
Fourier Spectral/hp Element Method:

Investigation of Time-Stepping and

Parallelisation Strategies

by

Alessandro Bolis

Imperial College London
Department of Aeronautics

This thesis is submitted for the degree of Doctor of Philosophy

and the Diploma of Imperial College London

2013

Declaration

This is to certify that the work presented in this thesis has been carried out at Imperial

College London, and has not been previously submitted to any other university or techni-

cal institution for a degree or award. The thesis comprises only my original work, except

where due acknowledgement is made in the text.

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non Commercial No Derivatives licence. Researchers are free to

copy, distribute or transmit the thesis on the condition that they attribute it, that they do

not use it for commercial purposes and that they do not alter, transform or build upon it.

For any reuse or redistribution, researchers must make clear to others the licence terms of

this work.

Alessandro Bolis

1

Acknowledgements
After four years spent at Imperial doing my PhD I have quite a few people to thank for

the help and the support I received. However, it is quite hard to recall everybody when

looking back to this period. Therefore my apologies to the ones I may have forgotten in

the following; these acknowledgements are for you too.

I would like to start expressing my deepest gratitude to my supervisor, Prof. Spencer

Sherwin. Not just for the opportunity he gave me but also because he has patiently guided

me throughout my whole research path. I would also like to thank Prof. Mike Kirby from

Utah. I have actually met him in person just twice but the discussions I had with him and

his willingness have been extremely useful and much appreciated.

I have been collaborating with a lot of people within the Nektar++ group in the last

four years. I would like to remember and thank some of them: Gabriele, Dave, Andrew,

Julien, Cristian and Peter. I have really enjoyed working with you guys and thank you

for the help, even when it simply consisted in a pint together. There is a person which

requires a special note in between the Nektar++ people, Chris Cantwell. I own him a

lot. Since the very beginning of my PhD he has helped and supported me, sharing all the

troubles I had to face while fighting with the code. Thanks Chris for everything, your help

has been precious and fundamental. Finally I would like to thank my office mates David

and Rushen for making my first years at Imperial so enjoyable.

I need also have to give some credits to the italian group of friends here in London, to

my ex-flatmate Gui and to the old friends back in Italy namely “Il Prandi”, Tom, Dvd and

Briz. You guys have been quite good in making me forget the frustration you go through

during a PhD. Your contribution won’t be forgotten.

To conclude I really want to thank my family and in particular my parents that have

been, as always, my invisible and principal sustain. Grazie mamma e grazie papa’.

3

Abstract
As computer hardware has evolved, the time required to perform numerical simulations

has reduced, allowing investigations of a wide range of new problems. This thesis fo-

cuses on algorithm optimisation, to minimise run-time, when solving the incompressible

Navier-Stokes equations. Aspects affecting performance related to the discretisation and

algorithm parallelisation are investigated in the context of high-order methods. The roles

played by numerical approximations and computational strategies are highlighted and it

is recognised that a versatile implementation provides additional benefits, allowing an

ad-hoc selection of techniques to fit the needs of heterogeneous computing environments.

We initially describe the building blocks of a spectral/hp element and pure spectral

method and how they can be encapsulated and combined to create a 3D discretisation,

the Fourier spectral/hp element method. Time-stepping strategies are also described and

encapsulated in a flexible framework based on the General Linear Method. After imple-

menting and validating an incompressible Navier-Stokes solver, two canonical turbulent

flows are analysed.

Afterward a 2D hyperbolic equation is considered to investigate the efficiency of low-

and high-order methods when discretising the spatial and temporal derivatives. We per-

form parametric studies, monitoring accuracy and CPU-time for different numerical ap-

proximations. We identify optimal discretisations, demonstrating that high-order methods

are the computationally fastest approach to attain a desired accuracy for this problem.

Following the same philosophy, we investigate the benefits of using a hybrid parallel

implementation. The message passing model is introduced to parallelise different kernels

of an incompressible Navier-Stokes solver. Monitoring the parallel performance of these

strategies the most efficient approach is highlighted. We also demonstrate that hybrid par-

allel solutions can be used to significantly extend the strong scalability limit and support

greater parallelism.

5

Ai miei genitori

7

Contents

Abstract 4

List of Figures 12

List of Tables 19

1 Introduction 23

1.1 Objectives and Motivations . 28

1.1.1 Nektar++ project . 34

1.2 Outline . 36

1.3 Assumptions . 37

2 Numerical Methods 41

2.1 Spatial Discretisation . 42

2.1.1 Weighted Residuals . 43

2.1.2 Galerkin Projection . 44

2.1.3 Spectral/hp Element Method . 46

2.1.3.1 Domain decomposition 47

2.1.3.2 Assembly . 49

2.1.3.3 Basis Type . 50

2.1.3.4 Tensorial Expansion Basis 52

2.1.4 Spectral Method . 53

2.1.4.1 Fourier Basis . 55

2.1.4.2 Dealiasing . 56

2.1.5 Numerical Integration . 58

9

CONTENTS

2.1.6 Numerical Differentiation . 59

2.1.7 Fourier Spectral/hp Element Method 61

2.1.7.1 Helmholtz Problem 64

2.1.8 Verification of the Algorithm . 65

2.2 Temporal Discretisation . 67

2.2.1 The Method of Lines . 68

2.2.2 General Linear Method . 70

2.2.3 Implicit-Explicit GLM Extension 72

2.2.4 Time-Dependent Boundary Conditions 73

2.2.5 Verification of the Algorithm . 75

2.3 Incompressible Flows . 77

2.3.1 Velocity Correction Scheme . 78

2.3.2 Verification of the Algorithm . 80

2.3.2.1 Kovasznay Flow . 80

2.3.2.2 Turbulent Pipe Flow 81

2.3.2.3 Turbulent Channel Flow 85

2.4 Discussion . 88

3 Time-Stepping Strategies 91

3.1 Application to Fluid Dynamics . 93

3.2 Case of Study . 95

3.3 Discontinuous Galerkin Projection . 96

3.4 Domain discretisation . 98

3.5 CFL control . 98

3.6 Error Model . 103

3.7 Results . 104

3.7.1 Projection Error εp . 104

3.7.2 Effects of Time-integration on the Total Error ε 106

3.7.2.1 Uniform Meshes . 106

3.7.2.2 Non-uniform Meshes 110

3.7.3 Operator Implementation . 110

10

CONTENTS

3.7.4 Spatial/temporal dominance . 112

3.7.5 Performance prediction . 115

3.8 Discussion . 116

4 Parallelisation Strategies 119

4.1 Application to Fluid Dynamics . 120

4.1.1 Overview of Previous Works . 121

4.1.2 Motivations . 123

4.2 Algorithm Overview . 125

4.3 Parallelisation Approaches . 129

4.3.1 Modal Parallelisation . 129

4.3.1.1 FFT Parallelisation 131

4.3.1.2 Parallel Algorithm . 133

4.3.2 Elemental Parallelisation . 135

4.3.2.1 Mesh Decomposition 137

4.3.2.2 Parallel Algorithm . 139

4.3.3 Hybrid Parallelisation . 140

4.4 Test Cases . 143

4.5 Scalability Model . 145

4.5.1 Advection Term Modelling . 148

4.5.2 Elliptic Solver Modelling . 150

4.5.3 Incompressible Navier-Stokes Model 152

4.5.4 Calibration . 153

4.5.5 Limitations . 154

4.5.6 Performance Prediction . 155

4.6 Numerical Experiments . 159

4.6.1 Turbulent Pipe . 159

4.6.2 Turbulent Channel . 163

4.7 Discussion . 166

5 Conclusions 171

5.1 Summary . 173

11

CONTENTS

5.2 Final remarks . 177

Bibliography 179

A Nektar++ 191

A.1 LibUtilities Sub-library . 192

A.2 StdRegions Sub-library . 194

A.3 SpatialDomains Sub-library . 195

A.4 LocalRegions Sub-library . 195

A.5 MultiRegions Sub-library . 196

B Time-Stepping Schemes Tableau 199

B.1 Multi-Step Methods . 199

B.1.1 Forward Euler . 199

B.1.2 Backward Euler . 200

B.1.3 Adams-Bashforth Order 2 . 200

B.1.4 Adams-Bashforth Order 3 . 200

B.1.5 Adams-Moulton Order 2 . 201

B.2 Multi-Stage Methods . 201

B.2.1 Explicit Runge-Kutta 2 . 202

B.2.2 Explicit Runge-Kutta 4 . 202

B.3 Implicit-Explicit Methods . 203

B.3.1 Backward-Forward Euler . 203

B.3.2 CN-AB . 203

B.3.3 Stiffly-Stable IMEX-3 . 204

12

List of Figures

2.1 Graphical illustration of a mapping system between the real element and

the standard element. The mapping is assumed to be invertible. 48

2.2 Graphical representation of a fifth order modal (a) and nodal (b) 1D basis

on the standard element (P = 5). The modal and nodal basis refer to Eq.

