable or not
conditionally stable, Re > ReL. According to this definition, there exists at
least one infinitesimal disturbance which is unstable.
As evident, the problem of defining a critical Reynolds number is complex
and table (4.1) shows the critical Reynolds number for some simple flows.
For a plane Couette flow ReG and ReT are different, implying the existence
of non-turbulent equilibrium solutions, which were found by Nagata (1990)
and later verified to be stable (Lundbladh 1993). For the plane Poiseuille

81



CHAPTER 4. HYDRODYNAMIC STABILITY THEORY

Flow ReE ReG ReT ReL
Hagen-Poiseuille 81.5 - 2000 ∞
Plane Poiseuille 49.6 - 1000 5772
Plane Couette 20.7 125 360 ∞

Table 4.1: Critical Reynolds number for wall-bounded shear flows.

and circular pipe flow such non-turbulent equilibrium solutions have not
been found for Re < ReT .

4.3 The Reynolds-Orr equation

In the previous section the concepts of stability and the critical Reynolds
number were introduced. Moreover their strong connection to the distur-
bance energy was discussed. The evolution equation for the kinetic dis-
turbance energy can be obtained by scalar multiplying the nonlinear dis-
turbance equations by the perturbation velocity u′ and then enforcing the
divergence-free condition, expressed by equation (4.2a). This yields:

∂(u′ · u′)
∂t

=− u′ ⊗ u′ : ∇U − 1
Re
∇u′ : ∇u′−

∇ ·
[
−1

2(u′ · u′)⊗U − 1
2(u′ · u′)⊗ u′ − u′ · pI + 1

Re
u′ · ∇u′

]
(4.6)

where I represents the unit tensor. Let us integrate equation (4.6) over
the volume V and assume the disturbance to be localised or spatially peri-
odic; using the divergence theorem, the last term on the right hand side of
equation (4.6) does not give any contribution and we obtain the following
equation, which is known as Reynolds-Orr equation:

dEV
dt

= −
ˆ
V
u′ ⊗ u′ : ∇UdV − 1

Re

ˆ
V
∇u′ : ∇u′dV. (4.7)

The two terms on the right hand side of equation (4.7) represent the ex-
change of energy with the base flow and the energy dissipation due to
viscous effects respectively. One of the main conclusions that can be de-
rived from the Reynolds-Orr equation is that the instantaneous growth rate(

1
EV

dEV
dt

)
is independent from the disturbance amplitude. This means that

the growth rate of a finite-amplitude disturbance can be found at each in-
stant using an infinitesimal disturbance of identical shape. Therefore, the
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instantaneous growth rate is given by the mechanisms associated to the lin-
earised equations and the total growth of the disturbance can be regarded
as the sum of the growth rates associated with each linear mechanism. This
is a consequence of the conservative nature of the non-linear terms in the
Navier-Stokes equations (Schmid & Henningson, 2001).

4.4 Stability as eigensolution to the viscous prob-
lem

After having introduced the concept of stability, we will show that the study
of the stability of a flow can be reduced to the solution of an eigenproblem.
We start by discussing the local stability analysis and then extend this ap-
proach to more general cases (global stability analysis).

4.4.1 Local stability analysis

Let us consider a parallel base flow U = [U(y), 0, 0]T and substitute it into
the linearised Navier-Stokes equations (4.2a) and (4.2b):

∂u′

∂x
+ ∂v′

∂y
+ ∂w′

∂z
= 0 (4.8a)

∂u′

∂t
+ U(y)∂u

′

∂x
+ v′

dU

dy
= −∂p

′

∂x
+ 1
Re
∇2u′ (4.8b)

∂v′

∂t
+ U(y)∂v

′

∂x
= −∂p

′

∂y
+ 1
Re
∇2v′ (4.8c)

∂w′

∂t
+ U(y)∂w

′

∂x
= −∂p

′

∂z
+ 1
Re
∇2w′ (4.8d)

Taking the divergence of the linearised momentum equations (4.8b)-(4.8d)
and using the continuity equation (4.8a), we can deduce an equation for the
perturbation pressure:

∇2p′ = −2dU
dy

∂v′

∂x
. (4.9)

This equation can be used with equation (4.8c) to eliminate p′:[(
∂

∂t
+ U

∂

∂x

)
∇2 − d2U

dy2
∂

∂x
− 1
Re
∇4
]
v′ = 0 (4.10)

To describe the three-dimensional flow field, we need a second equation. A
convenient choice is the equation for the normal vorticity η = ∂u

∂z −
∂w
∂x :
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[
∂

∂t
+ U

∂

∂x
− 1
Re
∇2
]
η = −dU

dy

∂v′

∂z
(4.11)

Let us consider a general wavelike solution to equations (4.10) and (4.11):

v′(x, y, z, t) = ṽ(y)ei(αx+βz−αct) (4.12a)

η′(x, y, z, t) = η̃(y)ei(αx+βz−αct) (4.12b)

where c ∈ C is the phase speed, while α and β ∈ R the streamwise and span-
wise wavenumbers respectively. The choice of the complex frequency ω = αc

and the real wavenumbers defines the temporal stability problem: the spa-
tial structure of the wavelike perturbation does not change in time, but its
amplitude can grow or decay. Substituting (4.12a) and (4.12b) into (4.10)
and (4.11), we obtain the equations for the normal velocity and vorticity,
known as Orr-Sommerfeld equation (Orr 1907, Sommerfeld 1908), (4.13a),
and Squire equation (Squire 1933), (4.13b), respectively:

(−iω + iαU)
(
d2

dy2 − k
2
)
− iαd

2U

dy2 −
1
Re

(
d2

dy2 − k
2
)2
 ṽ = 0 (4.13a)

[
(−iω + iαU)− 1

Re

(
d2

dy2 − k
2
)]

η̃ = −iβ dU
dy
ṽ (4.13b)

where k2 = α2 + β2. The Orr-Sommerfeld equation (4.13a) poses an eigen-
value problem of a second-order differential operator, where ω is the associ-
ated complex eigenvalue. Since the coefficients of this equation are real, the
eigenvalues appear as complex conjugate pairs; if the imaginary part of the
eigenvalue is greater than zero, I(ω) > 0, the disturbance grows exponen-
tially, otherwise it decays exponentially. Thus, to study the stability of the
flow, we must solve the eigenproblem defined by the Orr-Sommerfeld equa-
tion and then use the solution to solve the Squire equation (4.13b), where ṽ
appears as a forcing term.

Another important conclusion that can be derived from the local stability
analysis is the relation between two and three-dimensional solutions. Let us
consider the Orr-Sommerfeld equation for a three-dimensional flow, (4.14a),
and two-dimensional flow, (4.14b), respectively:

(U − c)
(
d2

dy2 − k
2
)
ṽ − d2U

dy2 ṽ −
1

iαRe

(
d2

dy2 − k
2
)2

ṽ = 0 (4.14a)
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(U − c)
(
d2

dy2 − α
2
2D

)
ṽ− d2U

dy2 ṽ−
1

iα2DRe2D

(
d2

dy2 − α
2
2D

)2

ṽ = 0 (4.14b)

If β = 0, these equations have the same solution if and only if the following
relations are satisfied:

α2D = k =
√
α2 + β2 (4.15)

α2DRe2D = αRe (4.16)

We have then the following condition:

Re2D = Re
α

k
< Re (4.17)

This results is known as Squire’s transformation and it expresses the fact
that a three-dimensional mode is equivalent to a two-dimensional one at
a lower Reynolds number. This result can be used to prove the following
theorem (Squire’s theorem):

Theorem

Given the critical Reynolds number ReL for the onset of linear insta-
bilities and a given pair of wavenumbers α, β, the Reynolds number
below which no exponential instabilities exist for any wavenumbers
satisfies the following relation:

Rec ≡ min
α,β

ReL(α, β) = min
α,β

ReL(α, 0) (4.18)

Therefore, if a given three-dimensional mode is unstable, the corresponding
two-dimensional mode for β = 0 will be unstable at lower Reynolds number.
Consequentially, results from two-dimensional stability analyses do not pro-
vide any information on the stability of the corresponding three-dimensional
flows.
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4.4.2 Global stability analysis

The study of instabilities using the local approach has been used with mixed
success. Despite its ability to predict correctly the instability waves on a flat
plate boundary layer, it fails to determine the instability of the Poiseuille
flow in a pipe at all Reynolds numbers, even if the base flow is truly parallel.
Therefore, a generalisation of the approach presented in §4.4.1 needs to be
introduced. Following an approach similar to Hall & Horseman (1991) and
Henningon (1987), let us consider a generic base flow U , which is assumed to
be a solution of the Navier-Stokes equations, and let us take the divergence
of the momentum equations (4.2b), enforcing the divergence-free condition
expressed by (4.2a); we obtain:

∇2p′ = ∇ · (U · ∇u′ + u′ · ∇U) = ∇ ·
(
(U · ∇+ (∇U)T )u′

)
(4.19)

Substituting equation (4.19) into (4.2b), it is then possible to rewrite the
linearised equations in an operator form without the explicit dependence on
p′ (Tuckerman & Barkley, 2000):

∂u′

∂t
= Lu′ = A(U)u′ (4.20)

We can choose the solution of our problem to be in the following form:

u′(x, t) = ũ(x)est, where s = σ + iω3 (4.21)

which substituted into (4.20) gives:

A(U)ũ(x) = sũ(x). (4.22)

This approach is referred as global and represents the most general way to
study the instabilities arising in a flow (Theofilis 2003, 2011). The term
“global” stability analysis was introduced by Joseph (1966), discussing a
methodology to evaluate the lower bounds for flow instability considering
the evolution of the perturbation energy. However, the approach to global
stability analysis as the eigensolution to a viscous problem appeared only in
the early 1980s with the pioneering work of Pierrehumbert &Widnall (1982),
Eriksson & Rizzi (1985), Pierrehumbert (1986). Pierrehumbert & Wid-
nall (1982) solved the perturbed form of the Euler equation using spectral
methods, whereas Henningon (1987) solved the two-dimensional Rayleigh
equation. The first viscous instability of an open flow was performed by
Zebid (1987) to study the wake of a circular cylinder, while Amon & Pa-
tera (1989) performed the same analysis in a closed system, specifically a
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grooved channel. The solution of three-dimensional viscous eigenproblems
(TriGlobal stability analysis) represents the most challenging methodology
in the linear stability analysis and there has been a surge of interest in the
last decade. The first three-dimensional viscous eigenproblem was solved for
the first time by Tezuka & Suzuki (2006) to study the flow around a sphere
and a prolate spheroid. Morzynski & Thiele (2008) analysed the stability
in the wake of cylinder and spheres, Bagheri et al. (2009) performed the
stability analysis of a jet-in-cross-flow, while Giannetti et al. (2009) studied
the instability in a cubic lid-driven cavity. Throughout this thesis, we will
use this approach, but, in practice, the construction of the matrix which
represents the operator A is not feasible due to the large dimensions of
the problem. Hence, an equivalent standard time-stepping approach will
be used to integrate both the non-linear and linearised Navier-Stokes equa-
tions (Eriksson & Rizzi 1985, Barkley et al. 2008). This approach consists
of constructing a Krylov subspace by a repeated application of the time-
dependent operator L at different equidistant time steps ti = i∆t, starting
from an initial vector of arbitrary amplitude u′

0:

K = span(u′
0,A(∆t)u′

0,A(2∆t)u′
0, . . . ,A((n− 1)∆t) (4.23)

Therefore, this approach allows us to advance in time a generic initial condi-
tion u′

0 circumventing the matrix formation. Moreover, the large dimensions
of the systems imply that the eigenvalues and eigenvectors of the system
cannot be computed via a QR algorithm, therefore alternative techniques
must be used. In this thesis, an Arnoldi algorithm was adopted. A detailed
description of such numerical methods is provided in Appendix A.

4.4.3 Direct stability analysis: BiGlobal approach

An intermediate approach between the local and global stability consists in
assuming base flows which depend on just two spatial directions, while the
perturbations are imposed to be periodic in the third homogeneous one, as
expressed in equations (4.24). This method is usually referred as BiGlobal
approach.

U(x, t) =

U(x, y, t)
V (x, y, t)
W (x, y, t)

 (4.24a)

u′(x, t) = û′eiβz =

û
′eiβz

v̂′eiβz

ŵ′eiβz

 (4.24b)
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In equations (4.24b), β = 2π/Lz is the spanwise wavenumber, while Lz
is the corresponding wavelength. In this case, û′ is a complex vector and
the evolution operator A, expressed in (4.22), is complex. If the flow is
completely two-dimensional, W (x, y, t) = 0, then the system can be reduced
to a problem containing only the real part of the streamwise and transverse
perturbation velocities, û′ cos(βz) and v̂′ cos(βz), and the imaginary part
of the spanwise component, ŵ′ sin(βz), halving the number of degrees of
freedom in the system. However, if the eigenvalues are complex then the
full system must be considered to recover the correct eigenmodes.

4.4.4 Floquet stability analysis

An extension of the stability theory considered so far can be performed for
a time-periodic base flow U(t) over an interval T : U(t) = U(t+ T ). Since
the flow is periodic with period T , the linearised operator, which depends
only on the base flow, will also be time-dependent and T -periodic. Let us
integrate equation (4.20) from an initial time t0 to a generic time t0 + t:

u′(t0 + t) = exp
(ˆ t0+t

t0

A(U(τ))dτ
)
u′(t0) (4.25)

Equation (4.25) defines an evolution operatorC =
´ t0+t
t0

A(U(τ))dτ over the
period T , evolving an initial perturbation u′(t0) around a periodic orbit and
giving the value at time t0+t. The stability of the system is then determined
by the eigenvalues of the matrix C, often referred as monodromy matrix.
The solution of this eigenproblem is called Floquet stability analysis and it
requires the knowledge of the base flow U(t) at each time step (Tuckerman
& Barkley 2000, Blackburn 2002b). Due to the periodicity of the base flow,
a time interpolation (usually in terms of Fourier series) is required. The
eigenvalues µ of C are known as Floquet multipliers and can be expressed
as:

µ = exp(σT ) (4.26)

where σ is called the Floquet exponent. In general, both σ and µ can
be complex, indicating a travelling wave solution in the flow. Although
in this thesis Floquet analysis was only adopted to study flows past bluff
bodies, it is important to stress how this theory had a fundamental impor-
tance to characterise the secondary instability of boundary layers. Let us
restrict our attention to the simple two-dimensional boundary layer along
a flat surface. The flow is subject to an initial stage of linear instability,
known as primary instability, characterised by two dimensional travelling
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waves (Tollmien-Schlichting waves), which break-up the uniformity of the
flow in the streamwise direction, redistributing spanwise vorticity into pe-
riodic concentrations near the critical layer, where wave speed and mean
speed coincide (Herbert 1988). However, the primary mode does not lead
to a breakdown to turbulence, but to a secondary instability mechanism:
the TS waves grow and distort the base flow, which is not anymore of Bla-
sius type, and generate inflection points in the velocity profile and a rapid
breakdown to turbulence. In a coordinate system moving with the phase
speed of the wave, the flow can be considered periodic in the streamwise di-
rection. Therefore, Floquet stability analysis was able shed light on several
unanswered questions on the dynamics of secondary instabilities in bound-
ary layers, providing a good agreement with previous results of Klebanoff
et al. (1962), Cornelius (1985), Kachanov & Levchenko (1984). The leading
Floquet multiplier was found to be unstable and the secondary mode was
seen to be in phase with the TS waves and travel at the same phase speed.
As in a plane Poiseuille flow, a second mode with a smaller positive growth
rate was found, making the transition scenario more complex.

4.5 BiGlobal stability analysis of the flow past a
cylinder

In this section an application of the Floquet stability analysis is presented.
Specifically, we will study the stability of two-dimensional periodic flows
past a circular cylinder with respect to three-dimensional perturbations; this
problem was studied by Barkley & Henderson (1996) and provides a bench-
mark case for the results which will be discussed in the following chapters.
The mesh and the specific computational parameters used to perform these
simulations are the same ones described in details in chapter §5.2.
Following Barkley & Henderson (1996), a validation of the computational
domain size has been performed by comparing the shedding frequency and
the vorticity distribution on different meshes. The shedding frequency was
seen to increase when the cross-flow length (Lc in figure 5.1) was decreased;
this phenomenon is related an upward shift in the local Reynolds number
when the flow accelerates around the cylinder. Since no difference in the
vortex shedding frequency was detected for Lc > 22, confirming the re-
sults obtained from Barkley & Henderson (1996), Lc = 45 was chosen in
this thesis. The profile of the vorticity was used to check the resolution of
the flow downstream from the cylinder and study the effect of the outflow
boundary conditions; specifically a downstream length LO = 50 was found
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to be sufficient to produce the correct wake. The base flows used for the
Floquet analyses were computed using a Fourier interpolation through 32
equispaced time slices, which were extracted from a single vortex shedding
period T . The results of the Floquet analyses are reported in figure (4.1),
which shows the dependence of the absolute value of the dominant Floquet
multiplier |µ| over the spanwise wavenumber β at three different Reynolds
numbers; at Re = 220 the multipliers have an absolute value less than unity
|µ| < 1 for β & 2.5, hence the flow is stable in this range of wavenumbers.
The wavenumber of maximum growth is approximately β ≈ 2. When β

is large (β>15), the multipliers are approximately zero. This behaviour is
related to dominance of the viscous term in the linearised equations when
β ∼ Re1/2, thus for larger values of β no further instabilities can arise
(Barkley & Henderson, 1996). As already discussed in chapter §3, two dif-
ferent three-dimensional unstable modes can arise in the range of Reynolds
numbers we are considering, which are known as mode A and B respec-
tively. Mode A is the first to appear and it corresponds to the first peak
of the curves, at the smaller wavenumbers β. Mode B corresponds instead
to the second peak, when β is larger, and it is present only at Re = 300
(the curve at Re = 220 shows a peak, but |µ| < 1). In order to evaluate
the critical Reynolds numbers for the onset of these instabilities, the curves
of neutral stability were computed (figure (4.2)); the neutral curve defines
the boundary areas where exponentially growing solutions exist and where
they do not (Schmid & Henningson, 2001). Thus, along these curves there
exists a neutrally stable solution, characterised by a multiplier |µ| = 1, while
the region on the right of these curves identifies the solutions which are lin-
early unstable to three-dimensional perturbations. The critical Reynolds
number and the corresponding wavelengths are ReA = 190, Lz,A = 3.98
(βA = 1.578) for mode A and ReB = 260, Lz,B = 0.825 (βB = 7.616) for
mode B.
Let us consider mode A at Re = 220 and β = 1.57. This mode shows a
reflectional symmetry with respect to the centreline y = 0, similarly to the
base flow, and which is known as RT symmetry1 (Robichaux et al., 1999):

Mode A =


û(x, y, z, t) = û(x,−y, z, t+ T/2)
v̂(x, y, z, t) = −v̂(x,−y, z, t+ T/2)
ŵ(x, y, z, t) = ŵ(x,−y, z, t+ T/2)

(4.27)

This symmetry holds also for the streamwise component of the perturbation
vorticity ωx, which can be obtained taking the curl of (4.27):

1R for reflection in space and T for translation in time
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Figure 4.1: Dominant Floquet multipliers as function of the spanwise
wavenumber β at Re = 200, Re = 220 and Re = 300.
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Figure 4.2: Neutral stability curves. In the region on the right of the curve
the wake is unstable to three-dimensional perturbations. ◦ - mode A, × -
mode B.
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ω̂x(x, y, z, t) = ω̂x(x,−y, z, t+ T/2). (4.28)

This behaviour is highlighted in figure (4.3): the streamwise vorticity has
different signs on each side of the wake centreline and it is more intense in
the vortex cores of the base flow.

Figure 4.3: Contours of the streamwise vorticity ωx of the Floquet mode and
isolines of the spanwise vorticity Ωz of the base flow. Red contours and solid
lines represent positive vorticity, blue contours and dashed lines negative.

4.6 Adjoint Navier-Stokes equations

The concept of adjoint of a linear operator is very important in functional
analysis and has a fundamental role in characterising the flow instabilities.

Definition

Let us consider a continuous linear operator A : H → H where
H is a Hilbert space. There exists a unique continuous operator
A∗ : H → H such that:

〈Ax, y〉 = 〈x,A∗y〉 , ∀x, y ∈ H (4.29)

A∗ is called adjoint operator of A.