(2.31) and Eq. (2.32) respectively. 51

2.3 Construction of a 2D quadrilateral expansion basis as a tensor product of

two 1D basis. Modal basis (a) and nodal basis (b). Courtesy of (Karni-

adakis & Sherwin 2005). 52

2.4 Structure of a three-dimensional Cartesian expansion using a spectral/hp

element method in xy-plane (12 quadrilateral elements) and a spectral

method in z-direction. 61

2.5 Error convergence as the polynomial expansion order is increased in the

2D planes for the 3D Helmholtz problem reported in Fig. 2.6. 66

2.6 Solution of a 3D Helmholtz problem using the Fourier spectral/hp ele-

ment method. The polynomial expansion P = 10 in combination with 8

Fourier modes. 66

2.7 Numerical solution of a bi-dimensional linear-advection diffusion equa-

tion using a spectral/hp element method (4 elements and P = 9) and an

IMEX scheme for time-integration. 76

2.8 IMEX schemes converge rate with∆t for an unsteady advection-diffusion

problem. 77

13

LIST OF FIGURES

2.9 Solution of a 2DKovasznay flow. From left to right: the 12-element mesh,

the solution streamlines with P = 7 and the error convergence with P in

the L2 norm for the two velocity components u, v and the pressure field p. 81

2.10 Turbulent pipe flow simulation atReτ = 220 using the Fourier spectral/hp

element method. (a) the xy−plane 2Dmesh made of 64 quadrilaterals and

(b) a contour plot of the axial velocity along the pipe. The fluid flows in

z−direction. 82

2.11 Modal energy distribution for a turbulent pipe flow simulation at Reτ =

220. In (a) the energy distribution respect to the Fourier modes frequency

k averaged over 1000 time units and in (b) the modal energy behaviour

with time, where the transition to turbulence can be observed at t ∼ 70.

Data reported in (a) show good agreement with what reported in (McIver

et al. 2000). 84

2.12 Velocity profile in a turbulent pipe atReτ = 220. In (a) the distribution of

the non-dimensional velocity U+ along the non-dimensional pipe radius

r/D (solid line). The results are compared with the numerical results

of McIver et al (McIver et al. 2000) and the experimental results of

den Toonder et al. (den Toonder & Nieuwstadt 1997). Discrepancies are

due to the imposition of a constant pressure gradient instead of a constant

mass flow. In (b) U+ is plotted against the viscous wall unit y+. Results

show good agreement with what reported in Pope’s text book (Pope 2000). 85

2.13 Bi-dimensional mesh used to discretise the turbulent channel flow atReτ =

180. The 2D mesh replicates the mesh used by Koberg (Koberg 2007).

Extension in z−direction is obtained with a 64-modes Fourier expansion. 86

2.14 Axial velocity for a turbulent channel simulation at Reτ = 180. In (a) the

axial velocity contours are presented and in (b) the mean axial velocity

profile is plotted agains the non-dimensional distance from the wall. Re-

sults are compared with the numerical experiment reported in (Kim et al.

1987). 87

14

LIST OF FIGURES

2.15 In (a) the three components rms velocity fluctuations (solid lines) com-

pared with the results of Kim et al. (Kim et al. 1987) (dashed lines).

Discrepancies are due to the imposition of a constant pressure gradient

instead of a constant mass flow. In (b) the non-dimensional velocity U+

behaviour along the viscous wall units compared with what reported in

(Pope 2000). 88

3.1 Examples of test meshes used in the study. A uniform mesh with 64

elements and the equivalent non-uniform mesh with 81 elements. 99

3.2 2D unsteady advection problem, initial condition projected on 64 uniform

elements with P = 11. 99

3.3 Eigenvalues distributions with P = 7 for the a uniform mesh and a

non-uniform mesh. For the non-unifrom case the stability region for

the fourth-order Runge-Kutta scheme is shown, scaled to encompass the

eigenvalues distribution. 103

3.4 L2 projection error, εp, of the initial Gaussian function onto spectral/hp

element discretisations using uniform meshes, and non-uniform meshes.

Gridline intersections indicate possible (h, P) discretisations. 105

3.5 Qualitative representation of the 2D advection problem initial projection.

The three examples are showing the gaussian approximation at different

levels of accuracy, which initially is dictated by the projection error εp. . . 106

3.6 Maximum time-step (∆tmax) as dictated by the CFL constraint (C = 1)

for uniform and non-uniformmeshes using second-order Adams-Bashforth,

second- and fourth-order Runge-Kutta schemes. 107

3.7 Isolines of L2 error (solid red) and CPU time (dotted blue) for second-

order Adams-Bashforth, second-order Runge-Kutta and fourth-order Runge-

Kutta, at times T = 0.25 and T = 4.00. All plots are for uniform meshes

using the local matrix operator implementation. Black circles denote the

optimal (h, P)-discretisation for the the contours of error where the min-

imum lies within the explored parameter space. 108

15

LIST OF FIGURES

3.8 Isolines of L2 error (solid red) and CPU time (dotted blue) for second-

order Adams-Bashforth, second-order Runge-Kutta and fourth-order Runge-

Kutta, at times T = 0.25 and T = 4.00. All plots are for uniform meshes

using the local matrix operator implementation. Black circles denote the

optimal (h, P)-discretisation for the contours of error where the minimum

lies within the explored parameter space. 111

3.9 Isolines of L2 error (solid red) and CPU time (dotted blue) for second-

order Adams-Bashforth, second-order Runge-Kutta and fourth-order Runge-

Kutta, at times T = 0.25 and T = 4.00. All plots are for uniform meshes

using the sum-factorisation technique. Black circles denote the optimal

(h, P)-discretisation for the contours of error where the minimum lies

within the explored parameter space. 113

3.10 Influence zones for uniformmeshes and the three time-integration schemes

considered for (a) short time integration, and (b) long time integration.

Lines indicate κ/ε = 1, where κ corresponds to the error when using

C = 0.1. Discretisations where the spatial error dominates are to the

lower-left of the line while to the upper-right temporal error dominates. . 114

3.11 Dominant eigenvalue magnitude for uniform meshes. Actual values ob-

tained using LAPACK (solid lines) are compared with the estimate (dashed

lines) of Eq.(3.18). 115

4.1 Incompressible Navier-Stokes solution algorithm. Details of the building

blocks of the time-integration process. The most expensive routines are

highlighted, i.e. the advection term calculation and the elliptic solvers for

pressure and velocity (Poisson and Helmholtz). 126

4.2 Graphical illustration of the FFT Transposition approach. The example

considers 4 processors, NZ = 4 and NXY DOFs in the xy-plane. We

force each processor to perform the same number of 1D serial FFTs, using

padding vectors if necessary. We are not imposing the constraint about the

number of planes per processor just for clarity of presentation. 134

16

LIST OF FIGURES

4.3 A general global matrix pattern after DOFs have been reordered to apply

a static condensation approach. Courtesy of Karniadakis and Sherwin

(Karniadakis & Sherwin 2005). 137

4.4 Schematic of a mesh decomposition approach. A regular mesh with 16

quadrilaterals is distributed across 4 processors. Pairwise communica-

tions are required between the DOFs on the partitions edges duringmatrix-

vector multiplications in the linear systems solutions. 138

4.5 Parallelisation strategies visualisation over four processes. The Fourier

spectral/hp element domain reported in (a) can be decomposed according

to the Fourier modes (b) or as an arbitrary decomposition of the 2D mesh

(c). A third option is a combined approach (d). 141

4.6 Structure of the MPI cartesian communicator for an hybrid parallelisation

approach. In this example 20 MPI processes are used to parallelise a

Fourier spectral/hp element discretisation with 42 elements per plane and

4 planes. 142

4.7 Domain discretisation structure of the turbulent test cases. Pipe flow dis-

cretisation (a) and channel flow discretisation (b). 144

4.8 Overview of how a partition containing N loc
el can be cast. The different

groupings suggest that the maximum number of edges which may require

communication is ∝ 2(N loc
el + 1) . 152

4.9 Scalability model calibration. On the y-axis the time required to perform

one cycle of the solution process reported in Fig. 4.1. The model of Eq.

(4.29) after calibration (red solid line) is compared with the measured

times for the turbulent pipe flow test case. 154

4.10 Computational time prediction for the turbulent pipe flow using Eq. (4.29).

Practical bottleneck for the mesh decomposition technique is clearly vis-

ible at PXY = 16. 156

4.11 Computational time prediction for the turbulent channel flow using Eq.

(4.29). Practical bottleneck for the mesh decomposition technique is

clearly visible at PXY ≈ 128. 157

17

LIST OF FIGURES

4.12 Speed-up prediction for the turbulent pipe flow (a) and turbulent channel

flow (b) using the model described in Eq. (4.29). Black solid lines indi-

cate points with same speed-up (iso-speed-up lines). Speed-up is defined

as S = TNS
c (PXY = 1,P Z = 1)/TNS

c (PXY ,P Z). 158

4.13 Turbulent pipe flow parallel simulation - CPU usage of the algorithm steps

on a cluster of 8-core nodes. The histograms show the percentage of time

spent in the three main routines using different parallel approaches. 160

4.14 Turbulent pipe flow parallel simulation - scaling features on a cluster of

8-core nodes. The red solid line indicates the theoretical linear speed-up

based on the 16-core (2 nodes) run using the FFT Transposition (iterative)

approach. The Transposition and Decomposition bottlenecks are marked

with a vertical black dashed line. 161

4.15 Turbulent pipe flow parallel simulation - efficiency of parallelisation ap-

proaches on a cluster of 8-core nodes. The histograms show the efficiency

E of different parallel simulations defined as E = S/P where S is the

speed-up and P is the total number of processors used for the simula-

tion. The speed-up is based on the 16-core (2 nodes) run using the FFT

Transposition (iterative) approach. 162

4.16 Turbulent channel flow parallel simulation - CPU usage of the algorithm

steps on a cluster of 8-core nodes. The histograms show the percentage

of time spent in the three main routines using different parallel approaches. 164

4.17 Turbulent channel flow parallel simulation - scaling features on a clus-

ter of 8-core nodes. The red solid line indicates the theoretical linear

speed-up based on the 16-core (2 nodes) run using the FFT Transposition

(iterative) approach. The Transposition and Decomposition bottlenecks

are marked with a vertical black dashed line. 165

18

LIST OF FIGURES

4.18 Turbulent channel flow parallel simulation - efficiency of parallelisation

approaches on a cluster of 8-core nodes. The histograms show the effi-

ciency E of different parallel simulations defined as E = S/P where S

is the speed-up and P is the total number of processors used for the simu-

lation. The speed-up is based on the 16-core (2 nodes) run using the FFT

Transposition (iterative) approach. 166

A.1 Nektar++ framework. Structure of the of the sub-libraries and contents.