Following Barkley et al. (2008) and Hill (1992), let us write the linearised
Navier-Stokes equation in the compact form:
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Hq = 0 (4.30)
where q = (u′, p′)T and H is the evolution operator:

H =
(
−∂t − (U · ∇) + (∇U) ·+ 1

Re∇
2 −∇

∇· 0

)
(4.31)

Following definition (4.29), we can introduce the adjoint operator H∗:

〈Hq, q〉 = 〈q,H∗q∗〉 (4.32)
where q∗ denotes the adjoint velocity and pressure. Integrating by parts:

〈Hq, q〉 − 〈q,H∗q∗〉 = −
ˆ

Ω
−[u · u∗]τ0dΩdt+

ˆ τ

0

ˆ
Ω
∇ ·

{
−U(u′ · u∗) + up∗ − u∗p+ 1

Re

[
(∇u)T · u∗ − (∇u∗)T · u

]}
dΩdt

(4.33)

Employing the divergence theorem, equation (4.33) can be expressed using
only the boundary terms:

〈Hq, q〉 − 〈q,H∗q∗〉 = −
ˆ

Ω
[u′ · u∗]τ0dv+

ˆ τ

0

˛
∂Ω

n ·
{
−U(u′ · u∗) + u′p∗ − u∗p+ 1

Re

[
(∇u′)T · u∗ − (∇u∗)T · u′

]}
dSdt.

(4.34)
where n is a unit outward normal on the spatial boundary of the domain
∂Ω, while dS is the surface differential. For q, q∗ with compact support,
the boundary terms vanish and condition (4.32) is satisfied. The adjoint
equations corresponding to the linearised Navier-Stokes equations can then
be expressed as :

H∗q∗ = 0 (4.35)
The explicit formulation is:

−∂u
∗

∂t
+ (U · ∇)u∗ + (∇U)T · u∗ = −∇p∗ + 1

Re
∇2u (4.36a)

∇ · u∗ = 0 (4.36b)
It is interesting to note the negative sign in front of the temporal derivative,
which implies that the adjoint runs backward in time, differently from the
linearised Navier-Stokes operator.
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4.6.1 Lagrange identity and receptivity analysis

Another meaningful manner of deriving the Navier-Stokes adjoint equations
is by means of the Lagrange identity (Ince, 1926).
Given a linear operator L, its adjoint operator L∗, and any pair of C2-
functions u, v defined in Rn, the following identity holds:

vL(u)− uL∗(v) = ∇ ·M (4.37)

where:

Mi =
n∑
j=1

aij

(
v
∂u

∂xj
− u ∂v

∂xj

)
+ uv

bi − n∑
j=1

∂aij
∂xj

 (4.38)

This identity is known as Lagrange identity; if we consider the linearised
Navier-Stokes operator, equation (4.37) gives:

[(
∂u′

∂t
+L(U , Re)u′ +∇p

)
· u∗ +∇ · u′p∗

]
+

+
[
u′ ·

(
∂u∗

∂t
+L∗(U , Re)u∗ +∇p∗

)
+ p∇ · u∗

]
= ∂(u′ · u∗)

∂t
+∇ · J(q, q∗)

(4.39)

where L represents the sum of the diffusive and advection terms of the
linearised Navier-Stokes equations, while L∗ its adjoint. J(q, q∗) is called
bilinear concomitant and reads:

J(q, q∗) = U(u′ · u∗) + 1
Re

(∇u∗ · u′ −∇u′ · u∗) + p∗u′ + pu∗ (4.40)

The adjoint equations (4.36) can be defined considering the second term in
the square brackets on the left hand side of (4.39). The Lagrange identity
has a fundamental role, since a proper manipulation of the left hand side of
equation (4.39) leads to important considerations on the underlying physi-
cal meaning of the adjoint equations . The adjoint equations can be used
to evaluate the effect of a generic set of initial conditions and forcing on
the time-asymptotic behaviour of the perturbations. Following Giannetti &
Luchini (2007), let us consider the Laplace transform in time of (4.2b) of
q = (u′, p′):

q̃(x, s) =
ˆ +∞

0
q(x, t) exp (−st)dt (4.41)
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Substituting (4.41) into (4.2b) we obtain:

sũ′ +L(U , Re)ũ′ +∇p̃ = f̃ + uin (4.42a)

∇ · ũ′ = m̃ (4.42b)

where uin(x) = u(x, t = 0) denotes the initial condition to solve the lin-
earised Navier-Stokes equations, while f̃ and m̃ the Laplace transforms of
two generic forcing functions introduced in equations (4.2a) and (4.2b).
These terms represent a momentum forcing and a mass injection respec-
tively. The solution in the time domain can be recovered using the Bromwich
integral:

q(x, t) = 1
2πi lim

T→∞

ˆ γ+iT

γ−iT
q̃(x, s) exp (st)ds (4.43)

where γ ∈ R is sufficiently large such that all the singularities are located
on the left of the integration path. Let us consider a system with just one
pole with a positive real part, i.e. s1, as shown in figure (4.4)2.

Figure 4.4: Schematic representation of the Bromwich integration path and
the poles in the complex plane.

We can rewrite the integral (4.43) along a lower value γ1, taking into account
the role of the pole s1 through the residue theorem:

2this assumption postulates the presence of an unstable global mode with an eigenvalue
s1.
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q(x, t) = R[q̃(x, s)]s=s1 exp(s1t) + 1
2πi lim

T→∞

ˆ γ1+iT

γ1−iT
q̃(x, s) exp (st)ds

(4.44)
where R[q̃(x, s)]s=s1 denotes the residue of q̃(x, s) evaluated at s = s1. Let
us assume that s = s1 is a simple pole, then we can calculate the residue as:

R[q̃(x, s)]s=s1 = lim
s→s1

(s− s1)q̃(x, s) = A1q̃1(x, s1) (4.45)

where q̃1(x, s1) is the global mode associated to the eigenvalue s = s1.
The amplitude of the global mode A1 can be determined by applying the
Lagrange identity to the following fields:

q(x, t) = q̃(x, s) exp(st) (4.46)

q∗1(x, t) = q̃∗1(x, s1) exp(−s1t) (4.47)

where q̃ = (ũ, p̃) comes from the solution of the Laplace transformed equa-
tions (4.42), while q̃∗1 = (ũ∗1, p̃∗1) is the adjoint global mode corresponding to
s1. Integrating the Laplace-transformed Lagrange identity over the domain
Ω and using the divergence theorem, we obtain:

ˆ
Ω

[(sũ+L(U , Re)ũ+∇p) · ũ∗1 +∇ · ũp̃∗1] dΩ+

+
ˆ

Ω
[ũ · (−s1ũ

∗
1 +L∗(U , Re)ũ∗1 +∇p̃∗1) + p̃∇ · ũ∗1] dΩ =

=
ˆ

Ω
(s− s1)ũ · ũ∗1dΩ +

‹
∂Ω
J(q̃, q̃∗1) · ndS.

(4.48)

This expression relates the Laplace-transformed variables to the adjoint
global mode. Taking the limit for s → s1 and recalling equations (4.36),
(4.42) and (4.45), we obtain:

A1 =

´
Ω ũ
∗
1 · (uin + f̃)dΩ +

´
Ω p̃
∗
1m̃dΩ +

‚
∂Ω

[
1
Re∇ũ

∗
1 · ũ∂Ω + p̃∗1ũ∂Ω

]
· ndΩ´

Ω ũ
∗
1 · ũ1dΩ

(4.49)
where ũ∂Ω is the Laplace-transformed boundary condition. Expression (4.49)
relates the amplitude of the global mode to the forcing functions, the bound-
ary and initial conditions. The first term of the numerator shows that the
initial conditions and an eventual momentum source are weighted by the
adjoint eigensolution. Therefore, this term quantifies the influence of initial
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conditions and forcing terms on the excitation of the instability. Analo-
gously, the second term shows that the adjoint pressure is a significant mea-
sure of the effect of an eventual mass injection on the flow instability (Hill
(1992), Hill (1995)). Finally, the last term shows how strongly the boundary
motion is coupled with the instability.

4.6.2 Receptivity to spatially localised feedbacks: structural
sensitivity

From the previous sections, it is evident that the dynamics of the instabil-
ities requires the evaluation of both the direct and the adjoint modes. In
particular, it is important to investigate the region where a modification of
the structure of the problem generates the most significant drift of the lead-
ing eigenvalues (Giannetti & Luchini, 2007). This allows us to determine
whether a generic structural perturbation is acting on the “core” of the insta-
bility mechanisms and has a role in exciting the global mode. Let us consider
the Laplace transform of the linearised Navier-Stokes equations (4.42) and
perturb them via two linear differential operators δH(ũp, p̃p) and δR(ũp, p̃p),
where the subscript p denotes the perturbed variables ũp = ũ′ + δũ′,
p̃p = p̃′ + δp̃′:

(s+ δs)ũp +L(U , Re)ũp +∇p̃p = δH(ũp, p̃p) (4.50a)

∇ · ũp = δR(ũp, p̃p) (4.50b)

Neglecting the quadratic terms, we obtain:

sδũ′ +L(U , Re)δũ′ +∇δp̃′ = −δsũ+ δH(ũ′, p̃′) (4.51a)

∇ · ũ′ = δR(ũ′1, p̃′) (4.51b)

We can now apply the Lagrange identity to the perturbed field δq(x) =
δq̃(x) exp(s1t) and to the adjoint mode q∗ = q̃∗ exp(−s1t) associated to the
global mode identified by the eigenvalue s1. Integrating over the domain Ω,
using equation (4.51) and taking into account the boundary condition we
obtain:

δs1 =
´

Ω [ũ∗1 · δH(ũ1, p̃1) + p̃∗δR(ũ1, p̃1)] dΩ´
Ω ũ
∗
1 · ũ′1dΩ (4.52)

Equation (4.52) relates the drift of the eigenvalue s1 to the perburted oper-
ators and the adjoint field. Therefore expression (4.52) is called sensitivity.
We will consider perturbations which are localised in space. Let us con-
sider the sensitivity of the eigenvalue with respect to a generic force-velocity
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coupling, which is equivalent to introducing in the domain a device able to
excite the flow with a force whose direction and intensity depend just on the
velocity perturbation:

f = C(x) · u′ (4.53)

If this structural perturbation is localised in space, at a generic point x0,
we can write equation (4.53) as:

f = C0δ(x− x0) · u′1 (4.54)

where δ denotes the Kronecker delta function. Let us assume that no per-
turbation acts on the continuity equation (δR(ũ1, p̃1) = 0) and δH(ũ′, p̃) =
C0δ(x− x0) · ũ′1, we obtain the following relation:

|δs1| =
∣∣´

Ω ũ
∗
1 ·C(x) · ũ′1dΩ

∣∣∣∣´
Ω ũ
∗
1 · ũ′1dΩ

∣∣ ≤ ‖C0‖λ(x0) (4.55)

where:

λ(x) = ‖ũ
∗
1(x)‖ ‖ũ′1(x)‖∣∣´
Ω ũ
∗
1 · ũ′1dΩ

∣∣ (4.56)

Therefore the product of the direct and adjoint modes gives the maximum
coupling among the velocity components and λ(x) identifies the regions
where the instability mechanism acts. This quantity is called structural sen-
sitivity (Giannetti & Luchini, 2007) and it is an indicator of the receptivity
to spatially localised feedbacks in a flow. It is important to stress that
this methodology assumes a perturbation localised in a single point of the
domain. The problem of understanding how more complex structural mod-
ifications (e.g. two localised structural perturbations) affect the instability
mechanisms is difficult and it is not possible to provide a straightforward
solution. Generally the solution to such problems requires the concomi-
tant comparison of direct numerical simulations and the results of stability
analyses.

4.6.3 Structural sensitivity to base flow modifications

Another approach to study the receptivity of a flow is the evaluation of the
drift of an eigenvalue due to a structural perturbation acting on the base
flow (Bottaro et al., 2003). We will see that this is particularly significant
for analysis that will be presented in §5, where the stabilisation of the wake
is achieved by modifications of the base flow velocity profile. The structural
sensitivity with respect to base flow modifications was firstly introduced
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by Marquet et al. (2008a) using a Lagrange multiplier technique and then
extended by Luchini et al. (2008)-(2009) and Pralits et al. (2010) by means
of the Lagrange identity. Let us consider an infinitesimal perturbation of
the base flow Up = U + δU and substitute it into the Laplace transformed
Navier-Stokes equations. We obtain:

sδũ′ +L(U , Re)δũ′ +∇δp̃′ = −δsũ− δC(δU , ũ) (4.57a)

∇ · δũ′ = 0 (4.57b)

where δC is the bilinear operator and it expresses the variation of the linear
operator L with respect to the variation of the base flow:

δC(δU , ũ) = δU · ∇ũ′ + ũ′ · ∇δU (4.58)

We can now apply the same methodology described in section §4.6.2; let us
apply the Lagrange identity to the perturbed field δq(x, t) = δq̃(x) exp(s1t),
which satisfies equations (4.57a), and to the adjoint field, q∗(x, t) = q̃∗(x) exp(−s1t).
Integrating over the domain and taking into account the boundary condi-
tions, we obtain:

δs1 = −
´

Ω ũ
∗
1 · δC(δU , ũ′)dΩ´

Ω ũ
∗
1 · ũ′1dΩ (4.59)

Expression (4.59) relates the drift of the eigenvalue s1 with respect to the
modifications of the base flow (encapsulated in δC) and the adjoint field.
Integrating by parts we obtain:

δs1 =
´

Ω δU · δC
∗(ũ∗, ũ′)dΩ−

‚
∂Ω(δU · ũ∗)ũ′ · ndS´

Ω ũ
∗ · ũ′dΩ (4.60)

where the second integral in the numerator vanishes if the solution decays
at infinity. In this expression δC∗ is the adjoint of δC:

δC∗(ũ∗, ũ′) = ũ′ · ∇ũ∗ −∇ũ′ · ũ′ (4.61)

Expression (4.61) is directly related to the sensitivity to a generic modifi-
cation of the base flow (Marquet et al., 2008a) and it is the sum of two
terms. The first one, (ũ′ · ∇ũ∗), represents the transport of perturbations,
while the second one, (∇ũ′ · ũ′), the production of perturbations by the
base flow modifications. The comparison of the intensity of these two terms
highlights whether the transport or production processes are responsible for
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the sensitivity. To obtain an expression analogous to (4.56), let us consider
the variation of a steady base flow due to a generic structural perturbation:

L(U , Re)δU +∇δP = δM ·U (4.62a)

∇ · δU = 0 (4.62b)

where δM represents the coupling matrix that characterises the feedback
process, and has a role similar to δH in equation (4.50). Applying the
Lagrange identity to the base flow (U , P ) and the adjoint field (U∗, P ∗),
and integrating by parts, we obtain:

ˆ
Ω
δU ·δC∗(ũ∗, ũ)dΩ = −

ˆ
Ω
U∗ ·δM ·UdΩ+

‹
∂Ω
J(δU , δP, δU∗, δP ∗)·ndS

(4.63)
where J is the bilinear concomitant expressed by (4.40), while (U∗, P ∗)
denotes the adjoint base flow ,which can be determined by the following
equations (4.64):

L∗(U , Re)U∗ +∇P ∗ = δC∗(ũ∗, ũ) (4.64a)

∇ ·U∗ = 0 (4.64b)

where L∗ is the adjoint Navier-Stokes operator:

U · ∇U∗ −∇U ·U∗ + 1
Re
∇2U∗ (4.65)

Therefore, given the steady base flow U , the direct and adjoint velocity
eigenvectors (u′ and u∗ respectively), we can evaluate the adjoint base flow
U∗ by solving the steady adjoint base flow equations (4.64), where the forc-
ing term is δC∗(ũ∗, ũ), introduced in equation (4.61). Similarly to the ap-
proach used in §4.6.2, let us assume that the feedback is localised in space,
δM = δM0δ(x−x0). Using equation (4.60) and (4.61) with the appropriate
boundary conditions, we obtain:

|δs1(x0)| =
∣∣∣∣∣
´

ΩU
∗ · δM ·UdΩ´

Ω ũ
∗
1 · ũ1dΩ

∣∣∣∣∣ = |U
∗(x0) · δM0 ·U(x0)|∣∣´

Ω ũ
∗
1 · ũ1dΩ

∣∣ ≤ ‖δM0‖Λ(x0)

(4.66)
where:
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Λ(x) = ‖U
∗(x)‖ ‖U(x)‖´
Ω ũ
∗
1 · ũ1dΩ . (4.67)

Λ(x) represents the structural sensitivity with respect to a local base flow
modification. While expression (4.56) represents the eigenvalue drift due to
a time-periodic forcing with the frequency of the instability mode, expression
(4.67) assumes a local steady forcing which is proportional to the local base
flow velocity and it induces variations of the base flow. Both the sensitivities
λ(x) and Λ(x) are useful to study the stability of the problem and detect
the different instability mechanisms.

4.7 Transient growth and convective instabilities

In the framework we presented in the previous sections we implicitly used the
definition of asymptotic stability, discussed in §4.2, which implies a decay of
the perturbation energy just for t→∞. However, an asymptotic stable flow
might exhibit a non-negligible transient energy response, unless a condition
of monotonic stability can be provided. The presence of transient growth
phenomena is common in many applications, for example in open flows,
where a particularly complex geometry might produce a steep variation of
the base flow. Therefore, the main question to answer is related to the
existence of bounded solutions which exhibit large growth before inevitably
decaying. Let us consider the energy of a perturbation at a generic time
τ , normalised with respect to its initial value. An initial perturbation with
unitary energy, which implies ‖u′(0)‖ = 1, leads to:

E(τ)
E(0) =

〈
u′(τ),u′(τ)

〉
(4.68)

Recalling the evolution operator defined in (4.20), it is possible to express
(4.68) as the following:

E(τ)
E(0) =

〈
A(τ)u′(0),A(τ)u′(0)

〉
(4.69)

It is now possible to recast the previous expression introducing the adjoint
evolution operator A∗(τ) in the L2 inner product:

E(τ)
E(0) =

〈
u′(0),A∗(τ)A(τ)u′(0)

〉
(4.70)

The most common task in hydrodynamic stability theory is the quest for
the most dangerous initial condition that results in the largest amplification
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of the perturbation energy. This is equivalent to a search for the maximum
amplification G(τ) of the initial energy over a specified time interval. Thus,
the transient growth analysis consists of an optimisation problem over all
initial conditions for a given time τ :

G(τ) ≡ max
‖u′(0)‖=1

E(τ)
E(0) (4.71)

From (4.70), it is evident that the largest possible growth is dictated by
the dominant eigenvalue of operator A∗(τ)A(τ), although even the first few
sub-dominant eigenvalues may also be of interest3. It can be demonstrated
that this approach is equivalent to finding the largest singular value of the
operator A. The eigenfunction v associated to the largest eigenvalue of op-
erator ,A∗(τ)A(τ) gives in fact an initial perturbation u′(0) that generates
a growth λ at time τ . Therefore:

A(τ)v = σu, ‖u‖ = 1 (4.72)

where σ = ‖u′(τ)‖. This is the singular value decomposition of A(τ).
The phenomenon of transient growth can be explained by considering the
non-normality of the linearised Navier-Stokes evolution operator. This fact
can be simply understood using the simple geometric example shown in
figure (4.5). Let us assume a unit-length vector f represented in a non-
orthogonal basis .This vector is defined as the difference of the two nearly
collinear vectors Φ1 and Φ2. With the time progression, the component
of these two vectors decrease respectively by 20% and 50%. The vector f
increases substantially in length before decaying to zero. Thus, the super-
position of decaying non-orthogonal eigenmodes can produce in short-term
a growth in the norm of the perturbations (Schmid, 2007).

4.8 Stability, receptivity and transient growth anal-
ysis of a flow past a cylinder

In this section the stability, receptivity and transient growth analysis will
be applied to a flow past a two-dimensional cylinder at Re = 40. This study
is important because it allows us a direct comparison with several results
reported in the literature (Giannetti & Luchini 2007, Marquet et al. 2008a,
Pralits et al. 2010, Giannetti et al. 2010) and provides useful insights that

3let us note that A∗(τ)A(τ) is a self-adjoint operator, therefore its leading eigenvalues
will be real and positive, consistently with the fact that it is associated to the energy of
the perturbations.
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Figure 4.5: Geometric interpretation of the transient growth. Adapted from
(Schmid, 2007).

will be further addressed in chapter 5. Information about the mesh and the
choice of the main computational parameters are the same ones discussed
in §(5.2).
Figure (4.6) shows the profile of the steady base flow, which was used to
perform such analyses. The drag coefficient and the length of the recircu-
lation bubble are in accordance with the data available in the literature, as
reported in table (4.2).

Figure 4.6: Detail of the velocity and streamlines at Re = 40.

By means of direct stability analysis, the flow is seen to be stable to two-
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CD LB
Dennis & Chang (1970) 1.52 2.35
Coutanceau & Bouard (1977) − 1.89
Fornberg (1980) 1.5 2.24
Ye et al. (1999) 1.52 2.27
Kim et al. (2001) 1.51 −
Giannetti & Luchini (2007) 1.54 2.24
Present work 1.52 2.26

Table 4.2: Drag coefficient CD and length of the wake bubble LB measured
from the rear stagnation point.

dimensional perturbations and the decay rate4 was seen to be σ = −2.1 ×
10−2, while the frequency ω = ±7.3 × 10−1, in accordance with the results
in the literature (Zebid 1987, Hill 1992) . Figures (4.7a) and (4.7b) show the
components of the direct mode, normalised such that the Euclidean norm is
unity. The dominant eigenmodes are structurally identical, although they
are shifted by the frequency ω. The transverse component of the perturba-
tion v′ is symmetric about the centreline, while the streamwise component
u′ is skew-symmetric. The base flow shows an exactly opposite behaviour,
hence the superposition of the steady base flow and the disturbance will not
show any symmetry. Consequently, the instabilities arising in this flow can
be considered symmetry-breaking bifurcations (Tang 1997, Mittal 2010).
To study the regions of maximum receptivity, the adjoint mode was cal-
culated using the same numerical technique used for the direct stability
analysis. Figures (4.8a) and (4.8b) show the spatial distribution of the ‖u∗‖
and |p∗|, pointing out the regions of maximum receptivity to momentum
forcing/initial conditions and mass injection respectively. The adjoint mode
is located close to the cylinder surface and decays rapidly upstream and
downstream. The large separation of the direct and adjoint mode is related
to the non-normality5 of the linearised Navier-Stokes equations and it is
responsible for the strong sensitivity to forcing (Giannetti & Luchini 2007,
Trefethen et al. 1993, Schmid & Henningson 2001).
In order to identify the region where the instability mechanisms are more

4We define the growth/decay rate as σ = log(R(s))/T and the frequency ω = I(s)/T ,
where s is the dominant eigenvalue and T the time horizon used to integrate the linearised
Navier-Stokes equations.

5A a operator N on a complex Hilbert space H is called normal if it commutes with
its hermitian adjoint: NN∗ = N ∗N .
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(a)

(b)

Figure 4.7: Direct eigenmode at Re = 40. (a): streamwise perturbation
velocity u′, (b): transverse perturbation velocity v′.
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(a)

(b)

Figure 4.8: (a): receptivity to momentum forcing and initial conditions
‖u∗‖, (b): receptivity to mass injection |p∗|.
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prominent, we cannot consider the direct and adjoint modes separately.
Therefore, the structural sensitivity λ(x, y) was evaluated by computing the
spectral norm of the product of the direct and adjoint modes. As discussed
in §4.6.2, the structural sensitivity provides information about the regions
where the feedback from the velocity to force is most effective and it is equiv-
alent to introducing in the flow a small device that generates a force whose
direction and intensity depend on the value of the local velocity perturba-
tion. Figure (4.9) shows the profile of λ(x, y): the maxima are located in
two symmetric lobes across the separation bubble, while its intensity is very
small in proximity of the cylinder surface and far from it, suggesting that
these regions do not have a crucial role on the dynamics of the instabilities.

Figure 4.9: Contour plot of the sensitivity to a local feedback at Re = 40.

Finally, figure (4.10) shows the structural sensitivity with respect to base
flow modifications Λ(x, y). This sensitivity assumes a local force propor-
tional to the local base flow velocity and identifies regions which are dif-
ferent from the structural sensitivity λ(x, y). Despite two symmetric lobes
being identified, similar to ones found for the structural sensitivity λ(x, y),
the maxima are located in the region just above and below the cylinder; this
result shows that the most effective disruption to vortex shedding results
from variations of the peripheral velocity of the cylinder , with subsequent
modifications of the location of the stagnation point (this approach will be
used in chapter §5).
Finally we can study the presence of convective instabilities in the flow. As
explained in §4.7, the largest energy growth G(τ) associated with a specific
time horizon τ , can be determined by computing the leading eigenvalue of
operator A(τ)A∗(τ). For τ = 60, t a leading eigenvalue equal to λ ' 670.5
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Figure 4.10: Contour plot of the sensitivity to base flow modifications at
Re = 40.
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(a)

(b)

Figure 4.11: (a): magnitude of the optimal initial perturbation. (b): evolu-
tion of the optimal initial disturbance, showing the dynamics of the convec-
tive instabilities.

was found. This result points out the presence of convective instabilities, in
fact λ represents the largest energy amplification that a perturbation with
unitary magnitude might experience at the specified time horizon. The
optimal initial disturbance and its evolution is shown in figure (4.11).

Following usual approaches for the transient growth analysis (Cantwell &
Barkley 2010, Blackburn et al. 2008), figure (4.12a) shows the optimum
envelope G(τ) and four transient responses. These curves follow from those
initial conditions which produce the optimal energy growth at the specific
time horizon τ and meet the optimum envelope at the corresponding times;
optimal curves are in fact an envelope of the transient responses, even if the
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individual transients have behaviours which are similar both qualitatively
and quantitatively to the envelope. Figure (4.12) shows a comparison of the
optimal envelope curve with to the results obtained in a similar study by
Cantwell & Barkley (2010).

Figure 4.12: (a): linear energy evolution starting from three optimal initial
conditions for specific values of τ = 20, 60 and 100 and the envelope of
the two-dimensional optima. (b): envelope of the two-dimensional optima
for the present case compared with previous findings (Cantwell & Barkley
2010).

4.9 Application of the hydrodynamic instability to
the control of vortex shedding

As discussed throughout this chapter, the hydrodynamic stability theory
provides a solid theoretical framework to understand the dynamics of the
instabilities. This issue is particularly relevant to study the mechanisms
behind the vortex shedding in a flow past a bluff body, which was seen to
be directly related to the presence of a region with an absolute instabil-
ity (Chomaz 2005, Huerre & Monkewitz 1995). In particular, the physical
insights given by these analyses can be used to stabilise vortex shedding.
Efficient control techniques generate change in the near-wake region, which
act as a wavemaker, and lead to the attenuation, or suppression, of the the
global instability. A simple but highly instructive application is the con-
trol technique suggested by Strykowski & Sreenivasan (1990), who noticed
that the proper placement of a small control cylinder in the wake results
in the suppression of the vortex shedding in a specific range of Reynolds
numbers. In order to achieve the suppression, the control cylinder must
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be placed within either of the two regions, which are symmetrical with re-
spect to y = 0. The shape of these region is determined by the ratio of
the diameters of the main and secondary cylinders (figure(4.13)). A nu-
merical investigation of this technique was performed by Hill (1992), who
computed the shift in the growth rate caused by a first-order correction of the
eigenfrequency, resulting from the placement of the smaller cylinder. The
same results found by Strykowski & Sreenivasan (1990) were retrieved using
the adjoint Navier-Stokes equations, confirming that the vortex shedding
eventually returns at higher Reynolds numbers with a significantly reduced
Strouhal number. Moreover, the map of the shift of the Strouhal number,
caused by the small cylinder, showed the regions where the frequency was
found to be more prominent. A more general explanation of this methodol-
ogy can be given by means of the structural sensitivity. The placement of
the secondary cylinder generates a force on the fluid that modifies the flow
field and leads to a a shift of the eigenvalues. Since the control cylinder has
a diameter much smaller than the main one, its presence is equivalent to the
effect of a localised perturbation. This issue is reflected in the similarity of
figures (4.9) and (4.13) where the differences are due to the finite diameter
of the secondary cylinder.
Further considerations can be deduced from the profile of the structural
sensitivity to base flow modifications. The largest drift of eigenvalues is
obtained by modifying the base flow in the regions close to the surface of the
cylinder and in the upper/lower lobes of figure (4.10). However, as discussed
by Marquet et al. (2008a), localised modifications of the base flow in the
separation regions have a destabilising effect, producing an increase of the
growth rate of the instabilities; this explains the reason why no suppression
of the vortex shedding is achieved if the localised modification of the base
flow is in proximity to the cylinder, as shown in figure (4.13).

4.10 Final remarks

It is important to remember that the methodology presented in this chapter
is linear. When the Reynolds number is high, a disturbance that stabilises
the frequency of the absolute instability might destabilise other modes. This
phenomenon is related to the non-normality of the linearised Navier-Stokes
equations. However, methods such as the splitter plates, base bleed and
distributed forcing provide good results in a wide range of Reynolds num-
bers, suggesting that the vortex shedding is still the prime mode and the
dynamics can be studied using the linear analysis, similarly to the cases at
lower Reynolds numbers.
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Figure 4.13: Regions where the placement of the secondary cylinder gener-
ates a zero growth rate of the temporal mode (adapted from Strykowski &
Sreenivasan 1990).
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Chapter 5

Suppression of vortex
shedding via surface bleed

“ It is a capital mistake to theorise before one has data. In-
sensibly one begins to twist facts to suit theories, instead of
theories to suit facts. ”
Sir Arthur Conan Doyle, The Adventure of Sherlock Holmes

The main scope of this chapter is to investigate the effects of distributed
spanwise forcing on flows past a cylinder. After introducing the main pa-
rameters used in the present simulations, the influence of forcing on the sup-
pression of vortex shedding and the stabilisation of the wake are discussed.
Stability analysis of the flows is used to understand the physical mechanisms
behind the suppression of the von Kármán street and its implications on the
design of control devices.

5.1 Introduction

In chapter §3, we discussed the main techniques to suppress the von-Kármán
vortex street. In particular, three-dimensional methods were seen to be very
efficient, leading to a noteworthy drag reduction. As discussed by Darekar
& Sherwin (2001), the effects of spanwise geometric modifications can be
taken into account by introducing momentum forcing in the Navier-Stokes
equations. This forcing is responsible for the generation of spanwise velocity
components along the leading edge surface, which slow down the velocity in
some specific regions along the span. These results suggest that an effective
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suppression of vortex shedding can be achieved by a combination of a cross-
flow velocity at the stagnation face and a slow down effect in the separation
regions. Therefore, the application of spanwise distributed forcing along
the surface of the cylinder may represent an appropriate manner to control
wakes of bluff bodies without introducing any geometric modification. This
technique has been extensively used to investigate the vortical dynamics of
mixing layers since it affects the evolution of vortices and enhances mix-
ing effects (Lascheras & Choi 1989, Bell & Mehta 1993, Nygaard & Gletzer
1994, Collis et al. 1994, Chun et al. 1990). Kim & Choi (2005) investi-
gated the effects of spanwise distributed forcing to control wakes generated
by flows past bluff bodies and applied sinusoidal blowing/suction along two
slots at the upper and lower surfaces of a circular cylinder. In this thesis,
a similar technique is used: we apply distributed forcing (or equivalently
surface bleed) at the top and bottom surfaces of a cylinder by an appropri-
ate modification of the velocity boundary conditions. At first, two in-phase
sinusoidal forcing functions are applied to compare their effects with the re-
sults obtained by Kim & Choi (2005). Subsequently, the effects of Gaussian
profiles are investigated to characterise the configuration that leads to an
optimal suppression of vortex shedding. Stability analysis of the linearised
Navier-Stokes equations is then performed on the three-dimensional flows
to understand the role of spanwise modulation on the classical absolute in-
stability associated with the von-Kármán street. Finally, the computation
of the adjoint modes allows us to address the evaluation of the receptivity
and the identification of the structural sensitivities, which are fundamental
to understand the dynamics of the involved instability mechanisms.

5.2 Parameters of the numerical simulations

Figure (5.1) shows a sketch of the geometry adopted in the present thesis.
We consider a cylinder completely immersed in an incompressible Newtonian
flow: the upstream boundary Li is 50D from the centre of the cylinder,
while the side boundary Lc is 45D from the centre of the body. The choice
of the inflow and cross-flow length is important to assure the validity of
the results obtained by DNS and stability analysis. Cantwell & Barkley
(2010) showed that such values lead to errors of the growth rates less than
1%, using a numerical method similar to the one used in the present thesis.
The downstream boundary Lo is 50D, such that eventual instabilities have
sufficient space to evolve properly.
Regarding the boundary conditions, Dirichlet boundary conditions were im-
posed for the velocity at the upstream and side boundaries of the compu-
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Figure 5.1: Sketch of the geometry of the problem.

tational domain ∂ΩI . At the downstream boundary ∂ΩO outflow Neumann
boundary conditions were applied. On the surface of the cylinder ∂ΩW a
forcing function φ(x, y, z) was imposed, as we will discuss in §5.4. To sum-
marise, the velocity boundary conditions read:

u|∂ΩW = φ(x, y, z), (5.1a)

u|∂ΩI = (1, 0, 0)T , (5.1b)

∂u

∂n

∣∣∣∣
∂ΩO

= (0, 0, 0)T . (5.1c)

A homogeneous pressure was imposed at the downstream boundary ∂ΩO,
while high order boundary conditions, expressed by (2.93), were adopted on
all the others. A structured mesh, shown in figure (5.2), was used. This
mesh is composed of 700 quadrilateral elements and the curved boundaries
are approximated by a parabolic fitting.
The modal basis described in §2.3.1 was used to interpolate the variables of
the problem, while the appropriate polynomial order was chosen using an
approach similar to the one discussed by Barkley & Henderson (1996). This
approach consists in a convergence study of several physical quantities at
Re = 190, where we keep the h-refinement fixed and vary the polynomial
order P . Results are summarised in table (5.1), which shows the values
of some global coefficients when the polynomial order P is progressively
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Figure 5.2: Mesh used for the simulations ad a detailed view around the
cylinder.

P ∆t St −Cpb CD C ′D C ′L
5 3× 10−3 0.1945 0.9604 1.3768 0.0500 0.5039
6 2× 10−3 0.1956 0.9277 1.3487 0.0300 0.4700
7 8× 10−4 0.1955 0.9322 1.3447 0.0294 0.4643
8 8× 10−4 0.1955 0.9424 1.3445 0.0293 0.4645
9 8× 10−4 0.1955 0.9423 1.3445 0.0293 0.4644

Table 5.1: Convergence study of several global parameter at Re = 190 with
polynomial order P .

increased. In this table St is the Strouhal number (St = fD/U∞, where
f is the frequency of vortex shedding), Cp is the base pressure coefficient,
CD and C ′D the mean and fluctuating drag coefficients, while CL and C ′L
the mean and fluctuating lift coefficients1. Considering these results, eighth-
order polynomial expansions were adopted for all the simulations described
in this chapter.
Let us note that the mesh reported in figure (5.2) is two-dimensional; the
three-dimensional simulations were performed using the Fourier-spectral/hp
element method described in §2.3.6. The spanwise length of the compu-
tational domain Lz was chosen to be 5D; tests with lengths in the range
Lz = 10D − 20D showed differences of about 5% in the values of the aero-

1The fluctuating coefficients are calculated as the root mean square of the total coeffi-
cients.
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dynamic forces, while the wake topologies were seen to be almost identical.
The Fourier resolution in the spanwise direction requires further consider-
ations. As described by Henderson (1997), the number of the necessary
Fourier modes nF to capture the dynamics of the system can be estimated
by βD = 2πnF /Lz ∼

√
Re. At Re = 60, this relation provides nF ' 8: eight

Fourier modes were found to be sufficient to capture the dynamics of the
system and lead to differences in the values of the aerodynamic forces less
than 1%. However, simulations at higher Reynolds number required a larger
number of modes than the estimated value. Three different resolutions were
then tested at Re = 180, using 8, 16 and 32 Fourier modes respectively.
A large number of modes, nF = 32, was necessary when Gaussian surface
bleed was used, due to the particular “sharpness” of the forcing function
required for the suppression of vortex shedding.

5.3 Vortex identification

An important aspect of flows past bluff bodies is the fact that their behaviour
is governed by the dynamics of the vortices (vortex-dominated flows). Vor-
tices are often viewed as “the sinews and muscles of turbulence” (Kücher-
mann 1965) and their identification is hindered by the lack of an accepted
mathematical definition (Chakraborty et al. 2005). Therefore an important
preliminary task is a criterion for a proper identification of the coherent
structures. We define as coherent structure a localised area in the flow field
where swirling and vortical motions are more prominent than the surround-
ing regions. The vorticity, ∇× u, might be a tempting quantity to identify
the coherent structures but it is often unsuitable, in particular if its mag-
nitude is comparable with the background shear. An example is the vortex
sheet, which is not a vortex despite being characterised by a significant
amount of vorticity, or the boundary layer on the surface of a bluff body,
which does not necessarily contain a vortex. Generally the pressure is able to
identify only strong vortices; for instance, in a flow past a cylinder in mode
A transition, the pressure within the “fingers of dye”, described in §3.4.2,
is more intense than at the centre of the spanwise vortices; therefore a sin-
gle value of the pressure cannot describe properly the features of the flow.
Other important examples are the Stokes flows, which are characterised by
a very low Reynolds number and are described by the following equations:

1
Re
∇2u = ∇p, (5.2a)

∇ · u = 0. (5.2b)
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Taking the divergence of (5.2a) and using the divergence-free condition ex-
pressed by (5.2b), we derive that the pressure follows a Laplace equation:
∇2p = 0. Therefore the pressure is a harmonic function and it cannot attain
a maximum (or minimum) at any interior points of its domain because of
the maximum principle. However, vortex rings are known to occur near the
sharp corners, thus the pressure fails to describe properly the presence of
coherent structures. Another technique consists in detecting closed or spi-
ral streamlines in the flow. Unfortunately, due to the complex non-linear
dynamics that characterises the vortices, a particle might not track a full
rotation around the vortex core. Moreover, this method is not Galilean
invariant, since the shape of the streamline depends on the speed of the
reference system. More precise identification criteria can be introduced us-
ing kinematic considerations underlying the velocity gradient tensor ∇u,
thereby making them Galilean invariant. The most popular ones are the Q
(Hunt et al. 1988), λ2(Jeong & Hussain 1995), ∆ (Chong et al. 1990) and
λci (Zhou et al. 1990) criteria. In this thesis, the Q-criterion, introduced by
Hunt et al. in 1998, is used; this criterion identifies the coherent structures
as the regions with positive second invariant of the velocity gradient tensor2

∇u. In addition, the pressure in the eddy regions should be lower than the
ambient pressure. The second invariant Q has the following expression:

Q = 1
2
[
(∇ · u)2 − tr(∇u)2

]
(5.3)

For an incompressible flow, expression (5.3) can be written as:

Q = 1
2(‖Ω‖2 − ‖E‖2) (5.4)

where ‖Ω‖ =
√

tr(ΩΩT ) and ‖E‖ =
√

tr(EET ); E and Ω represents the
symmetric and anti-symmetric components of ∇u:

E = 1
2(∇u+ (∇u)T ) (5.5a)

Ω = 1
2(∇u− (∇u)T ) (5.5b)

In an incompressible flow, Q is a local measure of the excess of rotation
rate due to the strain rate. However, Q > 0 does not necessarily imply the
existence of a pressure minimum, but in most cases the pressure condition
is included by Q > 0 (Jeong & Hussain 1995). Therefore, in this thesis
we use the Q-criterion without the additional condition on the pressure.

2The invariants of a tensor A are the coefficients of its characteristic polynomial p(λ) =
det(A− λI).
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As an example, the coherent structures found in the wake of a flow past
cylinder at Re = 60 are reported in figure (5.3). The topology of the wake
is characterised by strong spanwise alternating vortex tubes, which clearly
identify the von-Kármán vortex street.

Figure 5.3: Q-isosurfaces for Q = 0.01 to show the vortex structure of the
von-Kármán street of a flow past circular cylinder at Re = 60.

5.4 Suppression via surface bleed

As discussed in §5.1 and in §3.5, non-constant spanwise forcing along the
surface of the cylinder is an efficient technique to disrupt vortex shedding
and stabilise the wake. Therefore, starting from a fully developed vortex
shedding, we apply surface bleed at the top and bottom surfaces of a cylin-
der, but, differently from the studies of Kim & Choi (2005), the location of
the slots is slightly shifted towards the separation regions, where the span-
wise vorticity ωz is more prominent, as shown in figure (5.4). Two Gaussian
profiles, centred in θc = π/9 and θc = 8/9π, with respect to the y axis, are
adopted:

φxy(θ)|top/bottom = exp
[
−(θ + θc)2

2ζ2
xy

]
, (5.6a)

φxy(x, y)|top/bottom = exp
[
−
(
arctan

( y
x

)
+ θc

)2
2ζ2
xy

]
. (5.6b)
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The last relation (5.6b) was derived using the polar-cartesian coordinate
transformation, while the parameter ζxy is the standard deviation of the
Gaussian profile and represents the width of the forcing slot. In this thesis,
ζxy was set to 0.1, hence forcing spans roughly from θA to θB reported in
figure (5.4) and covers reasonably well the distribution of vorticity along the
surface of the bluff body. Changing the position of the two slots, θC , within
the range [−π/9, π/9] did not show any significant variations in terms of
drag reduction, but the current choice was seen to produce a slightly faster
decrease.