Arrows indicate some of the inheritance paths. 193

19

List of Tables

2.1 Stiffly stable splitting scheme coefficients 80

2.2 Advection term forms . 80

4.1 List of quantities used to define operations and communications. 128

4.2 Turbulent test case discretisation features. The total bottleneck Btot =

BtranBdec. 144

21

Chapter 1

Introduction

Computational Fluid Dynamics (CFD) is employed in many fields, such as engineer-

ing, physics and even medicine (biomedical flows). Since CFD began, one of the major

challenges has been to push forward the limit of accuracy, efficiency and speed of flow

simulations. This translates in having the capabilities to study more complex flows and in

a greater detail; as also stated from Orszag and Israeli in their seminal paper (Orszag

& Israeli 1974). Given the vast range of CFD applications, we can easily sense how

any improvement in the methods or further understanding of the issues would be bene-

ficial for many users. The complexity of the problem requires a thorough investigation

of the computations from different angles, such as the numerical methods adopted, the

algorithm design and the parallelisation approaches. Moreover, given the pace at which

new computers (and super-computers) develop, a continuous effort is required to keep

the algorithms up-to-date and to exploit all the benefits coming from hardware innovation

(Feitelson 1999, Meuer et al. 2013).

Over the past five decades many researchers, inside and outside academia, have imple-

mented a large variety of approaches to achieve those goals, some of which are reported

and described later in this thesis. Investigations into different numerical schemes, paral-

lelisation paradigms and algorithm efficiency have been fundamental to push the limits

forward. The aim of this thesis is to build on these investigations, focusing on spectral/hp

element and spectral methods. The final goal is to enhance the level of understanding and

provide some guidelines on how to increase the global efficiency of a CFD code.

23

CHAPTER 1

The philosophy that drives the investigations presented in this thesis derives from our

firm belief that implementation flexibility can be used to promote algorithms efficiency.

From our perspective, efficiency can be defined as the capability of obtaining a numeri-

cal result, characterised by desired properties, in the quickest way on a specific machine.

Many variables play a role in defining the virtues of a computation. Acknowledging the

wide variety of CFD applications, we can immediately sense the impossibility to realise

a universal numerical approach able to optimally perform in all the possible scenarios.

Generally speaking, different methods may be appropriate in different situations, sug-

gesting that a versatile and modular implementation can supply CFD practitioners with a

useful toolbox. In fact, an optimal code can be obtained through an ad hoc composition

of appropriate techniques for a given set of requirements. The greater the flexibility, the

greater the algorithm tuning capabilities, and the higher the chances of fitting the most

suitable numerical approach to the problem. A sensible usage of specialised routines can

help, for example

• to reach a desired level of accuracy on the final solution minimising the run-time;

• to exploit the capabilities of different machines, reducing the time required for a

simulation and promoting effective portability of the code across architectures.

The accuracy of a numerical simulation generally depends on the numerical approxima-

tion of our equations and on the complexity of the problem we are studying (geometry,

nature, unsteadiness, etc.). Improving the accuracy has the obvious effect of reducing the

numerical error associated with the simulation. However, if we look at it from a different

perspective, a deeper understanding of how the error can be reduced could also provide a

tool to tune our methods to attain a specific desired accuracy reducing the computational

time (different applications require different accuracies). In order to reach both high and

low levels of accuracy a classical approach is to adopt high-order numerical methods to

discretise our equations. When talking about numerical techniques we need to make a

first distinction between the temporal discretisation methods and the spatial discretisation

methods.

24

The temporal discretisation typically consists in the well knownmulti-stage and multi-

step methods (Butcher 1987, Ascher et al. 1995). Both these families can span various

level of accuracies, different orders and they can also be represented using a unique ma-

trix notation (Butcher 2006). The spatial discretisation can also be accomplished with a

variety of strategies. High-order methods for the spatial discretisation of PDEs are nowa-

days commonly applied. The basic spatial discretisation techniques which are classified

as high-order methods are:

• the spectral method (Gottlieb & Orszag 1977);

• the high-order finite element method (Szabó & Babuška 1991);

• the high-order finite difference method (Collatz 1966).

Starting form these three fundamental approaches many other high-order techniques have

been derived, which can be seen as specialisations of the mentioned methods. Some

examples are the spectral/hp element method, the high-order finite volume method, the

spectral difference method and the more recent flux-reconstruction technique (Williams

et al. 2013). In contrast with their low-order counterparts, high-order methods generally

take advantage of a larger set of degrees of freedom to approximate the solution and/or to

build the related spatial operators. Methods such has the high-order finite difference tech-

nique construct the required spatial derivatives approximation in a point of the grid using

a large number of adjacent points. When moving to spectral methods and high-order finite

element/volumemethods the solution is built as a combination of functions (usually called

trial functions or expansion basis). If we use many functions and we properly select them

(such that they can properly represent our solution) we can sensibly increase the level of

accuracy of the numerical representation of the mathematical model we are discretising.

The shape and complexity of these functions is dictated by the number of points used to

represent them (we can not represent complex functions with a limited number of points).

Therefore, increasing the number of points accounted for the representation of these func-

tions allows the usage of more complex/appropriate functions which can approximate the

solution more accurately.

In this thesis we focus on the spectral/hp element and spectral method only. Both

25

CHAPTER 1

the spectral/hp element and spectral method have been widely applied for spatially dis-

cretise the partial differential equations typical of fluid dynamics (Canuto et al. 2007,

Karniadakis & Sherwin 2005). The spectral method approximates the solution via global

functions (usually Fourier series) and it has been intensively employed for the study of

isotropic and homogeneous turbulence. Commonly implemented in combination with a

collocation projection1, it was described in detail by Gottlieb and Orszag (Gottlieb &

Orszag 1977). Although this method provides, for smooth solution, an exponential con-

vergence, it does not look attractive for problems characterised by complex geometries.

On the other hand the spectral/hp element method combines the geometric flexibility of

classical finite element techniques with the high-order convergence features of spectral

methods (Karniadakis & Sherwin 2005). This technique utilises a polynomial expansion

of order P to approximate the solution on a collection of elements. Applied to incom-

pressible flows since Patera’s pioneering work in 1984 (Patera 1984), the approach is

now also employed for modelling compressible flows in combination with discontinu-

ous Galerkin projections (Warburton et al. 1999, Eskilsson 2005, Hesthaven &Warburton

2008). A detailed description of these methods will be provided in Chapters 2 and 3.

With the rise and development of super-computers, a key aspect of numerical simulations

has become their scalability aptitude. When solving a problem using some numerical

methods on a multi-core machine, we define our algorithm scalable if we can reduce the

computational time proportionally to the number of cores we are using. Hence, we can

theoretically solve a specific problem n times faster using n cores (linear scaling).

An algorithm can be characterised by weak or strong scalability. The former is the

ability of the algorithm to keep on scaling if the number of cores grows together with

the number of degrees of freedom. This is a typical feature for CFD codes, which take

advantage of larger machines to study more complex flows, e.g. higher Reynolds num-

bers. On the other hand strong scalability is the capability of the algorithm to scale even

if we do not increase the problem size. Although weak scalability is beneficial for real

CFD applications, it may not always be of practical interest. In this thesis we will fo-

cus on algorithmic solutions to achieve strong scalability, under the assumption that weak
1Spectral approximations combined with a Galerkin projection are however often implemented.

26

scalability is a natural consequence of its strong counterpart.

Determining and predicting the efficiency and the scalability of a parallel algorithm is

not straightforward. In 1993 Grama et al. provided an extensive and detailed review on

practical methodologies to quantify parallel features (Grama et al. 1993). In the context of

parallel computing the definition of efficiency may be ambiguous. The widely accepted

definition of efficiency for a parallel algorithm is the ratio between the speed-up and the

number of cores involved in the simulation (where the speed-up is the ratio between the

time to perform the simulation with one core and n cores). While embracing and using

this definition later on in this thesis we also keep in mind our general view on efficiency,

i.e. the most convenient combination of algorithms to maximise the performances of our

simulations. There are many variables playing a role in determining the virtues of a

parallel algorithm. Practically, the real efficiency derives from the interactions between

many factors, such as

• the problem features (degrees of freedoms, boundary conditions, dimensionality,

physic nature, etc.);

• the machine specifications (latency, bandwidth, cores speed, memory, caches, net-

work topology, etc.);

• the numerical algorithm of interest;

• the libraries employed.

In addition we can approach the parallelisation of the numerical algorithm using different

paradigms. The message passing model is the most widely used and it is the one we will

focus on. An alternative would be to introduce parallelism via other paradigms, such as

the shared memory model, which consists of multithreading strategies for CPUs (Chap-

man et al. 2007), GPUs (Khronos OpenCL Working Group 2008, Sanders & Kandrot

2010) and even combinations of both.