Figure 5.4: Sketch of the spanwise vorticity iso-contours around the cylinder
and location of the top forcing slot.

Two different forcing functions were used in the spanwise direction. The first
function, reported in (5.7), is a sinusoidal function, where λz is the forcing
wavelength and φ0 the phase:

φsz(z)|top = sin
(2πz
λz

)
, (5.7a)

φsz(z)|bottom = sin
(2πz
λz

+ φ0

)
. (5.7b)

In the present thesis, in-phase forcing (φ0 = 0) was used3. This choice
is justified by the fact that out-of-phase forcing did not produce any drag

3the in-phase/out-of-phase is relative to the forcing at the top and bottom of the
cylinder.
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reduction at low Reynolds numbers and allowed us a direct comparison
with previous results in the literature. Kim & Choi (2005) showed that out-
of-phase forcing (φ0 = π) generates a reduction of the fluctuations of the
aerodynamic forces at high Reynolds number (Re ≈ 3900), but even in this
case the reduction is considerably smaller than in-phase forcing. A second
type of surface bleed was considered: a Gaussian function, centred at half
of the spanwise length Lz, expressed by equation (5.8). To our knowledge,
this is the first investigation of the effects of Gaussian surface bleed on a
circular cylinder and represents an interesting case because it introduces
modifications in a wider range of wavelengths than sinusoidal forcing, with
relevant effects on the stabilisation of the wake.

φgz(z) = exp

−(z − Lz
2

2ζ2
z

)2
 (5.8)

The global forcing function is determined by the product of (5.6b) and (5.7)-
(5.8):

φ(x, y, z) = φxy(x, y)φz(z). (5.9)

This function has been normalised with respect to the integral of its square
over the surface of the cylinder is unitary, such that the same amount of
energy is introduced in the system for both typologies of spanwise forcing.
This normalisation is particularly useful since it allows us to perform direct
comparisons among different types of surface bleeds. The final expression
of the forcing function reads:

φ(x, y, z) = Aφxy(x, y)φz(z)´
Ω [φxy(x, y)φz(z)]2 dΩ

(5.10)

where A is the amplitude of forcing. A sketch of the surface bleed used in
the present work is reported in figure (5.5). In the following sections we
will investigate the effects of the different parameters to study the efficiency
to suppress vortex shedding. In the first part of the chapter, we will focus
mainly on a flow at Re = 60, above the onset of the Hopft bifurcation, while
in the last part of this chapter we will discuss a case at a higher Reynolds
number.

5.4.1 Spanwise wavelength λz and Gaussian width ζz

The effects of the spanwise wavelength of sinusoidal forcing, λz, and the
spanwise standard deviation of Gaussian forcing, ζz, have been investigated,
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Figure 5.5: Sketch of distributed forcing. Two Gaussian forcing functions
φxy, centred at θc = ±π/9 with respect to the vertical axis y, are applied in
the xy plane. In-phase sinusoidal functions φsz or Gaussian functions φgz are
instead applied along the span.
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where we fix the amplitude of global forcing A to be 10% of the free-stream
velocity (A = 0.1u∞). Figure (5.6) shows the time variation of the drag
coefficient for different wavelengths of sinusoidal forcing. An increase of
the wavelength results in a decrease of drag and a minimum is reached at
λz = 5D. A further increase leads to larger values of drag, even though drag
is still smaller than the unforced case; at the optimal wavelength, λz = 5D,
maximum drag reduction is achieved at about 200 times units. The profile
is very similar to the simulations performed by Kim & Choi (2005) and
Darekar & Sherwin (2001).

Figure 5.6: Variation of the drag coefficient with the wavelength λz at Re =
60.

A similar study was performed for the Gaussian spanwise forcing, at the
same Reynolds number, where we vary the standard deviation, ζz, while
we keep the amplitude of forcing fixed (A = 0.1u∞). When the standard
deviation is decreased, which corresponds to a narrower Gaussian function,
a reduction of the drag coefficient was observed, as figure (5.7) shows. This
reduction is more prominent than sinusoidal forcing (about 20% lower) and
it is achieved at about the same time units (t ≈ 200). An explanation of
the higher efficiency of the Gaussian forcing is related the strength of the
cross-flow generated by this type of forcing, which produces a more rele-
vant distortion of the shear layers, as we will discuss in the next section.
It is important to remember that equation (5.10) guarantees a meaningful
comparison between the two different types of forcing, since the controller
injects in the system the same amount of energy. For ζz < 0.1 the drag
coefficient presents a local minimum at about t ' 120 and for t & 120 no
furtherreduction with respect to ζz = 0.1 was detected. A main compu-
tational difficulty in the adoption of Gaussian forcing is the larger number
of the Fourier modes necessary to obtain a sufficiently accurate approxi-
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mation of the solution (errors less than 5%); 8 Fourier modes were seen to
be sufficient up to ζz ≤ 0.1, but ζz = 0.05 required 32 modes, which pro-
duced a noteworthy increase of the computational demand. Based on these
considerations, ζz = 0.1 was chosen.
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Figure 5.7: Variation of the drag coefficient with the spanwise standard
deviation ζz at Re = 60.

An important question is the minimum value of the amplitude A able to
completely suppress vortex shedding. This study was performed by vary-
ing A from 0 to 2 and analysing the behaviour of the wake topology and
the coherent structures which characterise the von-Kármán street. For this
study, the wavelength of sinusoidal forcing was fixed at λz = 5D, while the
standard deviation of spanwise Gaussian forcing ζz = 0.1. For both types of
surface bleed a critical value of the amplitude was found. This value is able
to completely suppress vortex shedding and stabilise the wake into a steady
configuration. As we will discuss in §5.5, the suppressing of vortex shed-
ding is related to the setup of a growing boundary layer on the leading-edge
surface, which generates a spatial redistribution of vorticity. No significant
differences in the wake topology were detected for the two different types of
surface bleed and the general structure of the wake is shown in figure (5.8).
This profile is symmetrical with both vertical and horizontal connections.
The minimal amplitude which leads to the suppression of vortex shedding
was found to be Ascr = 0.23 for sinusoidal forcing and Agcr = 0.12 for the
Gaussian one. At Re = 60, a further increase of the amplitude of forcing did
not lead to any change in the wake topology, although this was not the case
at higher Reynolds numbers. The critical amplitude of Gaussian forcing is
about half the value of the sinusoidal one; these investigations suggest that
Gaussian forcing is more efficient than the sinusoidal one because it produces
larger drag reduction with a lower control velocity. Using definition (3.5) we
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Figure 5.8: Perspective view of the three-dimensional wake at tu∞/D = 300.

(a) Spanwise velocity w. (b) Transverse velocity v.

Figure 5.9: Contours of the velocity components at x = 0.

found that the efficiency of Gaussian forcing is ηg2 ≈ 28, about 20% higher
than sinusoidal forcing (ηs2 = 23). The explanation of this result is related
to the evolution of vorticity. The dynamics of the flow is dictated by the
generation of a cross-flow velocity component w, as we can see from figure
(5.9). The maximum value of the spanwise velocity w was seen to be about
20% of the free-stream velocity. The cross-flow is responsible for a higher
influx of the spanwise velocity at z = Lz/2, and generates a higher transverse
velocity v within the shear layers than in the region of the stagnation points,
as figure (5.9b) points out. Therefore, the presence of a cross-flow component
generates streamwise vorticity ωx.
The streamwise and transverse component of the vorticity are shown in fig-
ures (5.10a) and (5.10b) respectively. These components are characterised
by elliptical regions centred at z = Lz/4 and 3/4Lz, where the magnitudes
were found to be more intense. In figure (5.11) we track the evolution of the
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(a) Streamwise vorticity ωx. (b) Transverse vorticity ωy.

Figure 5.10: Contours of the vorticity components at x = 0.

ratio of the streamwise and spanwise vorticity at (x, y, z) = (0, 0.7, Lz/4),
close to one of these points: we can see that this ratio grows monotonically
in time. Such three-dimensional redistribution of the vorticity prevents the
interactions of the shear layers in the near-wake region and leads to a dis-
ruption of the von-Kármán street, as we will discuss in §5.5. The Gaussian
profile introduces an amount of streamwise vorticity about 20% higher than
the sinusoidal one, hinting the reason of its higher efficiency.

Figure 5.11: Time evolution of the ratio of streamwise and spanwise vorticity
ωx/ωz at (x, y, z) = (0, 0.7, Lz/4).
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5.5 Physical mechanisms underlying the suppres-
sion of the von-Kármán street

In the previous section we showed that the introduction of surface bleed
generates a cross-flow velocity with the appearance of additional streamwise
and transverse components of vorticity. Both these components were found
to be more intense in specific locations along the span. This phenomenon was
seen to be directly related to the suppression of the von-Kármán street but
leads to a key question: can we characterise qualitatively and quantitatively
the physical mechanisms responsible for the stabilisation of the wake? Let
us consider the development of vortex shedding for the unforced case; the
two shear layers separating from the upper and lower surface of body can
be regarded as two vortex sheets, which are composed of a series of vortex
lines, as figure (5.12) shows.

These vortex sheets are subject to a self-induction motion, described by the
Biot-Savart law, hence they tend to bend towards the near-wake region,
where they interact, generating vortex shedding. Figure (5.13) shows the
vortex lines extracted along a streamline when Gaussian forcing was ap-
plied at the critical amplitude; the vortex lines are now deformed along the
streamwise and spanwise directions, and at z = Lz/4 and z = 3/4Lz two
inflections points can be observed. These points correspond to the regions
where the streamwise vorticity was found to be more intense. We will refer
to these point as kinematic inflection points since they are not related to
any geometric modification of the problem.

The self-induction mechanism pushes the peaks of the vortex lines away
from the centreplane, delaying the interaction of the vortex sheets in the
near-wake. Due to the Biot-Savart law, the peaks of the vortex lines, xE
are subject to a positive vertical velocity, while the tips xT to a negative
one. Hence, the peaks of the vortices will move upwards, where the veloc-
ity is higher, while the tips are bound in the region with a lower velocity.
This mechanism is summarised in figure (5.14) and it is responsible for the
suppression of vortex shedding.

An additional quantitative evaluation of the physical suppression mecha-
nisms is given by the time-evolution of the enstrophy of the system, which
can be obtained by a scalar multiplication of the equation of vorticity equa-
tion by the vorticity itself and then integrating over the domain:
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Figure 5.12: Vortex sheet associated the top shear layer for the unforced
flow.
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(a) (b)

Figure 5.13: Perspective views of the evolution of the vortex lines along a
streamline.

Figure 5.14: Sketch of the deformation mechanism of the vortex lines.
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1
2
∂

∂t

ˆ
V
ω · ωdV =

ˆ
V
ω ⊗ ω : ∇UdV + 1

2Re

ˆ
∂V

(ω ⊗ ω) · ndS+

− 1
Re

ˆ
V
∇ω : ∇ωdV.

(5.11)

The first term on the right hand side of (5.11) is a stretching and tilting term,
which can raise the enstrophy, the second one is a diffusive flux through-
out the boundary and the third one represents the enstrophy dissipation.
This last term points out that the diffusive processes tend to attenuate the
maxima of vorticity; in the unforced flows the production term is negligible
(no streamwise or transverse components of the vorticity are present and
the velocity gradient is zero along the spanwise direction). The introduction
of distributed forcing enhances stretching and tilting mechanisms: in this
case the enstrophy production term was seen to grow and it becomes about
one order of magnitude larger than the diffusive contribution (figure 5.15).
The prevalence of the enstrophy production mechanisms over the dissipation
leads to an increase in the intensity of the vorticity, hence the direction of
the shear layers is diverted and the formation of the von-Kármán vortices
is inhibited. When vortex shedding is suppressed (t ≈ 200), no further in-
crease of the production of enstrophy was observed and the rate of change
of enstrophy is roughly constant.

Figure 5.15: Time evolution of the production/dissipation of enstrophy.

Another approach to describe the suppression of vortex shedding can be
given analysing the time evolution of the vortical structures. Figure (5.16)
shows the evolution of the coherent structures at three-different times. As
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(a) tu∞/D = 5 (b) tu∞/D = 80 (c) tu∞/D = 120

Figure 5.16: Temporal evolution of the vortical coherent structures.

time increases, the structures become deformed in the spanwise direction
and at time tu∞/D = 120, two counter-rotating vortices appear at the
same streamwise locations, which correspond to the kinematic inflection
points. Following Kim & Choi (2005), let us track the time evolution of
the transverse velocity v in these two points; the oscillations of the trans-
verse velocity v decrease in time and at tu∞/D = 120 they are completely
out-of-phase, as shown in figure (5.17). Therefore, two three-dimensional
vortices are introduced in the system, which are responsible for the suppres-
sion of vortex shedding. To summarise, all these approaches show that the
suppression of vortex shedding is mainly determined by the introduction of
three-dimensional effects in the flow field: the distortion of the vortex lines
are related to the presence of two counter-rotating vortices, which generate
a cross-flow velocity and a redistribution of the spanwise vorticity along the
streamwise and transverse directions. The evaluation of the enstrophy of the
system confirms that the diffusive effects are not able to inhibit this process
and a global increase of the maxima of the vorticity is observed until vortex
shedding is suppressed.

5.6 The necessity of stability analysis

Despite the fact that the mechanisms presented in the previous section are
able to describe accurately the suppression of vortex shedding, some im-
portant physical features have not been addressed yet. As already hinted
in chapter 4, two different types of instabilities coexist in wakes of flows
past a bluff bodies: an absolute instability is generally dominant in the
near-wake region, while convective instabilities are prominent in the far-
wake. The global oscillations of vortex shedding and the presence of local
absolute instabilities were seen to be deeply related (Huerre & Monkewitz
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Figure 5.17: Temporal evolution of the transverse velocity at z = Lz/4 and
z = 3Lz/4.

1995, Chomaz 2005).. Within the WKBJ approximation scheme (Bender
& Orszag, 1978), the onset of a temporally growing instability was seen to
necessitate the presence of a finite region of local absolute instability; more
specifically, in flows past bluff bodies, when the Reynolds number exceeds
a critical value, a linear global instability is triggered by a Hopf bifurcation
and the instability wave is temporally amplified until a limit-cycle oscilla-
tion is reached, which is the von-Kármán street. Although, this process in
fully non-linear, the non-linearities do not modify the propagation velocity
that characterises the front of the “instability wave packet”; this result is
very important because it allows us to adopt the ideas of the linear abso-
lute instabilities to predict the behaviour of wakes (Delbende & Chomaz,
1998). Hence, linear stability analysis represents the most appropriate ap-
proach to investigate whether the spanwise modifications of the flow are re-
sponsible for the stabilisation of the near-wake absolute instability. Hwang
et al. (2013) provided a first explanation, showing that the spanwise mod-
ulation of a parallel wake, modelled by a Monkewitz model, attenuates the
absolute instability in a specific range of perturbation wavelengths, which
is in accordance with both experimental and numerical results. However,
this study does not clarify whether the wake modulations can completely
suppress the absolute instability; furthermore, real configurations are very

132



CHAPTER 5. SUPPRESSION OF VORTEX SHEDDING VIA
SURFACE BLEED

complicated and the wake model may not be valid, as the authors point
out. The control input velocities generally are not sinusoidal (i.e. we de-
termined that Gaussian profiles can be more efficient) and the amplitude of
surface bleed can be relatively large, differently from the assumptions made
in this study. Moreover, the modulated base flow generally contains several
spanwise wave-components and lacks any spanwise uniformity. An attempt
to go beyond these limitation is offered by the recent surge of interest in
the fully-three-dimensional stability analysis (TriGlobal stability). Similar
studies were performed on a jet in cross flow (Bagheri et al. 2009, Ilak et al.
2012), spheres and discs (Natarajan & Acrivos 1993), but applications to
flows past cylinders are still unexplored. Direct comparisons with the re-
sults obtained by Hwang et al. (2013) are an important part of this work
since they allowed us to detect the limitations of the widely used simpli-
fying models and pointed out the actual capabilities of three-dimensional
controllers for the stabilisation of wakes.

5.7 Direct stability analysis

In the following section results from direct stability analysis are presented
to determine how the dynamics of the global instabilities changes when
distributed forcing is applied on the surface of the cylinder.

5.7.1 Methodology

The first step to perform the direct stability analysis is the generation of
the base flow. When the amplitude of surface bleed is above the critical
value Acr, as discussed in §5.4, the flow was found to be steady, so it can
be used to perform stability analysis. A more subtle problem is the study
the stability of the unsteady configurations (A < Acr), when distributed
forcing is not able to completely suppress the oscillations caused by vortex
shedding. However, the determination of the global modes in these configu-
rations is important to understand how surface bleed acts on the instabili-
ties. Besides the theoretical relevance of such problem, in some engineering
applications a substantial reduction of drag could be more important than
a complete suppression of vortex shedding. The lack of any straightfor-
ward time-periodicity in this regime makes the Floquet analysis unfeasible;
a common methodology is to perform the stability analysis on the time-
averaged base flows, which are solutions of the Reynolds-Averaged Navier-
Stokes equations (RANS). However, this approach might lead to some dif-
ficulties since the base flow is not a genuine solution of the Navier-Stokes
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equations due to the presence of the Reynolds-stress term. Moreover, stabil-
ity analysis might not be able to determine the correct values of the growth
rates (Barkley, 2006). Another approach consists in using steady state so-
lutions of the Navier-Stokes equations; this approach has been successfully
used in several studies, for instance the stability of the wake of a sphere
(Pier, 2008), cavity flows (Akervik et al., 2007), the convective instabilities
of a flow past a cylinder (Abdessemed et al., 2009a) and more recently in
the TriGlobal stability analysis of a jet in crossflow (Bagheri et al. 2009,
Ilak et al. 2012). In this thesis we will use steady base flows to study the
stability when forcing does not completely suppress vortex shedding. These
steady base flows were computed by inserting a symmetry condition along
the centreplane and then time-marching the Navier-Stokes equations until
the steady state was reached; figure (5.18) shows a sketch of the geometry
used to generate the steady base flows. An additional boundary condition
along the centreplane π := {(x, y, z)|y = 0, z = 0} was used to enforce the
steadiness of the solution. This condition is given by ∂u

∂n = 0, v = 0 and
∂w
∂n = 0.

Figure 5.18: Geometry adopted to compute the steady state solution.

In this thesis, global stability analysis was performed using an Arnoldi
method (refer to Appendix A for further details). Both the “Modified
Arnoldi” (Barkley et al. 2008) and ARPACK (Lehoucq et al. 1998) algorithms
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Krylov subspace dimension Eigenvalues Error
m = 4 20%
m = 6 17%
m = 10 12%
m = 12 7%
m = 14 4%
m = 16 2%

Table 5.2: Error between the absolute values of the dominant eigenvalue for
the unforced case and the values reported by Noack & Eckelmann (1994).

were seen to converge to the same dominant eigenvalues, with differences
smaller than 10−6. The dimension of the Krylov subspace was set tom = 16,
which was found to be sufficiently high to capture the dynamics of the sys-
tem. Table (5.2) shows the error of the absolute value of the dominant
eigenvalues of the unforced flow (two-dimensional vortex shedding) with re-
spect to the values reported by Noack & Eckelmann (1994).
The following computations were performed using spanwise Gaussian forcing
with a standard deviation ζz = 0.1, as discussed in §5.4. The adoption of
sinusoidal surface bleed with a wavelength λ = 5D did not show any relevant
differences in terms of the topology of the global mode and the variation of
the growth rate over the amplitude of forcing A.

5.7.2 Eigenvalues and eigenmodes

In this section we will discuss the eigenvalues obtained from the stability
analysis and the topology of the global modes at different values for the
forcing amplitude A. Figure (5.19) shows the profile of the growth rate σ
over the amplitude of the forcing A: an increase of surface bleed results into
a progressive weakening of the leading eigenvalue, in fact the growth rate
decreases until it becomes zero when the critical amplitude of the forcing is
adopted; when A = Acr the flow is neutrally stable and a further increase of
the forcing leads to the stabilisation of the wake, with disturbances decaying
in time more rapidly. However, this behaviour is observed until A = 0.22,
when the curve saturates to a decay rate σ ' −5× 10−2.