27

CHAPTER 1

1.1 Objectives and Motivations

When solving the equations typical of fluid dynamics, the level of accuracy on the solution

and the computational efficiency are fundamental aspects. In the last five decades many

CFD practitioners moved to the usage of high-order methods to spatially discretise their

equations. While high-order methods provide a solid base to improve numerical accuracy

they also introduce some disadvantages, especially when they are coupled with explicit

time-integration schemes for the solution of unsteady problems. In fact, together with the

spatial accuracy, also the number of operations increases and the numerical stability con-

straints become more stringent (Karniadakis & Sherwin 2005). As we mentioned in the

previous section, we will focus on the spectral and the spectral/hp element only, although

some of the following considerations could be applied to other high-order methods, as

can be seen in (Liang et al. 2013).

Numerical stability restrictions in CFD algorithms generally arise when explicitly

time-marching the non-linear terms appearing in the Navier-Stokes equations (incom-

pressible and compressible) and in the Euler equations (Hirsch 2007). Given the com-

plexity of these equations, basic numerical investigations are generally carried out on

simplified convective-dominated problems, such as the unsteady linear-advection equa-

tion. The common understanding is that stability restrictions for high-order methods be-

come rapidly more stringent as the basis expansion order increases. This is because the

CFL condition imposes that the eigenspectrum of the derived spatial operator must lie

within the time-integration scheme stability region. Since the magnitude of the eigenval-

ues amplifies algebraically with the polynomial order, the maximum applicable time-step

needs to be proportionally reduce to rescale (enlarge) the time-stepping stability region.

Intuition suggests that seeking accuracy by increasing the expansion order may become

impractical. In fact the number of time-steps required to reach a specific time-level does

substantially increase.

In combination with a discontinuos Galerkin (DG) projection, the spectral/hp method

has been widely used for the solution of hyperbolic equations. Initially proposed by

Reed and Hill (Reed & Hill 1973) for solving neutron transport problems, it gained

great popularity because of its capability of preserving phase and amplitude information

28

INTRODUCTION

throughout time-integration, as demonstrated by Sherwin (Sherwin 2000), byAinsworth

in a series of papers (Ainsworth 2004b,a, Ainsworth et al. 2006) and by De Basabe

(De Basabe et al. 2008, De Basabe & Sen 2010). The numerical properties of DG spec-

tral/hp element methods for hyperbolic equation solutions have been investigated by many

authors as (Peterson 1991), (Cockburn & Shu 1998, 2001), (Hu & Atkins 2002), (War-

burton & Hagstrom 2008) and (Hesthaven & Warburton 2008).

The numerical stability properties of high-order methods when coupled with an ex-

plicit time-integration scheme have been deeply investigated and clarified (Zhang & Shu

2010, Antonietti et al. 2012). Given that the interactions between the spatial and the tem-

poral discretisation are well-known, the research is mainly focused on producing ad hoc

numerical strategies which can preserve high accuracy while alleviating the stability con-

straints. Examples of these efforts are quite common in literature and many approaches

have been followed, such as:

• Construction of tailored multi-stage time-integration schemes which show suitable

stability regions for the problem of interest (Cockburn & Shu 1998, 2001, Gottlieb

et al. 2001).

• Introduction of specialised routines which can alleviate the stability constraints,

such as basis with a variable expansion order (Dumbser et al. 2007) or sub-stepping

procedures (Lörcher et al. 2008).

While the numerical properties of DG spectral/hp methods for sufficiently smooth

solutions are now widely recognised and analytiacally understood (Zhang & Shu 2010,

Antonietti et al. 2012), the choice of discretisation parameters to achieve a given numeri-

cal error in the most computationally efficient manner are not as effectively clear. Explicit

multi-stage schemes, such as Runge-Kutta methods, have been widely used (Cockburn &

Shu 1998, 2001). However, they require multiple evaluations of the spatial operator at

each time-step. Hence, even if alleviating the stability constraints and allowing the usage

of a bigger time-step, they could not be the most efficient strategy. This last considera-

tion becomes even more important when spatial accuracy is enhanced via an increment

in the expansion basis order (as usually done for the spectral/hp element method). This

is because the spatial operator size grows algebraically with the expansion order. As a

29

CHAPTER 1

consequence, even if we can predict the stability constraints and the final accuracy, it is

not evident how to achieve optimal computational performance.

We therefore intend to analyse the actual computational load when using the spec-

tral/hp element method coupled with both explict multi-step and multi-stage schemes.

The test case for our investigations will be a 2D unsteady linear-advection equation, since

it is representative of the problems of interest. The goal is to highlight what are the dis-

cretisations parameters which minimise the CPU time for the solution of our test case.

The idea is to highlight limitations and benefits of using the spectral/hp element method

from a practical (computational) point of view.

Our objectives in this context are:

• Map the actual CFL restrictions as a functions of the polynomial order, the mesh

size, the mesh nature (uniform/non-uniform) and the time-integration scheme adopted.

• Identify the computational efficiency trend for explicit multi-stage and multi-step

schemes.

• Identify the computational efficiency trend with respect to the polynomial expan-

sion order. We span low-order (Finite Element Method) and high-order methods

(spectral/hp element method).

• Quantify the real accuracy on the final solution depending on the spatial/temporal

discretisation and the final time.

• Provide some guidelines on what is the optimal combination of spatial/temporal

discretisation to attain a desired accuracy on the solution while minimising the com-

putational time.

So far we considered the efficiency of a simulation from the numerical methods perspec-

tive. In practical applications, due to the elevate number of operations required, parallel

computing is not optional, but a real need. The issues arising when parallelising a CFD

code are often an obstacle for the realisation of a performing software. When introducing

parallelism in a serial algorithm, the main difficulty is to produce a parallel version of it

30

INTRODUCTION

that can scale properly (strongly) on many cores, on different architectures and eventually

can be ready to be used on parallel machines which are in development. While many so-

lutions and guidelines are nowadays available (Karniadakis & Kirby 2003), it is often not

clear what is the best approach to follow in the various scenarios typical of CFD appli-

cations. The basic research in this field is oriented in developing and optimising libraries

which can be coupled to many softwares and used to enhance the level of parallelism.

These libraries are based on different parallelisation paradigms, namely:

• the message passing model (Gabriel et al. 2004);

• the shared memory model for CPUs (Nichols et al. 1996, Chapman et al. 2007);

• the shared memory model for GPUs (Sanders & Kandrot 2010, Khronos OpenCL

Working Group 2008).

Once the library and the parallelisation paradigm have been selected, the common practice

is to optimally introduce the parallelism in the code. While the shared memory model for

GPUs and CPUs has gained great popularity in last five years (Canstonguay et al. 2011),

the message passing model is still the most common approach for CFD applications, es-

pecially when using numerical methods that involve an elemental discretisation. In fact,

to introduce the shared memory model would require careful considerations about mem-

ory layout, especially in case we want to use GPUs. As a result, many CFD practitioners

find more convenient to apply the message passing model after the serial version of the

code has been realised, thus avoiding a proper design of the memory management rou-

tines. Moreover, the new-generation super-computers are generally characterised by an

elevate number of nodes supplied with local memory, making the shared memory model

less attractive and the message passing model the natural choice (Meuer et al. 2013).

There is a vast literature on parallelisation approaches using the message passing

model. Usually researchers provide the details of their implementation, showing how

it can be used to run simulations on an increasing number of processors and on various

machines (Tufo & Fischer 2001, Takahashi 2003, Chan et al. 2008). The parallelisation

of the spectral/hp element method has been intensively investigated during the last two

decades (Fischer & Rønquist 1994, Fischer et al. 2008). The general approach is to imple-

ment an elemental decomposition sending different elements (or groups of elements) to

31

CHAPTER 1

different processors. This approach requires communication between elements which are

physically adjacent but they have been sent to different processors. Therefore the research

in this case is directed to the mesh decomposition optimisation for parallel applications

(Karypis 2013).

When a pure spectral method is involved in the discretisation, as in the Fourier spec-

tral/hp element method, a modal decomposition based on the Fourier expansion orthogo-

nality is also possible (Crawford et al. 1996). The message passing model can be used to

share computations among processors sending different Fourier modes to different proces-

sors. Communication in this case takes place when global operations in the pure spectral

direction are required, i.e. when a FFT is required to move variables from a transformed

to a non-transformed Fourier space and vice-versa. In this context the research effort has

been directed to enhance the scalability of the parallel FFT algorithm (Chan et al. 2008,

Li & Laizet 2010).

While the two standalone approaches (the elemental and the modal decomposition)

have been deeply investigated separately, they have been rarely applied concurrently. In

case of a hybrid spatial discretisations such as the Fourier spectral/hp element method,

both the parallel techniques can be applied. However, it is often unpractical to realise

an implementation which can easily introduce both approaches. A first attempt has been

reported in (Hamman et al. 2007). They used a simplified numerical technique, where a

1D spectral/hp element method was combined with a 2D Fourier spectral method. This

numerical method is very useful for flows exhibiting a periodic behaviour in two spatial

directions. However, it is not applicable to complex CFD applications. Their imple-

mentation is based on a MPI cartesian virtual topology which assigns a different parallel

technique to each cartesian coordinate. The results presented in (Hamman et al. 2007)

clearly suggest that a flexible parallel implementation can promote parallel efficiency and

can be used to extend the common parallelisation limits.

Following this last remark, we direct our efforts to the implementation of a flexi-

ble parallel algorithm based on the message passing model and the related MPI library

(Gabriel et al. 2004). The idea is to extend the approach presented in (Hamman et al.

2007) to more complex CFD scenarios, thus using a 2D spectral/hp element method com-

bined with a 1D Fourier expansion. Using this numerical technique, we remove the con-

32

INTRODUCTION

straint on the periodicity of the flow in one of the spatial directions, allowing investiga-

tions of further CFD problems, such the flow past a bluff body (cylinders, airfoils, etc.).

We will introduce the two standalone parallel techniques taking advantage of well-known

algorithms. However, the encapsulation of the concept of parallelisation in a cascade of

C++ classes will allow an extremely flexible usage of the parallel technique (separately

or concurrently). The final goal is to introduce a parallelisation methodology (based on

flexibility) which can be useful to capitalise our algorithms while changing the nature

of the problems we are investigating and the parallel machine we are using. Further-

more, a mixed parallel approach able to enhance scalability is a first step toward a parallel

software that can exploit the capabilities of new super-computers. In fact, while the stan-

dalone techniques are generally optimised to scale up to the limit of the current facilities,

they are generally not ready to strongly scale on new super-computers (just weak scaling).

However, combining them can provide a tool to exploit the capabilities of a new machine

while their optimisation process continues. Our objectives in this context are:

• Provide practical guidelines on how to parallelise a CFD code, presenting in details

the advantages and disadvantages of using two canonical approaches (namely the

elemental decomposition approach and the modal decomposition approach).

• Illustrate howwe can parallelise our code considering both approaches concurrently

using MPI virtual topologies.

• Show how to couple the two parallel techniques to obtain a flexible and hybrid

parallelisation approach.

• Investigate different types of discretisation to identify if a specific parallel approach

is more appropriate than another. Therefore showing that having many parallel

techniques readily available in the code can promote parallelisation efficiency.

• Demonstrate that a sensible combination of parallel techniques can be used to ex-

tend the scalability limits of our code and can also be used to recover parallel effi-

ciency.

• Identify possible algorithmic solutions that can promote overall efficiency (e.g.

comparison between iterative and direct solvers for the solution of linear systems).

33

CHAPTER 1

• Elaborate a preliminary scalability model to predict the parallel features of the

mixed parallelisation approach.

In addition, while presenting our investigations, we propose some implementation solu-

tions to address typical problems when developing a CFD code (Kirby & Sherwin 2006b).

As a continuation of the work presented in (Vos 2010), we show how to achieve higher

level of flexibility when implementing the building-blocks of a software that solves PDEs

using the spectral and the spectral/hp element method. Although the numerical methods

introduced are well-known (Karniadakis & Sherwin 2005, Butcher 2006), we illustrate

a sensible approach for their implementation and their efficient coupling. In fact, as

anticipated, one of the objectives of this thesis is also to provide useful guidelines and

suggestions to other CFD practitioners on how to address implementation issues.

1.1.1 Nektar++ project

The development and the investigation of numerical methods and implementation strate-

gies is the leading topic throughout the whole thesis. In order to examine all the possi-

ble combinations of time-integration schemes, spatial discretisations and parallelisation

approaches, a flexible implementation is required, making algorithm design a key point.

The algorithm should be able to embrace a range of time-integration schemes and it should

provide a high level of flexibility for the spatial discretisation, to facilitate parametric stud-

ies. In addition, the ability to tune the parallelisation approach to suit specific problems

and hardware features is considered fundamental to enhancing the effective performance

of the code.

Nektar++ framework has been designed and developed in the past six years to ac-

complish these tasks by having implementation flexibility as the driving philosophy. Nek-

tar++ is an open source software library in development at Imperial College London

(Department of Aeronautics) in collaboration with University of Utah (School of Com-

puting). The work reported in this thesis takes advantage of this and at the same time

contributed to the ongoing Nektar++ project (Kirby & Sherwin 2006b). In fact, the in-

34

INTRODUCTION

vestigations we present in the rest of this thesis have been performed during the continued

development of the Nektar++ project.

Since Nektar++ is an ongoing project, not all the required features were available in

the library when the research presented in this thesis started. Therefore, time has been

dedicated to introduced all the algorithms and C++ classes necessary for our investiga-

tions. In order to perform computational efficiency investigations when time-stepping

PDEs, the following work on the code has been done:

• Development, debugging, validation and profiling of 2D spatial operators for both

continuous and discontinuous Galerkin projections. Special attention has been

given to the DG projection to optimise calculation of boundary fluxes. A C++ class

has been designed to handle memory access on the boundaries in order to obtain a

fair comparison between low and high-order spatial discretisations.

• Development, debugging and validation of the time-integration class. After the

time-stepping procedure has been fixed and validated some other time-integration

schemes have been added and special attention has been given to implicit-explicit

methods and to the handling of time-dependent boundary conditions.

• Introduction of appropriate timing routines in the code to sample computational

time.

• Implementation of an advection and an advection-diffusion solver able to use Nek-

tar++ library (also Laplace, Poisson and Helmholtz solvers have been implemented

as middle steps in the development procedure).

• Implementation of a precise CFL calculator for the problem of interest and of a

general approximate CFL calculator for other practical purposes.

In order to investigate flexible parallelisation methodologies for the solution of incom-

pressible flows, the following implementation steps were required:

• Implementation of a Fourier spectral/hp element method which allows different

combinations of a pure spectral method and the spectral/hp element method to solve

various types of PDE. This include also the encapsulation of basic operations (FFT,

dealiasing, etc) in Nektar++ classes and the production of various example cases.

35

CHAPTER 1

• Development, debugging, validation and profiling of an incompressible flow solver

based on the projection method of (Karniadakis et al. 1991) for 2D and 3D prob-

lems.

• Parallelisation of the code usingMPI, encapsulating the concept of parallelisation in

C++ classes and implementing specific C++ objects to handle the data transposition

when parallelising in the pure spectral directions.

Other extra-tasks were undertaken in the development process, such as:

• Code documentation for users and future developers (Kirby & Sherwin 2006b).

• Code restructuring to properly introduce in the code various features, such as differ-

ent treatments of the convective term, sub-stepping procedure for the Navier-Stokes

equations, etc.

• Development of post-processing utilities to visualise Nektar++ results on well-

known visualisation softwares.

1.2 Outline

In Chapter 2 we provide a description of the numerical methods involved in our studies.

Although some of the techniques are generally applicable to a plethora of numerical dis-

cretisations, the Chapter focuses on high-order methods. Specifically we will highlight

the building blocks of a spectral/hp element method and a pure spectral method. Subse-

quently, combining these approaches, we will introduce the Fourier spectral/hp element

method which we will employ to solve three dimensional incompressible flows. After

presenting the time discretisation methods we will focus on the solution the 3D Incom-

pressible Navier-Stokes equations with special attention to turbulent flows.

In Chapter 3 we will present our investigations on optimal time-stepping strategies for

low- and high-order methods. As anticipated, we consider an hyperbolic equation, namely

a 2D unsteady linear advection problem. The selected test case is of relevance for many

CFD applications. In fact it can be seen as a simplified version of the explicit convective

36

INTRODUCTION

term used in many solution processes for both compressible and incompressible flows.

Taking advantage of Nektar++ flexibility we will perform a series of parametric simula-

tions. Varying the temporal and spatial discretisation and carefully considering numerical

stability, we identify the most efficient combination of time-stepping and spectral/hp ele-

ment discretisation for a given accuracy.

Chapter 4 contains a description of how we can systematically approach the challenge

of parallelisation for the Fourier spectral/hp element method. We consider various ap-

proaches, highlighting their limitations and issues, and we demonstrate how to combine

them to achieve greater performance and to extend the strong scalability limit. We reuse

the turbulent simulations presented in Chapter 2 as test cases.

Finally in Chapter 5 we summarise the work presented in the other Chapters and dis-

cuss our findings. In addition, Appendix A contains a brief description of Nektar++

structure and in Appendix B some extra details on the time-integration schemes are re-

ported.

1.3 Assumptions

In this thesis we will seek optimal approaches to improve the efficiency of a CFD sim-

ulation. While the definition of efficiency may have a number of interpretations for a

general algorithm, we will always associate it to the minimisation of the execution time

on a fixed number of processors. Considerations about memory usage and limitations are

disregarded in this thesis, although we acknowledge they may become an issue in some

scenarios and we will make direct reference to memory problems as they arise. However,

a detailed investigations of those issues are beyond the scope of this study. In addition,

when monitoring run-time, we will always neglect set-up costs. These type of costs gen-

erally involve input-output routines, matrix construction, memory allocations, C++ object

instantiations, etc. Even if they are not negligible for short simulations, they usually are

for real CFD applications. In fact, the solution is generally time-stepped for many time

units, thereby reducing the set-up routines to a small percentage of the overall computa-

tion.

When introducing an elemental discretisation, whether a standard 2D approach or a

37

CHAPTER 1

Fourier spectral/hp element method, we restrict ourselves to 2D quadrilateral expansions.

While triangular or full 3D elemental tessellations may provide some further insights for

the computational issues we are investigating, they also introduce additional problems

which would make our studies more intricate. Furthermore, the 2D spectral/hp element

expansions are always assumed to be tensorial and with an identical expansion order in

both the coordinate directions.