The leading eigenvalues appear as complex-conjugate pairs, therefore a char-
acteristic frequency of the growing/decaying disturbances can be defined.
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Figure 5.19: Growth rate as a function of the amplitude of the forcing A.

The frequency of the system over the forcing amplitude in reported in figure
(5.20).
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Figure 5.20: Frequency as a function of the amplitude of forcing A.

Let us consider the profiles of the leading eigenmodes for four different am-
plitudes reported in figure (5.19). When no forcing is applied to the flow the
eigenmode shows a row of extended vortices with alternating sign, which are
convected downstream, as shown in figure (5.21a). As expected, the mode
is purely two-dimensional since no variation was introduced in the span-
wise direction. When A = 5 × 10−3 a spanwise variation of the mode can
be observed from figure (5.21b); the most pronounced characteristic of the
eigenmode is that its magnitude is nearly zero for x & 30D. This profile
might indicate that despite forcing not being large enough to suppress the
near-wake absolute instability, it may have an effect in the far-wake region,
where convective instabilities occur. Increasing the amplitude, the three-
dimensionality of the mode becomes more pronounced and the mode tends
to be located in the near-wake region, while it spatially decays downstream
(figure (5.21c)).This mechanism continues until the flow become stable (fig-
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(a) A = 0 (b) A = 0.005

(c) A = 0.008 (d) A = 0.15.

Figure 5.21: Topology of the eigemodes for four different amplitudes.

ure (5.21d)), then no significant change in the shape of the mode was de-
tected as A was increased further.
The eigenmodes can be used to study the non-linear behaviour of the tran-
sition. We can analyse this behaviour starting from the Landau equation
(5.12), which describes the time evolution of the amplitude A of a small
perturbation4:

4A in this case represents the amplitude of the perturbations and should not be confused
with the amplitude of forcing introduced in §5.4
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dA

dt
= λ1A+ λ2|A|2A+ λ3|A|4A+ · · ·+ λn|A|2nA (5.12)

In equation (5.12) λn ∈ C are the Landau coefficients. To a first order
approximation, the perturbation grows at a rate given by the real part of
λ1, but as time increases non-linear effects become more prominent and the
high order terms are fundamental to describe the transition. Provansal,
Mathis & Boyer (1987) showed that λ1 is the eigenvalue obtained by linear
stability analysis: the real part, R(λ1), is the growth rate σ, while the
imaginary part, I(λ1) the frequency ω. Therefore, before the on-set of the
non-linearities, the perturbations are subject to an amplification given by
the growth rate of linear stability analysis. Let us write the amplitude A in
the complex notation A = |A(t)| exp(iφ), then equation (5.12) becomes:

d log |A|
dt

= σ +O(|A|2) (5.13a)

dφ

dt
= ω +O(|A|2) (5.13b)

In the linear approximation, solving the ordinary differential equation given
by (5.13a) leads to (5.14):

log |A| = log |A0|+ σt (5.14)

where |A0| is the amplitude of the perturbation at the initial time t0. This
implies that the slope of the tangent at t = 0 represents exactly the growth
rate. Following Henderson & Barkley (1996), we can define the amplitude
in terms of the flow variables:

|A(t)| =

ˆ
Ω

∣∣∣∣∣
N∑
i=0
ûi(x, t)

∣∣∣∣∣
21/2

(5.15)

where ûi are the N Fourier coefficients of the velocity field and Ω is the
computational domain. Let us superpose the steady base flow with the
unstable mode found at A = 0, multiplied by a small factor, e.g. ε = 10−6,
such that the initial growth is linear. Evolving the non-linear equation we
obtain a velocity field which is similar to the vortex street at higher Reynolds
number. The profile of the logarithm of the amplitude of the perturbation
over time is reported in figure (5.22), which shows that the initial linear
growth exactly matches the value determined by stability analysis. As time
increases, the non-linearities becomes more prominent until a saturation of
the perturbations was detected. This result is important because it provides
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a validation of the results we obtained and it clearly shows the limitations
of linear analysis.

Figure 5.22: Non-linear behaviour of the perturbations

Let us consider now the stable eigenmode obtained at A = 0.13, when
vortex shedding is completely suppressed. Figure (5.23) shows the vortical
structures of the mode obtained by the Q-criterion. As already discussed,
the mode is located in the near-wake region of the cylinder, 0.5D < x < 10D,
and its intensity progressively fades away in the streamwise direction. The
vortical structures show a waviness along the spanwise direction and the
structures become more disrupted as we move downstream, until they are
broken down at about x = 5D. This result provides a first evidence that the
leading perturbations act mainly in the area where the sensitivity is more
intense, affecting the core of the absolute instability, as we will discuss in
§5.8. This region is known as the wavemaker, and it represents the region
where the oscillation originates and from which it propagates to the rest of
the fluid.
To study the profile of the eigenmode, we consider a y− z section at x = D.
The behaviour in the other significant locations (0.5 < x < 10D) was found
to be qualitatively similar, in accordance with the profile shown in figure
(5.23). The contours of figure (5.24) show the normalised absolute value
of the three components of the eigenmode, while the superposed isolines
indicate the base flow at the same location. The profile of the streamwise
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Figure 5.23: Q-isosurface of the eigenmode for Q = 0.001.
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velocity perturbation u′ is located in a narrow spanwise range 1 < z < 4
and its peak is in the regions just above/below the cylinder, where the per-
turbations are able to disrupt vortex shedding. The transverse perturbation
velocity v′ is stronger along the axis y = 0 and its intensity is more pro-
nounced in the region where the base flow is slower. Finally, the spanwise
perturbation velocity is more prominent at the extremities of the domain
(z = L/4 and z = 3/4L), again in the region just above and below the cylin-
der, similarly to the transverse component. These results are in accordance
with Hwang et al. (2013) and provide an indication of how the stabilisation is
achieved. The transverse perturbation velocity v′ induces a modification of
the base flow along the centreplane and prevents the interactions of the top
and bottom shear layers and disrupts the mechanisms of formation of vor-
tices. The evidence that the spanwise perturbation velocity w′ is prominent
in the region where the streamwise vorticity is more intense (figure (5.21))
confirms in a stability analysis framework that the presence of cross-flow
perturbations enhances localised spanwise modifications of the base flow,
which generate the additional components of vorticity, as explained in §5.4.
These considerations highlight the strong relation between the mechanisms
of suppression of vortex shedding and the leading eigenmode, but some
questions arise: how do the perturbations and the base flow interact? How
does the interaction affect the stabilisation of the wake? To answer these
questions let us start by considering the curl of the linearised Navier-Stokes
equations, which describes the evolution of the vorticity perturbations ω′:

∂ω′

∂t
+U · ∇ω′ = ω′ · ∇U + Ω · ∇u′ − u′ · ∇Ω + 1

Re
∇2ω′. (5.16)

where U and Ω represents the base flow velocity and its vorticity respec-
tively. The first two terms on the left hand side of (5.16) represent the
advection of the vorticity perturbations by the base flow, while the first and
last term on the right hand side represent the tilting mechanisms by the
base flow and the viscous dissipation respectively. The two additional terms
present in the right hand side of equation (5.16) introduce a variation of
the vorticity perturbations by the interaction between the base flow and the
velocity perturbations. In particular, the term u′ · ∇Ω acts as a potential
trigger for the development of the instabilities and does not play a crucial
role in the process. To verify this, let us consider the evolution of the per-
turbation enstrophy, which can be obtained by a scalar multiplication of
equation (5.16) by ω′ and integrating over the domain:
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(a) |u|/|u|max (b) |v|/|v|max

(c) |w|/|w|max

Figure 5.24: Components of the perturbation velocity u′ at x = D. Blue
are the less intense regions, red the more intense ones.
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1
2
∂

∂t

ˆ
V
ω′ · ω′dV +

ˆ
V

(ω′ ⊗ ω′) : ∇UdV =
ˆ
V

(ω′ ⊗ ω′) : ∇UdV+

+
ˆ
V

(ω′ ⊗Ω′) : ∇u′dV −
ˆ
V

(ω′ ⊗ u′)∇ΩdV + 1
2Re

ˆ
∂V

(ω′ ⊗ ω′) · ndS+

− 1
Re

ˆ
V
∇ω′ : ∇ω′dV

(5.17)

We can evaluate the contribution to the variation of the enstrophy pertur-
bation from the tilting term (first term on the right hand side) and the
interaction of the perturbations with the base flow (second and third term
on the right hand side) when the perturbation is the leading eigenmode. The
interaction of the base flow shear and the perturbations (third term on the
right hand side) was seen to be about three order of magnitude smaller than
the other ones. This confirms that once the flow is stabilised the interac-
tion of the base flow shear and the perturbations does not have a significant
influence on the dynamics of the system. The tilting term was seen to be
the dominant one, of order 10−3, although the interaction of the perturba-
tion shear and the base flow is still quite relevant (≈ 10−4). Therefore, this
consideration suggests that the stabilisation is related to the combination
of vortex tilting by the base flow shear and the subsequent interaction of
the deformed vortices with the perturbations. The introduction of spanwise
forcing in the base flow enhances tilting of the spanwise vorticity perturba-
tion ω′z and the development of streamwise and transverse components (ω′x
and ω′y respectively). The vorticity is then subject to perturbations along
every spatial direction and quickly becomes three-dimensional and interacts
with the time-evolving perturbations u′. A better quantitative characterisa-
tion of the phenomenon can be given using the Reynolds-Orr equation (4.7),
which describes the evolution of the kinetic perturbation energy as a sum
of two terms: the work of the Reynolds stresses again the base flow shear
and the dissipation. The evaluation of the components which constitute the
first term quantifies the amount of energy that the perturbations extract
from the base flow. The dominant terms are reported in figure (5.25) and
are u′v′ ∂U∂y , u

′v′ ∂V∂x and v′2 ∂V∂y .
This shows that the instability mechanisms that govern the stabilisation of
the wake are mainly related to the work of the Reynolds stresses against
the streamwise and transverse components of the base flow shear, whereas
the terms involving the spanwise components are practically negligible. This
result, as already discussed, is related to the fact that the stabilisation mech-
anism involves mainly the generation of a cross-flow velocity at the expense
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Figure 5.25: Energy budget analysis of the base flow forced with a Gaussian
function of amplitude A = 0.13 .

of the streamwise and transverse components. Therefore, the perturbations
will act on the intensity of the streamwise and transverse components of the
base flow shear and divert the energy into the spanwise direction. We can
analyse the contribution of each of these three-terms by calculating their
spatial distribution over the domain: positive values indicate an increase in
the rate of change of perturbation kinetic energy, negative values a reduc-
tion. It is important to stress that while the increase of energy is uniquely
related to the interaction with the base flow, the reduction of the pertur-
bation kinetic energy is connected also to the viscous damping term, which
always subtracts energy. The profiles are reported in figure (5.26). All these
terms show a mild variation in the spanwise direction and the interaction is
more pronounced in the recirculation bubble region. Therefore, the trans-
verse components of the base flow shear act as the main source of energy
for the perturbations; in particular, the term u′v′ ∂U∂y contributes most to
the disturbance energy balance and it shows that the Reynolds-stresses give
and takes energy away through interaction with the bottom and top shear
layers respectively. Finally, the term v′2 ∂V∂x indicates that the interaction
with the transverse derivative ∂V

∂y is mainly along the centreplane, with a
rather strong extraction of energy in the near-wake region.
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(a) u′v′ ∂U
∂y

(b) u′v′ ∂V
∂x

(c) v′2 ∂V
∂y

Figure 5.26: Spatial distribution of the most significants components of the
Reynolds-Orr term u′ ⊗ u′ : ∇U
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5.8 Receptivity analysis and structural sensitivi-
ties

The results of direct stability analysis helped us to understand the physics in-
volved in the suppression of vortex shedding and confirmed that the spanwise
modulation is responsible for the suppression of the near-wake absolute in-
stabilities. However, the receptivity analysis provides additional indications
on the capability of the control technique. Specifically, the global adjoint
mode describes how the systems respond to momentum forcing. Therefore,
the three-dimensional adjoint mode was computed in a similar manner to
the direct one, and its profile is reported in figure (5.27). The profile shows a
distinct variation in the spanwise direction, indicating that the regions more
receptive to momentum forcing vary along the surface of the cylinder. We
consider a y−z section of the mode at x = −0.17, which intersects the cylin-
der at θc, where the peaks of forcing φxy was applied. The mode is located in
a small layer in proximity of the cylinder and its width is roughly constant.
The regions most receptive to momentum forcing are nearby the kinematic
inflection points, at z = L/4 and z = 3/4Lz respectively; this shows that the
forced flow responds mostly to modifications close to these regions, which is
consistent with the findings from the direct numerical simulations and direct
stability analysis.
However, we need to evaluate the structural sensitivity to detect where the
core of the instability is located. As discussed in §4.6.2, the structural sen-
sitivity λ(x, y, z) can be calculated as the spectral norm of the product of
direct and adjoint modes and its profile is shown in figure (5.29). Along the
streamwise direction, the profile is similar to the one of a two-dimensional
unforced cylinder, described in §4.8, although some important modifications
can be detected. The sensitivity still presents two lobes which are symmet-
rical with respect to the centreplane, at about 2D downstream from the
cylinder. Both close to the cylinder (where the adjoint peaks) and far down-
stream (where the direct mode peaks), the product of the adjoint and direct
modes is negligible, therefore these regions are not particularly important
for the onset of the instabilities. However, these two lobes are slightly shifted
towards the extremities of the domain, which is related to the diversion of
the shear layers explained in §5.4. The largest drift of the eigenvalue is still
at the same streamwise location of the unforced case, which is predicted by
the dispersive-wave theory, but at the transverse locations of forcing. Struc-
tural perturbations on the centreplane do not have any impact; this result
has a connection with the fact that the vortex sheets do not interact in this
region, inhibiting the formation of vortex shedding. Finally the structural
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Figure 5.27: Three-dimensional perspective of the adjoint mode.

sensitivity does not show a pronounced variation in the spanwise direction
as figure (5.29) shows.
This last result suggests that two-dimensional structural perturbations are
more relevant than the spanwise ones to suppress the absolute instability.
This leads us to ask the actual reason behind the high efficiency of the
three-dimensional methods. A reasonable explanation relies on the struc-
tural sensitivity to base flow modifications. A structural perturbation in the
flow produces a force proportional and parallel to the local velocity (spatial
localised feedback), but it acts also on the steady base flow and its time-
varying disturbance. The eigenvalue drift is then induced by two separate
mechanisms: the feedback of the velocity perturbation onto itself and the
perturbation induced by a modification of the base flow (Luchini & Bottaro,
2014). It is the combination of these two effects which describes properly
the dynamics of the system. The structural sensitivity can be thought as
the sensitivity of the frequency to a structural perturbation acting on the
time-varying disturbance, leaving the base flow unperturbed. This is a theo-
retical approach to identify the wavemaker region, but it does not complete
the discussion on the effects of our control strategy. The structural sensitiv-
ity to base flow modification permits us to understand how the introduction
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Figure 5.28: Section view of the adjoint mode at x = −0.17.
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Figure 5.29: Three-dimensional perspective of the structural sensitivity
λ(x, y, z)

(a) (b)

Figure 5.30: Section views of the structural sensitivity: (a) profile along the
streamwise section at z = 0, (b) y − z section at z = 2D.
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of surface bleed produces a variation of the leading eigenvalue. The struc-
tural sensitivity to base flow modifications is reported in figure (5.31). This
sensitivity appears to be definitely stronger (about 3 times) than the sensi-
tivity to perturbations and the maxima are attained just above and below
the cylinder. This confirms what Hwang et al. (2013) hypothesised in the
local stability approximation: the high efficiency of the three-dimensional
control is mainly due to the severe distortion of the base flow caused by the
modulation. Significant values of the sensitivity to base flow modifications
are also attained in the lobes which identify the wavemaker regions.

Figure 5.31: Perspective view of the structural sensitivity to base flow mod-
ifications.

5.9 Further investigations at Re = 180

The analysis performed so far is relative to a flow at Re = 60, just above
the critical value for the onset of vortex shedding. In this section, we try to
extend this result to a higher Reynolds number, Re = 180, to understand
how the dynamics of the system changes within the two-dimensional vortex
shedding regime. Following the approach used in the previous sections, DNS
was used to study the dynamics of the base flow and then the linear stability
analysis was performed to understand the role of forcing on the near-wake
absolute instability.
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5.9.1 Different regimes in the suppression of vortex shedding

Following the approach described in §5.4, spanwise Gaussian forcing ex-
pressed by (5.8) and (5.9) was applied on the surface of the cylinder at
θc = ±π/9, as shown in figure (5.4). In the following simulations, the span-
wise standard deviation of the Gaussian was chosen to be equal to 0.02,
which was seen to be small enough to suppress the oscillation of vortex
shedding5. We study the changes in the wake topology when forcing is in-
creased. For very small values of forcing (A < 0.2), surface bleed is not able
to suppress the von-Kármán street and unsteady coherent structures can be
detected along the wake (regime I). These structures show a high degree of
three-dimensionality and do not disappear or become weaker if longer times
are considered. When A ' 0.2, a complete stabilisation of the wake was
observed, with a profile very similar to the one obtained at Re = 60. The
drag coefficient is subject to a reduction of about 17%, slightly smaller than
the previous case at Re = 60, and the Strouhal frequency is zero. How-
ever, this behaviour is maintained only if the forcing amplitude is A < 0.25
(regime II). Higher amplitudes were found to generate a smaller drag reduc-
tion (about 15%) and large unsteady hairpin vortices were seen to emerge
from the near-base structure (regime III), with a wake topology resembling
the one of a sphere at low Reynolds number (Johnson & Patel 1999). A sum-
mary of these regimes is reported in figure (5.32). Following the intuition
and the insight gained at lower Reynolds numbers, we can predict that the
absolute instability is progressively weakened when the forcing amplitude is
increased; when A ' 0.2 the flow has been stabilised, consistently with the
complete suppression of vortex shedding. However, when A & 0.25 a new
type of unsteadiness was detected. We can pose the question whether higher
forcing amplitudes destabilise wakes and what the most relevant mechanisms
in this regime are. We are at sea since the results obtained so far do not
shed any light; we need to perform the stability analysis again to understand
how the modifications introduced by surface bleed affect the stability of the
flow.

5.9.2 Stability analysis and stabilisation of the flow

Direct stability analysis was performed in all the three regimes and the pro-
file of the growth rate as a function of the amplitude is reported in figure
(5.33). The behaviour for regimes I and II is very similar to the study
performed at Re = 60: a monotonic decrease can be detected, which is as-

5Analogous results can obviously be obtained using sinusoidal forcing functions.
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(a) regime I: 0 < A < 0.2

(b) regime II: 0.2 < A < 0.25

(c) regime III: A > 0.25

Figure 5.32: Wake topology for different regimes for spanwise Gaussian
forcing at Re = 180.
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sociated with a progressive weakening of the near-wake absolute instability.
When A ' 0.2 the base flow was found to be stable and it confirms the intu-
itive speculations of the previous section. The main difference with respect
to the simulations at the lower Reynolds number is a slower reduction of the
growth rate with the forcing amplitude A, which is related the fact that we
are operating at a Reynolds number closer to the on-set of a more complex
three-dimensional instability (mode A). The main differences were detected
in regime III: increasing the forcing amplitude, the decay rate is subject to
a slight increase despite that the flow is still stable. Hence, we can conclude
that in the range of the forcing amplitudes we considered (simulations were
performed up to A = 3), the flow is still stable, but when A & 0.25 the
disturbances decay more slowly than in regime II. The general profile of the
growth rate as function of the forcing amplitude is not a monotonic function,
but shows a minimum.

Figure 5.33: Profile of the growth rate as a function of the forcing amplitude
for Re = 180.

Regarding the eigenmodes, in regimes I and II, the leading modes are similar
to the profiles found at Re = 60. They progressively acquire a higher degree
of three-dimensionality and tend to be located in the near-wake region. Since
the behaviour of the global modes in regime I and II is almost identical to
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the one showed in figure (5.21), they are not reported herein. The profile of
the mode in regime III, for a forcing amplitude A = 0.35 is, instead shown
in figure (5.34); other simulations in the same regime showed a qualitative
comparable topology.

Figure 5.34: Profile of the eigenmode found for A = 0.35

Such a mode extends throughout the domain, even if the most intense re-
gion is still in the near-wake. This might indicate that the far wake plays a
role on the stability of this configuration. The perturbations in the far-wake
might be responsible for a local destabilisation, with subsequent convective
instabilities. In particular, a transient growth analysis would provide addi-
tional information about the presence of convective instabilities and their
relation with the development of hairpin vortices. This represents one of
the main recommendations for further work. However, in the present the-
sis, we will try to study the dynamics of this regime using the equation
of transport of vorticity perturbations (5.16). Repeating the analysis per-
formed at Re = 60, we can deduct once again that the tilting mechanisms
by the base flow shear represent the dominant ones (results are not reported
for the sake of concision). Therefore, the tilting term ω′ · ∇U represents
the key factor for the stabilisation. Following Hwang’s approach (Hwang
et al. 2013), let us consider the modulation of a two-dimensional wake us-
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ing spanwise sinusoidal forcing function with a sufficiently large spanwise
wavelength. Equation (5.16) can then be written as:

Dω′x
Dt
∼ ω′zExz (5.18a)

Dω′z
Dt
∼ ω′xExz (5.18b)

where Exz is the deformation rate tensor, which is related to the spanwise
shear of the base flow. An illustration of the physical mechanisms is shown
in figure (5.35); at the initial time, we have a spanwise vortex tube char-
acterised by ω′z < 0. Equation (5.18a) suggests that the vortex tube is
tilted downstream with the generation of positive ω′z in the region where
∂U/∂z = Exz > 0. Analogously, in the region where ∂U/∂z = Exz < 0 the
tube is tilted upstream, implying that the initial vortex gradually evolves
into a hairpin structure.

Figure 5.35: Evolution of a spanwise vortex. Adapted from Hwang et al.
(2013)

Hence, according to Hwang’s explanation, if ω′ is zero in a specific part of
the domain, then the above-mentioned mechanism is inhibited downstream.
This is what happens at moderate amplitude of forcing: the mode was seen
to be located in a small streamwise region close to the cylinder, and so the
perturbation vorticity (figure (5.36a)). This is not the case for higher forc-
ing amplitudes, which show a perturbation vorticity extending in a wide
portion of the domain (figure 5.36b) and the subsequent generation of ar-
rays of alternating Λ-vortices. However, this analysis represents just a first
explanation and additional investigations are recommended for future work.
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(a) (b)

Figure 5.36: Profile of the vorticity perturbation magnitude |ω′| for (a)
regime II (A = 0.22) and (b) regime III (A = 0.35).

156



Chapter 6

Floquet stability analysis of a
flow in a compressor passage

“ Knowledge without application is like a book that is never
read. ”

Christopher Crawford, Hemel Hempstead

In this chapter we present an application of Floquet stability analysis to a
flow through a compressor passage. In the first part of the chapter the fea-
tures of the base flow will be discussed, emphasising the physical mechanisms
responsible for transition, while in the second part we will perform Floquet
and transient growth analyses using the BiGlobal approach introduced in
§3.

6.1 Overview of the problem

Studies of flows in turbomachines are relevant in aeronautical engineering
and are currently subject to extensive investigations. These problems are
particularly interesting due to the presence of relevant transitional phenom-
ena, which might be associated to the presence of high adverse pressure
gradients with the subsequent separation of the boundary layers and tran-
sition to turbulence. Wu & Durbin (2001) performed simulations of flows
in a T106 turbine cascade with periodically incoming wakes. They ob-
served that the incoming wakes triggered turbulent spots along the suc-
tion surface, which prevented further separation effects; besides this, two
sets of streamwise vortices were observed on the pressure surface. Zaki &
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Durbin(2005, 2006) suggested that such turbulent spots may be caused by
transient growth phenomena. Jones et al. in 2008 simulated a flow over a
NACA-0012 airfoil at 5◦ incidence at Re = 5 × 104. The authors detected
the presence of a laminar separation bubble located at about 15% of the ax-
ial cord, where the breakdown to turbulence was then observed; moreover,
the flow was found to be absolutely unstable to three-dimensional perturba-
tions. Abdessemed et al. (2009b) studied flow stability of a periodic array
of a T106/300 low-pressure turbine at low Reynolds numbers (Re < 5, 000)
using Floquet stability analysis and showed that for increasing Reynolds
numbers the flow becomes unstable at progressively larger wavelengths and
energy transient growth phenomena are the most relevant. Studies on high-
pressure turbine cascades are generally more complex, since the Reynolds
numbers are generally one order of magnitude higher than low-pressure tur-
bines and compressor cascades. Moreover, heat transfer is a critical issue.
Recent studies by means of Large Eddy Simulations on high-pressure turbine
passage showed instantaneous boundary layers with long, wavy, streamwise
oriented streaky structures on both the suction and pressure sides of the
blade. Stretching of vortices from the inlet turbulence around the leading
edge, and subsequent transport of them into the blade passage, were found to
be responsible of these boundary layer streaks (Bhaskaran 2010). Despite
most studies focus on the low-pressure stages of turbines, several experi-
mental and numerical investigations have been performed on flows in axial
compressor geometries. Hughes & Walker (2001) investigated separation ef-
fects of the boundary layers on the suction surface of a compressor blade at
1.1× 105 < Re < 1.3× 105, while other significant studies on the role of the
free-stream turbulence or incoming wakes have been carried out (Zaki et al.
2009, Zaki et al. 2010, Schreiber et al. 2004, Sonoda et al. 2004). In par-
ticular, Zaki et al. (2009, 2010) performed DNS of a NACA-0065 geometry,
detecting relevant transitional phenomena on both the pressure and suction
surfaces. These phenomena were caused by both natural and by-pass tran-
sition, which was induced by incoming wakes or free-stream disturbances.
The present study follows the previous investigations to characterise the be-
haviour of a flow through a compressor passage from a stability perspective.
Although our investigations are performed at Re = 138, 500, which is below
the normal operational range of aircraft engines (Re ≥ 6×105), they are still
important for the off-design of aeronautical engines because of the signifi-
cant losses caused by the laminar separation. In the configuration adopted
in the present work, due to the high adverse pressure gradient along the
suction surface of the blade, the boundary layer profiles become inflectional
and the flow might show an instability and high sensitivity to initial distur-
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bances. Moreover, perturbations are subject to both temporal and spatial
evolution downstream from the separation bubble because of the curvature
of the blade and the unsteadiness of the flow (Zaki et al. 2010). Therefore,
local studies at a fixed streamwise location are not able to describe properly
the dynamics of the system, which is characterised by distinct vortex shed-
ding along the suction surface. Global stability studies using time-averaged
mean flows were seen able to be able to predict the frequency of the vortex
shedding. However, since a well-defined periodicity of the flow is detected on
the suction surface, downstream from the separation bubble, Floquet anal-
ysis would be an ideal approach to characterise transition. Unfortunately,
this is not a feasible approach because this periodicity is located just in a
restricted part of the domain. To overcome this limitation, the idea of our
investigation is to compute a phase-averaged base flow, as we will discuss
in §6.4. The unsteady base flow can then be sorted into a finite number
of populations each having a constant phase. An ensemble average of each
population with respect to the shedding periodicity can be used to build a
sequence of frames of the instantaneous mean flow, where the vortices are
frozen like in a photograph. This approach allows us to evaluate the be-
haviour of transition by computing the leading Floquet mode at different
spanwise lengths and the eventual presence of convective instabilities.

6.2 Geometry and discretisation

In the present work, the geometry consists of a NACA-65 at Reynolds num-
ber Re = 138, 500, which is identical to the studies performed by Zaki et al.
(2009, 2010). At this Reynolds number transition was seen to be rather
slow, therefore, in all the simulations performed in this chapter the flow can
be considered laminar. The linear low pressure (LP) compressor cascade is
based on the experimental studies performed at the University of Armed
Forces in Munich (Hilgenfeld & Pfitzner 2004). Figure (6.1) shows a sketch
of an aeronautical jet engine and the compressor passage we will simulate.
We will consider just one passage of the compressor, using periodic bound-
ary conditions on the upstream and downstream boundaries of the domain
to take into account the cascade. The adoption of periodic boundary con-
ditions to simulate such types of flows has already been used to simulate
turbine passages (Wu & Durbin 2001, Wissink & Rodi 2006) and it gener-
ates synchronous vortex shedding of the trailing-edge vortices. The BiGlobal
stability analysis performed by Abdessemed et al. on low-pressure turbine
(LPT) blades showed that the adoption of two passages affects the dynam-
ics of the shedding, which become asynchronous with relevant effects on the
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Figure 6.1: Sketch of an aeronautical jet engine. The compressor and turbine
are visualised, while the passage in the red box is the object of the current
investigation.
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stability. However, as Zaki et al. (2010) noted, this phenomenon is relevant
for the geometries where the flow is subject to strong turning effects. In the
present configuration the velocity at the exit is nearly axial and the wake at
the trailing-edge does not interact with the upstream flow, therefore no asyn-
cronicity is present. Figure (6.2) shows a sketch of the geometry used. The
vertical length of the domain Lp corresponds to one blade pitch Lp = 0.6L,
where L is the axial chord of the blade. The inflow boundary ∂ΩI is at a
distance LI = −0.4L from the leading edge, while the outflow ∂ΩO is at a
distance 4L from the trailing edge. As already mentioned, periodic boundary
conditions were used on the lower and upper boundaries (∂ΩP1 and ∂ΩP1 re-
spectively), while a velocity (U0 cos(α), U0 sin(α)) was assigned at the inflow
boundary ∂ΩI , where α = 42◦ and U0 = 1. This configuration corresponds
to the angle of attack at design, since its actual value in experiments could
not be measured reliably. As discussed by Zaki et al. (2010), this choice gen-
erates some differences in the pressure distribution, but does not affect the
mechanisms related to the boundary layer separation and transition to tur-
bulence. Regarding the pressure, a high order boundary condition was used
on the inflow boundary (Karniadakis et al. 1991). The main difficulty of the
problem is the choice of appropriate boundary conditions for the outflow,
due to the reflections that the outgoing flow experiences when it encounters
the boundary. In the present work, an absorbing layer was used (Israeli &
Orszag, 1981), which allows disturbances to pass out of the region of interest
into a limited small region where they are dissipated. This can be achieved
by adding a damping momentum forcing to the Navier-Stokes equations,
F = −D(u − u|∂ΩO), where D is the damping coefficient and is different
from zero only in the damping region, while u|∂ΩO is the velocity on the
boundary. Homogenous Neumann boundary conditions were used for the
velocity on the downstream boundary ∂ΩO. The streamwise length of the
artificial dumping region is LS = L, while the damping coefficient was set
to D = 50, which was observed to be sufficiently large to avoid numerical
instabilities. No-slip boundary conditions were used on the surface of the
blade. To summarise, the following boundary conditions were adopted:

∂ΩW :=


u = 0,
v = 0
∂p
∂n = f(u)

(6.1a)
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∂ΩI :=


u = cos(42◦) '= 0.7431
v = sin(42◦) '= 0.6691
∂p
∂x = f(u)

(6.1b)

∂ΩO :=


∂u
∂x = 0
∂v
∂x = 0
p = 0

(6.1c)

∂ΩP1,2 :=


u|∂Ω1 = u|∂Ω2

v|∂Ω1 = v|∂Ω2

p|∂Ω1 = p|∂Ω2

(6.1d)

Figure 6.2: Sketch of the geometry of the problem.

Let us note that in the present work, the geometry of the compressor blade
is slightly different from the case presented by Zaki et al. (2009) and Wu &
Durbin (2001), where the pressure and suction surfaces were incorporated
into the boundaries of the domain. Our choice is dictated by the need of
a higher accuracy to capture the dynamics of the flow around the leading
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(a)

(b)

Figure 6.3: (a): mesh adopted for the simulations. (b): detail of the submesh
around the surface of the blade.

and trailing edges to guarantee reliable results of stability analysis. This
geometry was discretised using a spectral/hp element method with about
6,000 elements, as shown in figure (6.3a). The mesh is hybrid and composed
of both triangular and quadrilateral elements. Close to the surfaces of the
blade, where relevant separation effects are observed, a structured sub-mesh
of quadrilaterals is adopted (figure (6.3b)), while triangles are used in the
remaining part of the domain. Modal bases, described in §2.3.1 and §2.3.2,
were used to interpolate the variables of the problem, using 8th order poly-
nomials. Finally, the splitting scheme described in §2.4 was adopted to solve
the Navier-Stokes equations, using a second-order time integration technique
with a time step ∆t = 1× 10−5.
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6.3 Two-dimensional base-flow

In this section the behaviour of the base flow is discussed to provide an in-
sight into the mechanisms of transition occurring on both the pressure and
suction surfaces. Furthermore, the computation of the instantaneous fields
provide a validation of our discretisation with respect to the previous results
reported in the literature. Figure (6.4) shows the isocontours of the mag-
nitude of the mean velocity, which was calculated averaging over about 100
time units once the flow has completely evolved through the passage. The
velocity is subject to a deceleration of about 25% with respect to the inflow;
this phenomenon is mainly related to a reduction of the transverse compo-
nent of the velocity v, while the streamwise velocity u is slightly increased
to compensate for the mass flow deficit associated to the development of the
boundary layers (Zaki et al. 2010).

Figure 6.4: Isocontours of the magnitude of the mean velocity.
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Important information about the dynamics of the flow can be given consid-
ering the distribution of the time-averaged pressure coefficient, defined as
CP := (P − Pref )/(ρU2

0 /2), where ρ is the density of the flow and Pref a
reference pressure, which is the inflow pressure in the present case. Figure
(6.5) shows the profile of the pressure coefficient over the surface of the blade.
The data are compared with the results obtained by Zaki et al. (2010) and
match well, providing a validation of the discretisation and the parameters
chosen in §6.2. The top curve represents the pressure surface, where an ad-
verse pressure gradient can be detected up to about x/L ' 0.8, followed by
a region of favourable pressure gradient. At x/L ' 0.55 the curve shows a
kink, which is related to a mild separation of the boundary layer. However,
the most relevant separation phenomena occur on the suction surface: the
flow is subject to a strong acceleration until xL ' 0.2, then a strong adverse
pressure gradient is present. This is responsible for an evident flow sep-
aration, and in absence of free-stream perturbations (turbulence wakes or
free-stream turbulence), a Kelvin-Helmholtz instability arises, characterised
by a typical wake flow with rolls being shed from the separated boundary
layer. However, these structures do not break up to turbulence and are
convected just slightly away from the surface of the blade, as the instan-
taneous profiles will show. A small region of reverse flow can be detected
on the suction surface even after the rolls are convected downstream; this
region is known as secondary bubble and it moves at the same velocity of the
Kelvin-Helmholtz rolls. The secondary bubble can be identified in figure
(6.5) as a drop in the pressure coefficient within the separation region at
about x/L ' 0.6 and it extends for about 10% of the axial chord.
Another relevant quantity is the skin friction coefficient Cf := µ∂ut∂n /(ρU

2
0 /2),

where ut represents the velocity tangential to the surface of the blade and
n the unit-vector normal to the surface. The profile of the skin friction on
the pressure and suction sides is reported in figure (6.6) and a good match
with the results obtained by Zaki et al. (2010) was found again. Along the
pressure surface, the skin friction is subject to a monotonic decrease until
x/L ' 0.35, where separation occurs; downstream from the separation re-
gion, where the favourable pressure gradient was observed, the skin friction
increases. Let us note that the reattachment at x/L ' 0.55 is in accordance
with the distribution of the pressure coefficient.
Regarding the suction surface, separation of the boundary layer was ob-
served at x/L ' 0.44 and laminar reattachment at x/L ' 0.8. As noted by
Zaki et al. (2009), the separation bubble can be identified as the region with
negative skin friction within the primary separation; downstream from this
region, the skin friction increases in a short interval (up to x/L ' 0.8) and
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Figure 6.5: Distribution of the pressure coefficient Cp along the surface of
the blade. Solid line represents the result from Zaki et al. (2010), while
hollow circles the present results.
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(a) (b)

Figure 6.6: Profiles of the skin friction coefficients on the pressure surface
(a) and the suction surface (b). Hollow circles are the data obtained in the
present work, while the solid line the results from Zaki et al. (2010)).

then is subject to a slight reduction.

All these physical mechanisms can be visualised considering the instanta-
neous profiles of the spanwise vorticity ωz around the surface of the blade;
the isocontours of the vorticity are shown in figure (6.7) . Although both
surfaces show distinct separation effects, the dynamics of the flow on the
suction surface is far more complex than the pressure surface. On the pres-
sure surface a mild separation can be observed, but the coherent structures
remain attached to the surface of the blade; conversely, on the suction sur-
face, downstream from the separation bubble, the boundary layer is subject
to a roll-up caused by the Kelvin-Helmholtz instability. The vortical struc-
ture are convected slightly away from the suction surface, but a small zone
of reverse flow on the blade surface beneath them can be observed.
In order to characterise the behaviour of these structures, we consider of the
profiles of the velocity along the separation region of the suction side. Specif-
ically, we track the time evolution of the velocity in 4 points, P1 ≡ (x1, y1) =
(0.66, 0.65) , P2 ≡ (x2, y2) = (0.73, 0.67), P3 ≡ (x3, y3) = (0.82, 0.67),
P4 ≡ (x4, y4) = (0.93, 0.68), which are distributed all along the separation
region of the suction surface where the vortical structures were detected.
The time evolution of the velocity shows a clear periodic behaviour of the
structures, confirmed by the presence of a limit cycle, as figures (6.16)-(6.11)
show. A total period T = 0.22 can be clearly identified, which corresponds
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to a complete shedding cycle, as shown in figure (6.8). In the other parts of
the domain, no other straightforward periodicity could be detected.

Figure 6.7: Profile of the spanwise vorticity ωz.

Figure 6.8: Vorticity profile for four different phases of the shedding cycle.
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(a) (b)

(c) (d)

Figure 6.9: Time evolution of the streamwise velocity u′; (a) P1 ≡ (x1, y1) =
(0.66, 0.65), (b) P2 ≡ (x2, y2) = (0.73, 0.67), (c) P3 ≡ (x3, y3) = (0.82, 0.67),
(d) P4 ≡ (x4, y4) = (0.93, 0.68).

6.4 Phase-averaged base flow

As described in § 6.3, the flow past a compressor blade has a complex be-
haviour, in particular on the suction surface, where relevant separation ef-
fects are enhanced by the high adverse pressure gradient. Besides this, we
found a periodic motion of the coherent structures which appear in the re-
gion downstream from the separation bubble region. To characterise the
stability of the Kelvin-Helmholtz rolls, we need to perform stability analy-
sis. However, Floquet stability analysis cannot be applied, since it requires
the time-periodicity on the whole domain. Hence, we need to seek other
techniques to sort out this problem; a common approach is to perform the
stability analysis using a time-averaged mean flow as basic state. Barkley
(2006) used this technique to study the flow past a circular cylinder and
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(a) (b)

(c) (d)

Figure 6.10: Time evolution of the transverse velocity v′; (a) P1 ≡ (x1, y1) =
(0.66, 0.65), (b) P2 ≡ (x2, y2) = (0.73, 0.67), (c) P3 ≡ (x3, y3) = (0.82, 0.67),
(d) P4 ≡ (x4, y4) = (0.93, 0.68).