The investigation of time-stepping strategies which will be presented in Chapter 3

takes advantages of the flexible implementation of Nektar++ . As a consequence, a large

variety of time-stepping schemes could be investigated. We will constrain ourselves to

three popular schemes. Essentially we will consider a comparison between the widely

used fourth order Runge-Kutta and its lower order version which is the second order

Runge-Kutta scheme. In addition we will compare the second order multi-stage scheme

with a common multi-step scheme of the same order (Adams-Bashforth). Those schemes

are carefully selected to allow a direct comparison between scheme orders (fourth and

second) and scheme nature (multi-stage and multi-step).

Solution of practical CFD problems will be performed using the traditional C0 con-

tinuous Galerkin formulation, therefore the simulations presented in Chapters 2 and 4 are

the results of this type of approach. However, when investigating time-stepping strategies

in Chapter 3, we will introduce a discontinuous Galerkin projection. The reasons for this

choice are related to the numerical properties of the weak advection operator. In fact, hy-

perbolic equations discretised with a continuous Galerkin approach are characterised by

purely imaginary eigenvalues. Consequently they would require time-stepping schemes

whose stability region encompass the imaginary axis. On the other hand, a discontinu-

ous Galerkin formulation inserts a damping effect, reinforcing the similarities with the

convective term treatment when we solve the incompressible Navier-Stokes equations.

The results presented in this thesis have been produced using Nektar++ during its de-

velopment process. Although we state for each study the version of the code employed,

we recognise that the absolute values we report can not be considered universal, but rather

code and version dependent. However, the general philosophywe introduce and the trends

we highlight can be beneficial for many CFD practitioners. Our considerations should

facilitate other users to take more conscious decisions when approaching the implemen-

38

INTRODUCTION

tation of a CFD algorithm.

39

Chapter 2

Numerical Methods
2.1 Spatial Discretisation . 42

2.2 Temporal Discretisation . 67

2.3 Incompressible Flows . 77

2.4 Discussion . 88

In this chapter we provide an overview of the numerical methods which have been im-

plemented and investigated while developing Nektar++ . In each section we present the

numerical techniques providing a brief theoretical background and a verification of the

implementation. Most of the presented methods can be applied to wide variety of PDEs.

However, while presenting them, we focus on our final application, which is the solution

of an incompressible fluid.

We start by describing the numerical techniques which have been implemented to dis-

cretise the spatial operators. In the rest of this thesis we will refer to these techniques

as high-order methods, which incorporate facets of both the spectral and the spectral/hp

element method. In the section dedicated to the spatial discretisation methods we reserve

a final passage to describe the combination of the two discretisation strategies. We re-

fer to this combined approach as the Fourier spectral/hp element method. The second

section continues describing the temporal discretisation which has been implemented in

Nektar++ . We provide an initial description of both multi-step and multi-stage meth-

ods, although we focus on the implicit-explicit multi-step methods which will be used to

solve the Navier-Stokes equations. Subsequently we present the algorithm that has been

adopted to solve the incompressible Navier-Stokes equations, where the temporal and

41

CHAPTER 2

spatial derivatives have been discretised using the methods reported in previous sections.

To conclude the chapter we summarise what has been done in terms of implementation

and verification, discussing how this will affect the studies reported in the rest of this

thesis.

2.1 Spatial Discretisation

The spectral method (SM) has been initially described by Gottlieb and Orszag in their

monograph of 1977 (Gottlieb & Orszag 1977). After that, a series of textbooks have

been produced by various authors. For an overview of spectral approximations of par-

tial differential equations the reader is referred to the works of Boyd (Boyd 2001) and

Fornberg (Fornberg 1996). Canuto et al. also provided a precise and complete de-

scription of the spectral method and its application to fluid dynamics in their well-known

textbooks (Canuto et al. 2006, 2007). The spectral/hp element method (SEM) can be seen

as a combination of the spectral method and the well know finite element method (Szabó

& Babuška 1991). Introduced by Patera in 1984 for fluid dynamics applications (Patera

1984), it is currently widely used in engineering. For a full and extensive discussion of the

method and its applications to fluid dynamics the reader is referred to the seminal works

ofKarniadakis and Sherwin (Karniadakis & Sherwin 2005).

We initially present the method of weighted residuals in section 2.1.1 and the Galerkin

projection in section 2.1.2, as an initial and common base for both the spectral and spec-

tral/hp element method. In section 2.1.3 we provide a general description of the spec-

tral/hp element method. Subsequently the spectral method is presented in section 2.1.4,

where we provide a detailed description of the expansion basis involved in the solution

approximation and the required numerical techniques. The last portion of this section is

dedicated to the Fourier spectral/hp element method and a brief description and verifica-

tion of the algorithm.

42

NUMERICAL METHODS

2.1.1 Weighted Residuals

When approximating a continuous dependent variable we replace it with its mathemati-

cal representation, i.e. an infinite expansion with respect to the independent variables as

described in Eq. (2.1). The variable u(x) is represented via an infinite combination of

functions φn(x), commonly called trial functions or expansion basis. An infinite expan-

sion could hypothetically satisfy an infinite set of conditions, which we can use to find an

infinite number of expansion coefficients ûn, so that

u(x) =
∞
∑

n=0

φn(x)ûn. (2.1)

To be computationally useful this expansion must be finite, leading to a finite set of condi-

tions we can impose, and also to an error which is the residual between the approximation

and exact solution. Assuming a finite expansion with N terms, as reported in Eq. (2.2),

we have N conditions to impose to find the N expansion coefficients ûn.

u(x) ≈ uδ(x) =
N
∑

n=0

φn(x)ûn (2.2)

A general linear differential operatorL(·) applied to the variable u(x) in the n-dimensional

domain Ω, such as

L(u(x)) = 0, (2.3)

represents a common differential equation. If we apply the same operator to the approxi-

mate variable uδ(x), we obtain

L(uδ(x)) = R(uδ(x)) %= 0. (2.4)

Moving to the finite approximation uδ(x), as shown in Eq. (2.4), introduces a numerical

error that we will call the residual R = R(uδ(x)).

Solving the differential problem in Eq. (2.4) translates to finding the numerical values

of the expansion coefficients ûn. There is not a unique way to find the expansion coeffi-

cients, but it will depend on the restrictions we want to impose on the residual, i.e. on the

N conditions we can impose.

The N conditions on the residual R are imposed in integral form, such as the inner

product between the residual and a set of N test functions vj(x) (or weight functions) is

43

CHAPTER 2

zero

(vj(x), R) = 0 j = 0, . . . , N ; (2.5)

where we define the Legendre inner product of two variables f(x) and g(x) on the domain

Ω as

(f(x), g(x)) =

∫

Ω

f(x)g(x)dx. (2.6)

The nature of these conditions, which in turn depends on the selection of the N test

functions, will define the type of method and projection we apply. In the case vj(x) =

δ(x − xj) we are using a so called collocation projection, where δ represents the Dirac

delta function. This type of projection is often employed with spectral approximations

and finite difference methods. It numerically means that the approximate solution uδ(x)

satisfies the differential equation at a set of j collocation points in Ω, i.e. at these points

the residual is zero (R = 0). Another widely used projection is the Galerkin method,

especially for finite element and spectral/hp element methods. This approach can be seen

as a residual minimisation over the domain Ω. The best known is the Bubnov-Galerkin

variant in which vj(x) = φj(x). In the following section a description of the Galerkin

projection is provided, as it is the one used for all the results presented in this thesis.

2.1.2 Galerkin Projection

Numerical methods which require an elemental decomposition of the domain Ω where

the problem is defined, typically use a Galerkin projection to move from the continuous

physical space u(x) to the discrete space of coefficients ûn. Examples of these elemen-

tal approaches are the finite element method (FEM) and the spectral/hp element method

(SEM). However, it is not uncommon to find applications of the Galerkin projection to

pure spectral approximations, which alternatively often use collocation projections.

In order to illustrate the basics of a Galerkin projection we consider the linear differ-

ential equation for the variable u(x) in its strong form

L(u) = f, (2.7)

defined over the n-dimensional domain Ω and with appropriate boundary conditions on

the domain boundaries ∂Ω.

44

NUMERICAL METHODS

The weak form of the equation can be obtained by multiplying Eq. (2.7) with a test

function v, and integrating over the domain Ω, yielding to the problem of finding u ∈ U ,

such that
∫

Ω

vL(u)dx =

∫

Ω

vfdx ∀v ∈ V. (2.8)

U and V are the functional spaces where the trial and test functions are respectively de-

fined1. L(u) is a linear differential operator, for example L(u) = ∇2u− λu, where λ is a

real positive constant. We integrate by parts the left-hand side term of Eq. (2.8), obtaining
∫

Ω

∇v∇udx+

∫

Ω

λvudx =

∫

Ω

vfdx+
[

v∇u
]

∂Ω
. (2.9)

Defining the bilinear form a(u, v) as

a(u, v) =

∫

Ω

∇v∇udx+

∫

Ω

λvudx (2.10)

and the linear functional as

F (f, v) =

∫

Ω

vfdx+
[

v∇u
]

∂Ω
(2.11)

we can rewrite the formulation in its compact version as: find u ∈ U such that

a(u, v) = F (f, v) ∀v ∈ V. (2.12)

As mentioned in section 2.1.1, in practice we solve the problem in a finite subspace

of U , which we call U δ, where u is approximated by uδ. Hence, it yields to: find uδ ∈ U δ

such that

a(uδ, vδ) = F (f, vδ) ∀vδ ∈ Vδ. (2.13)

Choosing U δ = Vδ and

uδ =
∑

n∈N

φnûn, (2.14)

the final formulation can be written as: find ûn with n ∈ N such that

∑

n∈N

ûna(φn,φm) = F (f,φm) ∀m ∈ N (2.15)

where N indicates the number of degrees of freedom. In matrix notation we obtain

AT û = f̂ (2.16)
1The commonly used Bubnov-Galerkin approach implies that U = V .