(a) (b)

(c) (d)

Figure 6.11: Detection of the limit cycle (transverse component v as a
function of the streamwise component u; (a) P1 ≡ (x1, y1) = (0.66, 0.65),
(b) P2 ≡ (x2, y2) = (0.73, 0.67), (c) P3 ≡ (x3, y3) = (0.82, 0.67), (d)
P4 ≡ (x4, y4) = (0.93, 0.68).
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showed that the eigenfrequency of the mean flow recovers almost exactly
the Strouhal number of vortex shedding, even if this methodology often
produces growth rates which are not relevant to the physical solution. An
alternative approach, which combines both the Floquet stability analysis
and the mean base flow, is the computation of a phase-averaged mean flow.
This technique allowed us to sort the flow into several groups, each corre-
sponding to a small interval associated to the phase of the shedding cycle.
Following Cantwell & Coles (1983), we can decompose the instantaneous
flow field into the sum of a global mean component ū, a periodic mean
component ũ and a random component u′ (Reynolds & Hussain (1972)):

u = ū+ ũ+ u′ (6.2)

The global mean ū is defined as an ensemble average of the N samples which
are computed in a single period of the shedding cycle T :

ū = 1
N

N∑
i=1
ui (6.3)

where ui indicates a single sample. We divided the N -samples into a specific
number of subpopulations NP , 50 in the present study, each one associated
to a particular phase interval of the shedding. Within each subpopulation,
composed by Ni samples, we can define a mean at constant phase 〈u〉:

〈u〉 = 1
Ni

Ni∑
j=1
uj i = 1, 2, . . . , NP (6.4)

We can now define the periodic component ũ as the difference of the mean
at constant phase and the global mean:

ũ = 〈u〉 − ū (6.5)

Using these definitions, the average of the periodic motion over one cycle
can be shown to be zero: ¯̃u = 0, and the random fluctuations have zero
mean at constant phase: 〈u′〉 = 0. Moreover, the periodic and random
component are not correlated, which means that ũu′ = 0. Let us consider
the flow over one period: we can write that u = 〈u〉 + u′. Adopting the
same decomposition also for the pressure, substituting into the Navier-Stokes
equations and performing the phase average 〈·〉, we obtain the Navier-Stokes
equations for the mean flow at constant phase:

∂ 〈u〉
∂t

+ 〈u〉 · ∇ 〈u〉 = −∇〈p〉+ 1
Re
∇2 〈u〉 − ∇ ·

〈
u′u′

〉
(6.6a)
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∇ · 〈u〉 = 0 (6.6b)

The equations for the global mean flow can be obtained substituting (6.2)
into (2.3) and then time-averaging:

ū · ∇ū = −∇p̄+ 1
Re
∇2ū−∇ ·

〈
u′u′

〉
−∇ ·

(
ũũ
)

(6.7a)

∇ · u (6.7b)

Equation (6.7a) shows explicitly that the mean flow depends on both the
random and periodic fluctuations of the Reynolds stresses, while (6.6a) just
on the term related random fluctuations at constant phase

〈
u′u′

〉
. This

last term is directly associated to the dynamics of the rolls and, as ex-
plained by Cantwell & Coles (1983), it operates at a lower level than the
stresses present in equation (6.7a). This shows that the adoption of a phase-
averaging technique to approximate the base-flow is more precise than using
a Reynolds-averaged base-flow; the minimisation of the contributions of the
Reynolds-stresses, by which the RANS and the Navier-Stokes solution differ,
leads to smaller approximation errors and this may be important especially
in the context of linear stability analysis. Figure (6.12) and (6.13) show the
profiles of the phase-averaged vorticity at four different phases, where the
phase-averaging was performed on over 100 cycle. Almost all the unsteady
phenomena on the pressure surface have been smeared out by the averag-
ing, while traces of roll-up of the boundary layer due to a Kelvin-Helmholtz
instability are still detectable on the suction surface. Furthermore, the lo-
cation where the separation of the shear layers occurs moves downstream,
although it does not show any strong dependence on the phase, being con-
strained between 0.42 . x/L . 0.44.

6.5 Floquet stability analysis

The phase-averaged base flow described in §6.4 can be used to investigate
its capacity to amplify three-dimensional disturbances, using the BiGlobal
approach (Theofilis 2003). Floquet analyses at different spanwise wavenum-
bers β = 2π/Lz were performed to study the stability of the periodic states
which characterise the region downstream from the separation bubble. Sim-
ilarly to the other simulations performed in this thesis, an Arnoldi method
was adopted: a dimension of the Krylov subspace m = 12 was used, while
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Figure 6.12: Contours of the phase-averaged vorticity at four different
phases.

Figure 6.13: Detail of the phase-averaged base flow at φ = 0, near the
trailing edge
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Figure 6.14: Floquet multipliers |µ as a function of the wavenumbers β.

the tolerance on the eigenvalues was set to 10−5. Tests with m ≥ 12 pro-
duced differences in the magnitudes of the leading Floquet modes of order
10−4. Figure (6.14) shows the eigenspectrum, which reports the value of the
Floquet multipliers with respect to the wavenumber β. All the Floquet mul-
tipliers are real and |µ| < 1 denotes a decaying perturbation, while |µ| > 1
a growing one. Therefore, they are related to stable and unstable modes
respectively. An unstable Floquet mode was detected just for very small
wavenumbers, β < π/10. This result is similar the findings of Abdessemed
et al. (2009b), who suggested that in a low-pressure turbine, the instabilities
arise at β → 0 when Re→∞. However, to infer direct connections further
studies are required due to the different physical mechanisms and the fact
that the present study was performed at just one Reynolds number.

The structure of the normalised Floquet mode at β = 500 is reported in
figure (6.15); the mode is located on the suction side, across the separation
bubble, where the unsteady phenomena of the phase-averaged base flow

174



CHAPTER 6. FLOQUET STABILITY ANALYSIS OF A FLOW IN A
COMPRESSOR PASSAGE

were observed. Its intensity becomes weaker approaching to the trailing-
edge and, despite the general structure of the mode appears to be rather
complex, a wake pattern can still be detected. The contributions of the
velocity components û′, v̂′, ŵ′ is shown in figure (6.16).

Figure 6.15: Magnitude of the dominant Floquet mode at β = 500.

Similarly to the approach used in §5.7, we can validate of the results of the
Floquet analysis superposing the Floquet mode to the base flow u(x, y, t) +
εû′(x, t) exp(ωt+βz) and use the result as initial conditions to integrate the
non-linear Navier-Stokes equations. In the present case, we chose ε = 10−6

and the energy of the system E = 1
2
´

Ω ‖u‖
2dΩ as a function of the non-

dimensional time is reported in figure (6.17). The growth rate obtained
from the DNS, corresponding to the slope of the curve at t ' 0, was found
to be 0.885, while the stability analysis predicted a value µ = 0.891. The
difference of these two values is of order 10−3 and can be attributed mainly to
the adoption of the phase-averaged base flow, which includes the additional
presence of the Reynolds stresses, and the non-linearities of the Navier-
Stokes equations.

6.6 Transient growth analysis

Floquet analysis described in the previous section showed that the region
downstream from the separation bubble is characterised by a significant
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(a) û′ (b) v̂′

(c) ŵ′

Figure 6.16: Velocity component of the Floquet mode.

Figure 6.17: Time evolution of the energy of eigenmode associated at β =
500. The curve was obtained by a non-linear Navier-Stokes simulation.
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concentration of energy; therefore, the interaction of stable modes might
generate large energy transient growth phenomena. Transient growth anal-
ysis was performed using an approach similar to the one adopted in §6.5;
the base flow consists again of 50 time slices, obtained by phase-averaging
the non-linear Navier-Stokes equations, corresponding to one shedding cycle
T = 0.22. The computational parameters are unaltered with respect to Flo-
quet analysis, expect the Krylov subspace dimension which was chosen to be
m = 5. The obtained results were compared with a study on the same con-
figuration using a Lagrangian time-interpolation of the base flow (Mao X.,
priv comm). The comparison showed similar trends for the optimal energy
growth, although differences of about 20% were detected due to the different
techniques used to take into account the unsteadiness of the base flow. In
the present study, two different time horizons were investigated, τ = 0.1
and τ = 0.3 respectively. The variation of the energy growth with the span-
wise wavenumber β is shown in figure (6.18). Both cases are convectively
unstable in a wide range of spawise wavenumbers, hence significant energy
transient growth phenomena are present. The most energised wavenumber
is β ' 400π in both cases, which corresponds to a wavelength Lz = 1/200.

Figure 6.18: Variation of the optimal energy growth G with the spanwise
wavenumber β for two different time horizons: τ = 0.1 and τ = 0.3 respec-
tively.
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(a) τ = 0.1 (b) τ = 0.3

Figure 6.19: Spanwise vorticity of the optimal perturbations.

The profiles of the vorticity of the optimal perturbations are reported in
figure (6.19); in both cases the optimal perturbations are located near the
separation bubble and are convected downstream from the suction surface,
exploiting the shear layers of the base flow. However, two different topologies
can be detected for these optimal perturbations: the optimal perturbation
at τ = 0.1 has the shape of a thin shear layers, while the one at τ = 0.3
extends over 10% of the axial chord from the primary separation region and
it is composed of an array of alternating vortical structures.

The energy growth that the disturbances experience is reported in figure
(6.20) for the two time horizons. This profile can be obtained time-marching
the linearised Navier-Stokes equations using the optimal perturbations as
initial conditions. For t ≤ 0.05 the two curves are practically overlapped,
but for longer times the energy growth associated to τ = 0.3 is subject to a
larger amplification. These behaviours are characteristic of the small time
horizons we considered; if τ is large enough, the perturbations are expected
to be convected further downstream and the energy amplification would
drop.
Finally, figure (6.21) shows the time evolution of the disturbances. Two
different mechanisms were detected: for τ = 0.15 the thin shear layer rolls-up
while being convected along the suction surface, experiencing a progressive
increase in its strength. The optimal perturbation corresponding to τ = 0.3
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is instead subject to an Orr mechanism which results into a Kelvin-Helmtholz
instability, confirming the results obtained by the DNS.

Figure 6.20: Transient responses at β = 400π for two times horizons (τ =
0.15 and 0.3.

At last, we point out that even if the present study sheds light on the
complex behaviour of the transition in flows through compressor passages,
several questions remain unanswered. Specifically, investigation at other
Reynolds numbers would be useful to understand the mechanisms behind
the development of the instabilities and the role of three-dimensionality.
Furthermore, stability analysis of the steady state and transient growth
analyses in a wider range of time horizons could provide further validations
of the results we obtained and be the starting point for a generalisation
of the relevance of transient growth phenomena in flows which experience
significant separation effects.

179



CHAPTER 6. FLOQUET STABILITY ANALYSIS OF A FLOW IN A
COMPRESSOR PASSAGE

Figure 6.21: Time evolution of the optimal perturbations. (a): τ = 0.1, (b):
τ = 0.3.
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Chapter 7

Conclusions

“ James Joyce was a synthesiser, trying to bring in as much
as he could. I am an analyser, trying to leave out as much
as I can. ”
Samuel Beckett, A History of Famous Literary Mentorships

In this thesis we investigated hydrodynamic stability of vortical flows in com-
plex geometries, where local approaches, based on the strong assumption of
parallel flows, generally fail to provide a good prediction on the dynamics of
the absolute instabilities. Specifically, we focused on flows past bluff bodies
because of their importance in industrial applications, spanning from the au-
tomotive to the aeronautical and naval industries. As described in chapter
§3, the dynamics of these types of flows is very complex even in simple config-
urations due to transition and separation effects, which generate remarkable
fluctuations of the aerodynamic forces, vibrations and noise. Hence these
phenomena must be carefully taken into account for the design of effec-
tive and efficient devices. The methodology to characterise accurately these
phenomena is linear stability analysis, which was summarised in chapter §4.
Linear stability analysis consists of two different steps. The first one is a
direct numerical simulation of the flow, which can be obtained by solving
analytically, or more often numerically, the incompressible Navier-Stokes
equations; in particular, spectral/hp element discretisations were adopted
for the present investigations, due to their flexibility and high-order accu-
racy. The second step of the methodology is hydrodynamic stability anal-
ysis of the computed base flow, which required the implementation of the
linearised Navier-Stokes equations (direct stability analysis) coupled with
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Arnoldi algorithms to retrieve the eigenspectra of the systems. Since one of
the objectives of this project was the investigation of efficient control tech-
niques, receptivity studies could not be ignored for an exhaustive analysis;
therefore the adjoint solutions of the Navier-Stokes equations were consid-
ered. Moreover, the introduction of the adjoint evolution operator allowed
us to evaluate the presence of energy transient growth phenomena, which
can be detected by computing the solution of the eigenproblem obtained by
combining the direct and adjoint operators together.
The description of the developed tools and the results of the two main ap-
plications are summarised in the following sections.

7.1 Developed tools

To perform the simulations described in this thesis, a significant effort has
been made to improve and make more robust the incompressible Navier-
Stokes solver implemented in Nektar++, an on-going inter-institutional
project, entirely designed in C++, aimed at solving a wide range of partial
differential equations using spectral/hp element methods. Tools to perform
BiGlobal and TriGlobal stability analyses were implemented via a Fouier-
Spectral element method and their validation was performed using several
simple benchmark cases. Transient growth and receptivity analyses were
implemented to perform accurate studies on stability of complex flows, to-
gether with ad hoc post-processing routines. All these features are included
in the open-source code to make them more accessible and easy to use for
the research community.

7.2 Suppression of vortex shedding

The first application is the investigation of the mechanisms behind the sup-
pression of the von-Kármán street in a flow past a circular cylinder. Despite
the simple geometry, this problem is still widely studied because of the rich
and different transitional phenomena that the flow experiences when the
Reynolds number is increased. From a control perspective, several tech-
niques can be used to attenuate the unsteadiness caused by vortex shed-
ding; in the present thesis, spanwise forcing was introduced on the top and
bottom surfaces of a cylinder immersed in a flow at Re = 60, in order to
stabilise the wake, similarly to the investigations of Kim & Choi (2005)
and Darekar & Sherwin (2001). This technique was seen to generate rele-
vant three-dimensional effects on the flow and it represents an interesting
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method since it does not require any modification of the geometry of the
system, differently from the widely adopted wavy cylinders. Two different
spanwise forcing functions were tested: sinusoidal and Gaussian; Gaussian
forcing was found to be more effective than the sinusoidal one since it gen-
erates a more prominent drag reduction (about 20% larger than the sinu-
soidal one) with a lower control velocity. The physical mechanisms behind
the suppression were found to be related to the diversion of the shear layers,
whose interaction in the near-wake region is inhibited. This mechanism is
consistent with the presence of two counter-rotating vortices, which gen-
erate a cross flow and a redistribution of the spanwise vorticity along the
streamwise and transverse directions. The evaluation of the enstrophy of
the system allowed us to confirm that when the forcing amplitudes is suf-
ficiently high, the dissipation effects are not able to inhibit the interaction
of the shear layers and a global redistribution of the maxima of vorticity is
observed, until vortex shedding is completely suppressed. A further study
of the stabilisation mechanisms in the near-wake was performed by means
of a fully three-dimensional direct stability analysis (TriGlobal stability);
this analysis represents the most general approach to evaluating linear sta-
bility of flows, since no assumptions are made on the structure of the basic
state. Results from this analysis confirmed a complete suppression of the
near-wake instability and the three-dimensional mode was seen to be located
close to the cylinder, maintaining a symmetric behaviour with respect to the
centreplane. The main mechanisms predicted by the local stability theory
(Hwang et al., 2013) were confirmed and consist of tilting of the spanwise
vortices followed by interactions with the modulated von-Kármán street.
The evaluation of the work of Reynolds stresses against the base flow con-
firmed that the perturbations mainly extract the energy from the transverse
components of the base flow shear, in particular in the region close to the
cylinder. To evaluate the regions where the forced flow was more receptive
to momentum forcing, the adjoint mode was computed. This mode shows
a significant variation along the spanwise direction and the maxima are at-
tained in the regions close to the kinematic inflection points, indicating that
these are the areas more receptive to forcing. Finally, the proper superpo-
sition of the direct and adjoint mode provided the profile of the structural
sensitivity, which is useful the detect the wavemaker region, where the in-
stabilities arise, before being amplified in the remaining part of the domain.
The profile reminds the one of the unforced flow (§4.8), even if the two lobes,
which constitute the core of the instabilities, were seen to be shifted towards
the regions where forcing was applied. Furthermore, the variation along the
spanwise direction was found to be rather mild. However, it is the structural
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sensitivity to the base modifications which provided the most significant in-
sights into the mechanisms behind the suppression of the near-wake insta-
bility. This sensitivity was seen to be three-times larger than the structural
sensitivity to perturbations and indicates that the largest drift of the leading
eigenvalue can be achieved by modifying the base flow in proximity of the
cylinder surface. A peculiar feature of this sensitivity is its prominent span-
wise variation, therefore the adoption three-dimensional modifications is a
key factor for the design of an efficient control. An extension of this study
was performed at Re = 180, close to the on-set of Mode A. The most impor-
tant differences with respect to the simulations at Re = 60 are the necessity
of larger forcing amplitudes to suppress vortex shedding and the presence of
unsteady hairpin vortices if forcing is increased over a critical value. Results
from TriGlobal stability analysis pointed out that these structures do not
destabilise the flow, but produce a small decrease of the decay rate of the
disturbances. A first explanation on the reason behind the appearance of
these structures can be obtained by the topology of the related eigenmode,
which was seen to extend throughout the domain. A significant streamwise
distribution of the vorticity perturbation is in fact directly associated to the
gradual spatial evolution of the Λ-shaped structures.

7.3 Stability of a turbomachinery flow

The second application consists in performing stability analysis of a tran-
sitional flow over a NACA-65 airfoil. This problem evaluates the stability
features of a flow in a linear compressor passage at Re = 138, 500 and follows
the studies of Zaki et al. (2009 and 2010) on the same configuration, where
the transition was triggered by incoming wakes from the upstream stages
and free-stream turbulence respectively. The boundary layers in the present
geometry were seen to be subject to relevant separation effects on both the
pressure and suction surfaces. However, in absence of external forcing the
transition to turbulence was found to be very slow, allowing us to consider
the flow laminar. Hence, the complexity of this study relies on the high
Reynolds number and, in particular, the non-trivial geometry of the blade,
which is based on laboratory experiments. An appropriate discretisation
of the problem required an accurate refinement of the computational grid
to capture properly the dynamics of the flow because, as discussed by Zaki
et al. (2010), a lack of sufficient resolution in the region close to the suction
surface might hinder the detection of important transitional phenomena,
specifically the separation bubble close to the trailing edge. An hybrid mesh
was designed, paying attention to generate a sufficiently refined grid in the
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area surrounding the blade. Direct numerical simulations were performed to
validate the discretisation by a direct comparison with the previous findings
(Zaki et al. 2009, 2010) and to gain a detailed insight into the role of the
favourable and adverse pressure gradients on both the pressure and suction
surfaces. The adverse pressure gradient on the suction surface generates
an inflection of the boundary layers, which might be subject to relevant
instabilities. Specifically, the suction surface shows a Kelvin-Helmholtz in-
stability in the region close to the trailing edge, with rolls being shed from
the separated boundary layer. The peculiarity of these rolls is that they
neither break up into turbulent eddies nor are convected away, but they
remain coherent and create a small region of reverse flow on the blade sur-
face beneath them. These structure were seen to have a well-defined time
periodicity, which could be precisely detected. Floquet stability analysis
was recognised to be the ideal approach to investigate the response of these
structures to infinitesimal perturbations, but the fact that the periodicity
was seen to be confined just in a small region of the domain prevented its
direct application. The idea was to perform a phase-averaging of the flow,
which is not other than the average over a sufficiently large ensemble of
points with the same phase with respect to a reference oscillator. The main
advantage of the phase-average is that only the organised motions are ex-
tracted, neglecting all the background unsteadiness; furthermore it can be
shown that this approach leads to a better approximation of the flow fea-
tures than the more conventional time-averaged technique, since the role of
the Reynolds stresses is less prominent. Such an approach allowed us to sort
out the base flow in a fixed number of time slices (fifty to be precise), where
the vortical structures were “frozen”, similar to a photograph. The BiGlobal
Floquet stability analysis was then performed on the phase-averaged base
flow for different values of the spanwise wavenumber β. All the leading
Floquet multipliers were found to be real and the flow was found to be
unstable just for small wavenumbers (β � 1 ), or equivalently very long
wavelength (Lz � 1). The leading eigenmodes showed a high concentration
of energy in the region where the separation bubble was detected, suggest-
ing the presence of possible convective instabilities. Therefore, a transient
growth analysis was performed for two different time horizons: τ = 0.1 and
τ = 0.3 respectively, at β = 400π, which was seen to be the wavenumber of
maximum energy growth. In both cases the flow was found to be convec-
tively unstable in a large range of wavenumbers, and the evolution of the
optimal perturbations showed two different mechanisms: a rolling of a thin
shear layer perturbation at τ = 0.1 and an Orr-mechanism, leading to the
Kelvin-Helmholtz instability, at τ = 0.3.
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7.4 Final remarks and recommendations for fur-
ther work

The main aim of the current project was to use advanced methods to in-
vestigate stability of flows in complex geometries, which can be found in
a wide range of engineering applications. In chapter 5, we used TriGlobal
stability analysis to investigate the physical mechanisms behind the surface
bleed, an innovative three-dimensional technique to stabilise vortex shed-
ding. This control method has already been successfully used on a model
of a vehicle (Kim et al., 2004) and the present study extends its applica-
tion to the adoption of Gaussian functions, which were found to generate
an additional drag reduction and an improvement in the global efficiency
with respect to sinusoidal forcing. The results from the TriGlobal stability
analysis offered a wide set of information for an improvement in the design
of controllers, in particular the necessity to introduce forcing in specific re-
gions to maximise the effects of the stabilisation. However, there are several
questions that were not addressed in the present project and the following
recommendations cover the areas that should be investigated further:

• the suppression of vortex shedding in flows past a cylinder via surface
bleed should be studied for higher Reynolds numbers in order to ad-
dress the actual capability of this method. The present work showed
that the important changes in the dynamics of the flow happen at
higher Reynolds numbers, even within the laminar vortex shedding
regime, where the presence of vortex hairpins was detected. Extend-
ing this study to other regimes and turbulent wakes is essential to test
its potentiality in industrial relevant geometries.