45

CHAPTER 2

where

AT [n][m] = a(φn,φm) =

∫

Ω

∇φm∇φndx+

∫

Ω

λφmφndx (2.17a)

f̂ [m] =

∫

Ω

φmfdx+ Γ, (2.17b)

where Γ represents the boundary conditions contribution
[

v∇u
]

∂Ω
.

2.1.3 Spectral/hp Element Method

Spectral/hp element methods have been introduced by Patera in 1984 (Patera 1984). Al-

though these methods are commonly used in the field of fluid dynamics (Carmo et al.

2011, Sharma et al. 2011), they have also been applied in other engineering areas, such

as bio-engineering (Alastruey et al. 2011) and structural engineering (Nogueira Jr. & Bit-

tencourt 2007). This method can be considered as an extension of the more widespread

finite element method. It combines the high geometric flexibility, typical of finite element

discretizations, with the exponential convergence properties of spectral methods. Classi-

cally the finite element method approximates the solution as a series of linear functions

on the subdomains (elements) in which the original domain is partitioned. Extending this

approach, the spectral/hp element method uses a series of high-order polynomials on each

subdomain to carry out the solution approximation. Assuming a series of P + 1 linearly

independent polynomials spanning the polynomial space PP (where P is the maximum

polynomial degree), the error for a sufficiently smooth solution is a function of the mesh-

size h and the polynomial degree P , and an expansion uδ has the property

||u− uδ|| ≤ ChP ||u|| ≈ O(hP). (2.18)

Eq. (2.18) implies that the error on the solution decreases as we refine the mesh (reduction

of h) or as we increase the polynomial degree P .

Because of the high level of accuracy and the ability to discretise complex geome-

tries, the spectral/hp element method has been intensively applied to numerous branches

of fluid dynamics, such as stability analysis of complex flows, biomedical flow simula-

tions in complicated domains and turbulent simulations. Rønquist in 1988 described in

his PhD thesis (Rønquist 1988) all the aspects of a spectral/hp element method applied

to the solution of the three-dimensional Navier-Stokes equation. He used a conjugated

46

NUMERICAL METHODS

gradient method and a multi-grid approach in combination with a optimal-order Legen-

dre spectral/hp element dicretisation. During the 1990’s Karniadakis presented vari-

ous applications of the spectral/hp element method to fluid dynamics for compressible

and incompressible flows. We recall his seminal works (Karniadakis 1990) in which he

solved the three-dimensional Navier-Stokes equations using a combination of the spectral

and spectral/hp element method highlighting the geometrical flexibility of this approach.

Sherwin, while focusing on biomedical flows, extended previous studies to encapsulate

triangular domains, unstructured meshes and a complete formulation using a modal basis

(Sherwin & Karniadakis 1995). Stability analysis of transient and turbulent flows, espe-

cially in complex geometries, has been thoroughly investigated in the last two decades

using the spectral/hp element method. The works of Sherwin, Blackburn and Barkley

provide a vast literature reference on the topic. For brevity we just mention one of their

joint efforts (Barkley et al. 2007), where they performed a large-scale stability analysis

based on a spectral/hp element based code. Applications of the method to the solution of

turbulent flows have also appeared throughout the literature. Also in this case the avail-

able literature is extensive. We recall the work of McIver et al. (McIver et al. 2000)

where a tubulent pipe flow has been resolved using the spectral/hp element method and a

comparison is provided between the use of Cartesian and cylindrical coordinates.

2.1.3.1 Domain decomposition

The spectral/hp element method follows the finite element approach by decomposing the

domain Ω into a series of subdomains (elements) Ωe so that

Ω =
⋃

e

Ωe (2.19a)

Ωe ∩ Ωk = ∅ ∀e %= k. (2.19b)

Basic operations, such as differentiation or integration, are carried out on a reference space

Ωstd, derived from Ωe using a mapping system. For each element this map transforms the

coordinates in physical space x of Ωe into the reference system coordinates ξ. In the

case of a two-dimensional domain x = [x1, x2]T the mapping system can be written as

x1 = χe
1(ξ1, ξ2) and x2 = χe

2(ξ1, ξ2). Fig. 2.1 depicts a simple interpretation of the

47

CHAPTER 2

Figure 2.1: Graphical illustration of a mapping system between the real element and the standard

element. The mapping is assumed to be invertible.

process. If we consider, for example, a one-dimensional case, we can define a linear

mapping χe : Ωe → Ωstd such that

x = χe(ξ) =
1− ξ

2
xe +

1 + ξ

2
xe+1 ξ ∈ Ωstd (2.20)

and its inverse mapping, which is

ξ = [χe]−1(x) = 2
x− xe

xe+1 − xe
− 1 x ∈ Ωe (2.21)

where Ωstd = [−1, 1] and Ωe = [xe, xe+1]. This isoparametric mapping can be easily

extended to bi-dimensional elements and it is common practice to use the same expansion

used to approximate the variable to build the transformation operators. For bi-dimensional

elements for example we have that

xi = χi(ξ1, ξ2) =
∑

n∈N

φn(ξ1, ξ2)x̂
i
n. (2.22)

As a result from mapping our elements from a local to a standard system, we can define a

spectral/hp expansion on each one of the element Ωe as

u(x1, x2) =
∑

n∈N

φn(χ
−1
1 (x1, x2),χ

−1
2 (x1, x2))ûn (2.23)

48

NUMERICAL METHODS

where we have dropped the index e to simplify the notation. For non iso-parametric

mapping system and extension to curved elements the reader is referred to (Karniadakis

& Sherwin 2005) for a full treatment of the topic.

2.1.3.2 Assembly

Once we have decomposed the domain Ω into a set of E elements and we have locally

performed the required operations2 (such as integration, differentiation, etc.), we need to

impose some sort of connectivity between those subdomains, in order to solve the global

problem. Depending on the formulation we are applying, these connectivity rules can

change. In classical continuous Galerkin projections C0 continuity is imposed across the

elements. This is imposed by ensuring that the local solution on each element boundaries

is identical to the boundary solution of the adjacent element. Another approach is to

apply a discontinuous Galerkin projection where the connectivity between elements is

assured by imposing continuity of boundary fluxes, hence allowing the variable to be

discontinuous through elements edges. The discontinuous Galerkin approach is briefly

described in next chapter.

In case of a continuousGalerkin projection we can represent our global bi-dimensional

variable as

u(x1, x2) =
∑

n∈N g

φg
n(x1, x2)û

g
n =
∑

e∈E

∑

n∈N

φe
n(x1, x2)û

e
n, (2.24)

where ûg
n are the N g global coefficients which can be retrieved from the E ×N elemen-

tal local coefficients. In vectorial notation we can define ûl as the collection of all the

elemental coefficients ûe as

ûl =

û1

û2

...

ûE

. (2.25)

The relation between ûl and the global coefficients vector ûg can be seen as a scattering
2Operations are carried on the standard element Ωstd and then mapped back to the generically shaped

element.

49

CHAPTER 2

of the global one onto the local ones as

ûl = Aûg, (2.26)

where A is an assembly matrix, which concatenates all the elements into a global expan-

sion and applies the connectivity rules between elements. The assembly matrix entries

are ±1 and it is generally sparse.

An example of this procedure can be appreciated when assembling the global mass

matrixM , which is defined as

M g =

∫

Ω

φg
m(x1, x2)φ

g
n(x1, x2)dx1dx2. (2.27)

Locally we can evaluate the elemental contributions as

M e =

∫

Ω

φe
m(x1, x2)φ

e
n(x1, x2)dx1dx2. (2.28)

and assemble them using the scattering matrixA as

M g = A$[M e]A (2.29)

where

[M e] =

M 1 0 0 · · · 0

0 M 2 0 · · · 0

0 0 M 3 · · · 0
...

0 0 0 · · · M E

. (2.30)

Other operators can be assembled in the same manner. For brevity we omit the construc-

tion of other operators although we report some basic concepts of numerical integration

and differentiation in sections 2.1.5 and 2.1.6 respectively.

2.1.3.3 Basis Type

For the spectral/hp element method, the generic expansion basis series φp, spanning the

polynomial space of order P , is composed by a series of functions (or modes). The subset

of these modes which have non-zero support on the boundaries3 are called boundary
3Numerically speaking for boundary we intend the quadrature points located on the boundaries of the ele-

ment.

50

NUMERICAL METHODS

modes. On the other hand the remaining modes are defined to be zero on all boundaries

and nonzero in the interior part or the element, hence they are named interior modes.

This type of basis facilitates the imposition of C0 continuity through elements. In fact

just the the boundary modes are required to be assembled as unique global modes using

the assembly procedure described in the previous section. Throughout all the thesis only

boundary-interior decomposed basis will be taken into account, either nodal or modal,

and we provide a brief description of them in this section.