• A systematic comparison with spanwise wavy cylinder would highlight
the differences between kinematic and geometric modifications of the
base flow.

• Transient growth analysis should be performed to address the dynam-
ics of the convective instabilities in the far-wake.

• Different types of forcing should be investigated and additional com-
parisons with experiments would be ideal to understand the applica-
bility of this method.

• Applications of TriGlobal stability analysis to complex geometries cer-
tainly represents one of the most challenging development of the cur-
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rent work. Investigations of flows past airfoils or vehicles may offer
important advancements in the aerodynamic design.

The study discussed in chapter 6.3 represents a first step attempt to inves-
tigate the role of the transition in the compressor stages of turbomachines
by means of stability analysis. While the low pressure turbine stages have
received a noteworthy attention, flows through compressors are less stud-
ied. The phase-averaging technique is an interesting method to characterise
the transition in presence of local periodic oscillations, like on the suction
surface of the current configuration. The following recommendations are
suggested to provide a better insight of the problem:

• transient growth analysis should be extended to a wider range of time
horizons and wavelengths, to detect how these parameters affect the
evolution of convective instabilities.

• Simulations of the same geometry at different Reynolds numbers would
be useful to characterise more precisely transition. Our results sug-
gest that at lower Reynolds numbers the instabilities might be more
relevant in a wider range of wavelengths, similarly to the findings of
Abdessemed et al. (2009b). However, further studies are necessary to
infer it more precisely.

• Simulations at higher Reynolds numbers, close to the operating con-
ditions of aircraft engines, could provide relevant hints for a more
efficient aerodynamic design.

• Stability analysis of the steady solution would offer an interesting com-
parison with the present study.

• Fully three-dimensional simulations and TriGlobal stability analysis
could shed some light on the role of spanwise variations on the aero-
dynamic performances of the problem.
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Appendix A

Numerical solutions of
eigenproblems

One of the main challenge of the global stability analysis is the necessity to
solve demanding eigenproblems in order to determine the dominant eigen-
value of an operator A (§4.4.2). However, the systems are generally too large
to construct a discrete representation of the operator through a matrix A,
so timestepping approaches are usually used and the classic QR algorithm
is not a viable method. Thus, efficient alternatives are presented in this
chapter.

A.1 The Power Method

The simplest technique to compute a single real eigenvalue is the power
method. This application of this method leads to obtain the dominant
eigenvalue of a matrix A.

Definition

Let λi be the eigenvalues of a matrix A ∈ Rn×n. λ1 is called the
dominant (or leading) eigenvalue of A if:

|λ1| > |λi|, i = 2, . . . , n (A.1)

The eigenvector corresponding to λ1 is called dominant (or lead-
ing) eigenvector of A.
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Let us assume that the matrix A ∈ Rn×n has a dominant eigenvalue and
choose an initial approximation of its dominant eigenvector u0 ∈ Rn0 . The
main idea behind the power method is the repeated application of the ma-
trix A to u0, generating the sequence Aku0. For large powers of k, it is
possible to demonstrate that Aku0 is a good approximation of the domi-
nant eigenvector ofA. To determine the eigenvalue corresponding to a given
eigenvector, we can to use the following theorem, which is credited to the
English physicist John William Rayleigh (1842-1919).

Theorem

If u is an eigenvector of the matrix A, then its corresponding eigen-
value is given by:

λ = uTAu

uTu
(A.2)

which is called Rayleigh quotient.

Proof : since u is an eigenvector of the matrix A, then Au = λu and we
can write:

uTAu

uTu
= uTλu

uTu
= λ(uTu)

uTu
(A.3)

�
The convergence of the power method to the dominant eigenvalue is implied
by the following theorem:

Theorem

If A ∈ Rn×n is a diagonalisable matrix with a dominant eigenvalue,
then there exists a non-zero vector u0 such that the sequence of
vector given by:

Au0 ,A
2u0, A

3u0, . . . , A
ku0, . . . (A.4)

approaches a multiple of the dominant eigenvector of A.
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Proof : since A is diagonalisable, there exist n linearly independent eigen-
vectors ui with their corresponding eigenvalues λi. Let us assume that λ1
and u1 are respectively the dominant eigenvalue and eigenvector. Since the
n eigenvectors are linearly independent, they are a basis for Rn. There-
fore we can write a generic vector u0 ∈ Rn as a linear combination of the
eigenvectors:

u0 =
n∑
i=1

ciui (A.5)

Multiplying both sides of the equation by A:

Au0 = A
n∑
i=1

ciui =
n∑
i=1

ci (Aui) =
n∑
i=1

ciλiui (A.6)

Iterating the last multiplication, we obtain:

Aku0 =
n∑
i=1

ci
(
λki ui

)
(A.7)

which implies:

Aku0 = λk1

[
c1u1 +

n∑
i=2

ci

(
λi
λ1

)
ui

]
(A.8)

From the assumption of existence of the dominant eigenvalue, λ1:

λi
λ1

< 1 i = 2, . . . n (A.9)

As consequence:

lim
k→+∞

(
λi
λ1

)
= 0 (A.10)

Expression (A.10) implies that the approximation Aku0 ≈ λk1c1u1 is valid if
k is sufficiently large. Since u1 is the dominant eigenvector, it follows that
any scalar multiple of u1 is also a dominant eigenvector.

�

The proof of the previous theorem is important because it provides some in-
sights about the rate of convergence of the power method. If the eigenvalues
are ordered such that:

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| (A.11)
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then the rate of convergence depends on the ratio |λ2|/|λ1| (A.11) shows
the main drawback of the power method, which is not able to compute
the dominant eigenvalue in case the spectrum is clustered in a small area
of the complex plane, since convergence could be extremely slow or even
non-existent. Furthermore, this method is not able to compute a block
of eigenvalues. Deflation schemes and/or block variants may be employed
to compute more eigenvalues and spectral transformations may be used to
accelerate convergence and focus on subset of eigenvalues (Larson, 2012).
Other more efficient techniques, exploiting the power method sequence, to
solve eigenproblems are discussed in the next sections.

A.2 Arnoldi Method

In this section we discuss the solution of eigenproblems by means of the
Arnoldi method (Arnoldi, 1951), which belongs to a class of algorithms
called Krylov subspace projection methods, which take advantage of the in-
tricate structure of the sequence of vectors naturally produced by the power
method. The sequence of vectors produced by the power method contains
a considerable amount of information about the eigenvector directions, cor-
responding to more eigenvalues than the dominant one. The expansion co-
efficients of the vectors in the sequence evolve, in fact, in a very structured
way. Therefore, a linear combination of these vectors can be constructed to
enhance convergence to additional eigenvectors.
The first step is to consider the definition of a Krylov subspace:

Definition

Given a matrix A ∈ Rn×n and a vector u1 ∈ Rn, we define Krylov
subspace of order n the linear subspace spanned by the images of
u1 under the first k powers of A.

Kk(A,u1) = Span{u1,Au1,A
2u1, . . . ,A

k−1u1} (A.12)

It is reasonable to construct approximate eigenpairs by imposing a Galerkin
condition:
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Definition

A vector x ∈ Kk(A,u1) is calledRitz vector with its corresponding
Ritz value θ if the Galerkin condition:

〈w,Ax− xθ〉 = 0 ∀w ∈ Kk(A,u1) (A.13)

is satisfied.

There are some immediate consequences of this definition. Let W be a
matrix whose columns are an orthonormal basis for Kk ≡ Kk(A,u1). Let
us consider the orthogonal projector onto Kk, P = WWH and define Â ≡
PAP = WGWH where G ≡ WHAW . The following theorem can be
shown:

Theorem

For all the quantities defined above,

• (x, θ) is a Ritz pair ⇐⇒ x = Ws with Gs = sθ.

• ‖(I − P)AW )‖ =
∥∥∥(A− Â)W )

∥∥∥ ≤ ‖(A−M)W ‖ ∀M ∈
Cn×n : MKk ⊂ Kk

• The Ritz pairs (x, θ) and the minimum value ‖(I − P)AW )‖
are independent of the choice of the basis W .

Proof : Omissis.

This theorem has important algorithmic consequences, in fact it can be
shown that Kk is an invariant subspace for A if and only if the starting
vector u0 is a linear combination of vectors spanning an invariant subspace
of A. An important example of this result can be deducted choosing u0 as
a partial Shur decomposition of A.
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Theorem

Given A ∈ Cn×n, then there is a unique matrix Q and an upper
triangular matrix R such that

AQ = QR (A.14)

This is called Shur decomposition and the diagonal element of R
are the eigenvalues of A.

Proof : Omissis.

A Schur decomposition is not unique, in fact the eigenvalues of the matrix
A can appear on the diagonal of R in any order. Therefore for a specified
set of k eigenvalues of A, there is a Schur decomposition such that these k
eigenvalues appear as the diagonal elements of the leading principal subma-
trix Rk associated to R. If Qk denotes the k columns of the corresponding
unitary matrix Q, then it is possible to obtain a partial Schur decomposition
by equating these columns on both sides of (A.14):

AQk = QkRk (A.15)

It is possible to write a partial Schur decomposition of A and use as the
initial vector of the Kylov subspace as u0 = Qks. We can construct a con-
venient orthonormal basis U = WQ ,which provides a convenient choice to
build the basis vectors. A k×k unitaryQ can be constructed using standard
Householder transformations such that u0 = Ue1 and H = QHGQ, where
H is an upper-Hessenberg matrix with non-negative subdiagonal elements1.
It is also possible to show that in this basis:

AU = UH + feTk where f = γp̂(A)u1 (A.16)

with UHf = 0 implied by the projection property and p̂(λ) = det(λI−H),
where γ ∈ R. If it is possible to obtain u1 as a linear combination of k
eigenvectors of A, then f = 0 and U is an orthonormal basis for an in-
variant subspace of A. Hence, the Ritz values of sH are the eigenvalues
of A and the corresponding Ritz vectors are the eigenvectors. This idea

1an upper Hessenberg matrix is a matrix that has zero entries below the first subdiag-
onal.
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of using a partial Schur decomposition for the initial vector of the Krylov
subspace, which leads to (A.16), is the starting point of the Arnoldi method.

A.2.1 Arnoldi factorisation

Definition

Given A ∈ Cn×k, we define a k-step Arnoldi factorisation a
relation of the form:

AUk = UkHk + fkeTk (A.17)

where Uk ∈ Cn×k has orthonormal columns, UH
k fk = 0, and Hk ∈

Ck×k. If A is hermitian then Hk is real, symmetric and tridiagonal
and the relation is called k-step Lanczos factorisation of A.

An alternative way of writing the factorisation (A.17) is:

AUk = (Uk,uk+1)
(
Hk

βke
T
k

)
, where βk = ‖fk‖ and uk+1 = 1

βk
fk

(A.18)
If Hks = sθ then the vector x = Uks satisfies:

‖Ax− xθ‖ = ‖(AUk −UkHk) s‖ =
∣∣∣βkeTk s∣∣∣ (A.19)

The value
∣∣∣βkeTk s∣∣∣ is called Ritz estimate of the Ritz pair (x, θ) and is an

approximate eigenpair of A. If (x, θ) is a Ritz pair then:

θ = sHHks = (Uks)HA(Uks) = xHAx (A.20)

is the Rayleigh quotient assuming ‖s‖ = 1 and the residual r(x) ≡ Ax−xθ
is:

‖r(x)‖ =
∣∣∣βkeTk s∣∣∣ (A.21)

The main goal of Arnoldi method is to drive ‖r(x)‖ → 0 so that the Ritz
pair (x, θ) approximates an eigenpair of A. When f = 0, U is an invari-
ant subspace of A and the Ritz values and vectors are precisely eigenvalues
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and eigenvectors of A. An efficient algorithm to compute numerically the
Arnoldi factorisation is the following one:

Algorithm 1 The k-step Arnoldi factorisation
Input: (A,u0)
Put u0 = u/ ‖u0‖; w = Au0; α1 = uH0 w;
Put f0 ← w − u0α; U0 ← (u0); H0 ← (α0);
for j = 1, 2, . . . , k − 1 do

βj =
∥∥∥f j∥∥∥ ; uj+1 ← f j/βj ;

U j+1 ← (U j ,uj+1); Ĥj ←
(
Hj

βje
T
j

)
;

w ← Auj+1;
h← UH

j+1w; f j+1 ← w −U j+1h ;
Hj+1 ← (Ĥj ,h);

end

In exact arithmetic, the columns of U form an orthonormal basis for the
Krylov subspace, however in finite precision arithmetic, explicit re-orthogonalisation
of the columns of U is necessary. This task can be accomplished a the Gram-
Schmidt process with t-steps of iterative refinement (Daniel et al., 1976).
The Arnoldi factorisation is entirely dependent on the choice of the starting
vector u0 and it is uniquely determined by the choice of u0 until a subdi-
agonal element of H is zero. At this point an invariant subspace has been
computed and the factorisation continues with a new choice of the starting
vector.
A.2.2 Implicit Restarting technique

Generally we want the starting vector u0 to be prominent in the subspace
spanned by the desired eigenvectors, with very small components in the
other directions. As we improve the knowledge of the desired eigenvectors,
we would like to adaptively refine u0 to be a linear combination of the ap-
proximate eigenvectors and restart the Arnoldi factorisation with this new
vector. A convenient and stable way to do this operation without explicitly
computing a new Arnoldi factorisation is given by the implicitly restarted
Arnoldi method (IRAM), which is based on an implicitly shifted QR fac-
torisation (Sorensen, 1992).
Let us consider a m-step Arnoldi factorisation and let us apply an arbitrary
complex shift µ to Hm ∈ Cm×m. Since the dimensions of Hm are rela-
tively small, we can factor Hm − µI = QmRm. The following equivalent
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statements can be obtained:

AUm = UmHm + fmeTm (A.22a)

(A− µI)Um −Um(Hm − µI) = fme
T
m (A.22b)

(A− µI)Um −UmQmRm = fme
T
m (A.22c)

(A− µI)UmQm −UmQmRmQm = fme
T
mQm (A.22d)

A(UmQm)− (UmQm)(RmQm + µI) = fme
T
mQm (A.22e)

AU+
m = U+

mH
+
m + fmeTmQm (A.22f)

where U+
m = UmQm has orthonormal columns since it is the product of the

Um and an orthogonal matrixQ. It also turns out thatH+
m = RmQm+µI is

an upper Hessenberg matrix. Therefore, a complex shifting µ does not alter
the structure of the Arnoldi factorisation. The result of these operations is
that the first column of U+

m is equal to (A − µI)u1, where u1 is the first
column of U . It is possible to extend this procedure to a (k+p)-step Arnoldi
factorisation:

AUk+p = Uk+pHk+p + fk+pe
T
k+p (A.23)

When p-implicit shifts are then applied to the factorisation, then the follow-
ing new factorisation is obtained:

AU+
k+p = U+

k+p + fk+pe
T
k+pQ (A.24)

where U+ = Uk+pQ , H+ = QHHk+pQ and Q = Q1Q2 . . .Qp (each
matrix Qi is associated to the factorisation (H − µI) = QiRi).The first
k − 1 entries of ek+pQ are zero, so that a new k-step Arnoldi factorisation
can be obtained by equating the first k columns on each side:

AU+
k = U+

kH
+
k + f+

k e
T
k (A.25)

We can now iterate the process of applying shifts and then condensing. The
payoff is that every iteration implicitly applies a pth-degree polynomial in
A to the initial vector u0. The roots of the polynomial are the p-shifts that
were applied to the factorisation. Therefore, we can efficiently filter the
starting vector u0 so that its components are prominent in the direction of
the desired eigenvectors. We can then present the full implicitly restarted
Arnoldi method:
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Algorithm 2 Implicitly restarted Arnoldi method
Input:

• matrix A ∈ Cn×n;

• k, the number of eigenvalues to be computed;

• p, the number of implicit shifts to apply to the Arnoldi factorisation
at each iteration;

• criterion to determine the requested eigenvalue (i.e. largest magni-
tude);

• a starting vector u0;

• requested tolerance τ .

Result: (xk, λk), approximation of the k-eigenvalues of A.
Generate the k-step Arnoldi factorisation starting from u0.
for j = 1, 2, . . . , convergence do

Extend the k-step Arnoldi factorisation to a k + p steps.
Let q = ek+p.
Sort the spectrum ofH, σ(H) and take µ1, µ2, . . . , µp to be the p "worst"
eigenvalues.
for j = 1, 2, . . . , p do

Factor H − µjI = QR.
H ← QHHQ.
U ← UQ.
q ← qHQ.

end
f ← U(:, 1 : k) ·H(k + 1, k) + f · q(k).
Take the first k-column on each side of the factorisation to get:
U = U(:, 1 : k); H = H(1 : k, 1 : k).
Take as eigenpair approximation the Ritz pairs of the problem.

end

The repeated update of the starting vector u0 through the implicit restarting
method enhances the components of this vector to be prominent in the
directions of the desired eigenvectors, damping the unwanted ones. Let us
express u0 as a linear combination of eigenvectors xk of A:

u0 =
k=n∑
k=0

γkxk (A.26)
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Each shift cycle results into the implicit application of a polynomial in A of
degree p to the starting vector:

u0 ← ψ(A)u0 with ψ(λ) =
p∏
i=1

(λ− µi) (A.27)

Therefore:

ψ(A)u0 =
n∑
j=1

γjxjψ(λj) (A.28)

If the same polynomial is applied each time, then after l iteration, the j-th
original expansion coefficient is attenuated by the following factor:

(
ψ(λj)
ψ(λ1)

)l
, (A.29)

where the eigenvalues have been ordered according to the decreasing values
of |ψ(λj)|. The leading k eigenvalues become dominant in the expansion
and the remaining ones become less significant as the iterations proceed.
Adaptive choices of shifts yield to the isolation of the specified components
in this expansion, resulting in better approximations.

A.3 Shift-and-invert

If the eigenvalues to be computed are requested to be close to a specific shift
σ of the spectrum, convergence could be rather slow. The eigenvectors cor-
responding to the eigenvalues of largest magnitude would resurface despite
the attempt to eliminate them from the Arnoldi basis. The accumulated
round-off error during one iteration, in the direction of the eigenvector of
largest magnitude, could be enough to cause this eigenvector to resurface
in the next iteration. To avoid this issue, it is possible to use a shift-and-
invert technique to compute the k-eigenvalues close to a selected shift σ.
In this case, the k-eigenvalues of the matrix (A− σI)−1 must be evaluated
and then it is possible to recover the desired eigenvalues using the spectral
transformation:

λj = σ + 1
ν j

where νj = 1
λj − σ

(A.30)

A.4 Implementation of the Arnoldi method

In this thesis, the Implicitly Restarted Arnoldi Method has been used in
the code by means of ARPACK (ARnoldi PACKage, Lehoucq et al. 1998), a
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collection of Fortran 77 routines which are capable of solving large-scale Her-
mitian, non-Hermitian, standard or generalised eigenvalue problems. The
main advantage of using this library is that it is possible to compute a de-
sired number of eigenvalues with a user-defined criterion (largest real/imag-
inary part, largest absolute value, largest algebraic value for the symmetric
case, etc.). Since ARPACK requires just the action of the operator on the a
vector is required, its use is particularly attractive when time-stepping algo-
rithms are adopted, because no evolution matrix is generally built. Further-
more, ARPACK requires just a fix pre-determined storage, which is generally
n · O(k) +O(k2), where k is the number of eigenvalues and n the dimension
of the eigenproblem. An alternative modified Arnoldi method method, re-
ferred as “Modified Arnoldi” ( Barkley et al. 2008) was implemented in the
present work and it was verified to compare well with ARPACK, in fact the
differences of the dominant eigenvalues were generally found to be of order
less than 10−5. The main advantage of the Modified Arnoldi Algorithm is
that it uses just basic library calls and it is straightforward to evaluate how
far the eigenvalues are from convergence.
Regarding the starting vector u0, it is generated using a quasi-random rou-
tine and the divergence-free of the velocity is enforced by the time integration
algorithm.
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