The modal expansion basis we use consists of modified Jacobi polynomials Pα,β
p (ξ)

which span the polynomial space of order P . Selecting α = 1 and β = 1 and using linear

basis as boundary modes, we construct the one-dimensional expansion φp(ξ) as

φp(ξ) = ψp(ξ) =

1−ξ
2 for p = 0

1−ξ
2

1+ξ
2 P

1,1
p−1(ξ) for 0 < p < P

1+ξ
2 for p = P.

(2.31)

Fig. 2.2(a) shows the modified modal basis described by Eq. (2.31).The quadrature points

for this basis type, required for numerical integration, are the Gauss-Lobatto-Legendre.

(a) Modal Expansion (b) Nodal Expansion

Figure 2.2: Graphical representation of a fifth order modal (a) and nodal (b) 1D basis on the stan-

dard element (P = 5). The modal and nodal basis refer to Eq. (2.31) and Eq. (2.32) respectively.

The nodal basis consists of Lagrange polynomials with the zeros corresponding to

the Gauss-Lobatto-Legendre quadrature points represented in Fig. 2.2(b). This choice of

basis is usually caller the spectral element method. Lagrange basis is shaped starting from

the nodal points ξq (in our case the quadrature points). Given P + 1 nodal points ξq for

51

CHAPTER 2

0 ≤ q ≤ P the Lagrange polynomial hp(ξ) is defined as

φp(ξ) = hp(ξ) =

∏P
q=0,q %=p(ξ − ξq)

∏P
q=0,q %=p(ξp − ξq)

. (2.32)

By definition this basis is boundary-interior decomposed, since all the modes are non-zero

on the quadrature point they refer to; and zero otherwise.

2.1.3.4 Tensorial Expansion Basis

We restrict our attention on bi-dimensional expansions basis, since they are the ones

utilised for the rest of the thesis. Within the standard reference system, our generic

variable u is approximated via a series of bi-dimensional functions (the basis functions

φn(ξ1, ξ2)) obtained as the tensor product between two one-dimensional basis functions.

For a standard quadrilateral element defined as the bi-unit square Q2 = {(ξ1, ξ2) ∈

[−1, 1]× [−1, 1]}, the generic variable u(ξ1, ξ2) is approximated as

uδ(ξ1, ξ2) =
N
∑

n=0

φn(ξ1, ξ2)ûn =
P
∑

p=0

P
∑

q=0

φp(ξ1)φq(ξ2)ûpq. (2.33)

The basis φp(ξ1) and φq(ξ2) are mono-dimensional basis spanning the polynomial space

of order P . A visualisation of a tensorial expansion basis on a standard quadrilateral

region is depicted in Fig. 2.3. For the turbulent flow simulations reported in section 2.3.2

we will make use of the nodal expansion basis illustrated in Fig. 2.3(b).

(a) Modal Expansion (b) Nodal Expansion

Figure 2.3: Construction of a 2D quadrilateral expansion basis as a tensor product of two 1D basis.

Modal basis (a) and nodal basis (b). Courtesy of (Karniadakis & Sherwin 2005).

52

NUMERICAL METHODS

2.1.4 Spectral Method

The spectral method performs a global discretisation approach, approximating the so-

lution as a linear combination of continuous functions. These functions are global and

non-zero over the solution domain. Unlike element-based methods, such as the FEM and

the SEM, spectral method does not require any domain partition, i.e. any meshing process

because they are designed for domains of the form [a, b]n, where n is the number of di-

mensions. The idea is to substitute in the PDEs the generic variable u(x) with a truncated

series expansion as reported in Eq. (2.2). Classic choices for the expansion basis Φi(x)

are Fourier expansions, Chebyshev polynomials or Jacobi polynomials depending on the

type of boundary conditions to be imposed. (Boyd 2001, Canuto et al. 2006, 2007).

As previously mentioned, the spectral method can be applied along with a colloca-

tion or a Galerkin projection. In the first case, also called pseudo-spectral approach, the

unknown coefficients ûi are the solution values on the collocation points. In the case of

a Galerkin projection, numerical integrals need to be calculated, scaling the expansion

coefficients ûi with the integration weights wi.

In the field of computational fluid dynamics, the spectral method is often used in com-

bination with Fourier expansions to study periodic flows in simplified geometries (Orszag

& Israeli 1974, Orszag 1980, Hussaini & Zang 1987). The spectral method provides very

low-error approximations which can, if the solution is smooth, converge exponentially.

The use of Fourier series limits the type of problems which can be studied. In particu-

lar, the solution has to be periodic in the direction along which it is approximated with a

Fourier expansion.

An example of a typical fluid dynamics problem which is studied with this approach is

isotropic turbulence. Isotropic turbulence allows a three-dimensional spectral approach in

combination with harmonic series because it is fully periodic in all the spatial dimensions.

Also, turbulent channel flow problems are often investigated using a spectral method com-

bined with harmonic functions. Compared to the isotropic turbulence problem, the chan-

nel flow problem has just two periodic directions. As a consequence one spatial direction

has to be approximated with another expansion type (usually Jacobi or Chebyshev poly-

nomials).

53

CHAPTER 2

Investigations of these fluid dynamic problems using the spectral method started in

1971 with the work of Orszag and Patterson (Patterson & Orszag 1971). In these stud-

ies the spectral method was used to investigate isotropic incompressible turbulence. The

authors solved the incompressible Navier-Stokes equations in a cubic box with periodic

boundary conditions. They presented algorithms to solve the Fourier-transformed 3D

Navier-Stokes equations, using the FFT algorithm to switch between the physical and the

wave-vector space. They also presented methods to remove aliasing errors which are more

efficient than previous techniques for dealiasing discrete Fourier transforms. Gottlieb and

Orszag in 1977 presented a monograph entitled ”Numerical Analysis of Spectral Meth-

ods: Theory and Applications” in which the spectral method is carefully described and

fluid dynamics applications are highlighted (Gottlieb & Orszag 1977). In 1981 Rogallo

(Rogallo 1981) used the spectral method to investigate homogenous turbulence, extend-

ing the work of (Patterson & Orszag 1971) and comparing the results with experimental

data. He used a 3D Fourier expansion, the FFT algorithm and a moving coordinate sys-

tem. Rogallo also emphasised dealiasing techniques, in relation to the Navier-Stokes

equations non-linear term. The convective term acts to increase the wave-numbers space.

This leads to the introduction of aliasing errors. The author reported two general methods

to remove aliasing. These two techniques have been previously presented by (Patterson &

Orszag 1971) and will be briefly described in section 2.1.4.2. We would also like to recall

the seminal works ofMoin, Kim andMoser (Moin & Kim 1982, Kim et al. 1987, Kim

1989, Moser et al. 1999) as a reference for numerical investigations of turbulent channel

flows using spectral methods.

We avoid a detailed description of previous numerical investigations of fluid dynamic

problems because it is beyond the scope of this chapter. Therefore we move our attention

to a description Fourier basis, since they are the ones used throughout the rest of this the-

sis. In section 2.1.7 we will combine the SEM method with a 1D SM where the expansion

basis is a Fourier series. This approach, as we will highlight later on in the chapter, allows

a modal decoupling of the 3D domain thanks to the orthogonality of the Fourier basis.

54

NUMERICAL METHODS

2.1.4.1 Fourier Basis

Assuming a one-dimensional domain Ω = [a, b] defined by the linear coordinate z, the

Fourier series of a function u(z) represents the formal expansion of u(z) in terms of the

Fourier orthogonal system and it is defined as

u(z) =
+∞∑

k=−∞

ûkφk(z) (2.34)

where the expansion functions φk(z) are defined as

φk(z) = eikz (2.35)

The Fourier system is orthogonal over the interval (0, 2π) and it can be formally written

as follows4:

∫ 2π

0

φk(z)φ̄l(z)dz = 2πδkl =
{ 0

2π

if k %= l

if k = l
(2.36)

The Fourier coefficients ûk are defined as

ûk =
1

2π

∫ 2π

0

u(z)e−ikzdz k = 0,±1,±2, . . . (2.37)

In some cases it is convenient to convert the general Fourier expansion (where the func-

tions are exponential) in a cosine or sine Fourier expansion, in which the coefficients are

respectively

âk =
1

2π

∫ 2π

0

u(z) cos(kz)dz k = 0, 1, 2, . . . (2.38)

b̂k =
1

2π

∫ 2π

0

u(z) sin(kz)dz k = 0, 1, 2, . . . (2.39)

and are related to the previous expansion via the following relation5

ûk = âk + ib̂k k = 0, 1, 2, . . . (2.40)

In numerical applications that make use of the Fourier expansions to approximate a

function u(z), the Fourier series can not be implemented precisely because the coefficients
4φ̄l(z) is the complex conjugate of φl(z) and δkl is the Kronecker delta
5If u(z) is a real valued function, âk and b̂k are real numbers and û−k = ¯̂uk

55

CHAPTER 2

are not known in closed form and hence must be approximated. The solution to overcome

the problem is the use of a discrete Fourier transform (DFT) and its related series of

coefficients. Passing from a continuous to a discrete approach, a set of points has to be

selected, which are called nodes or grid points, defined as

zj =
2πj

N
j = 0, 1, 2, . . . , N − 1 N > 0 (2.41)

Using this set of points, the discrete Fourier coefficients of a function u(z) in [0, 2π] are

ûk =
1

N

N−1
∑

j=0

u(zj)e
−ikzj k = −N/2, . . . , N/2− 1 (2.42)

and the inversion formula is

uδ(zj) =
N/2−1
∑

k=−N/2

ûke
ikzj j = 0, . . . , N − 1 (2.43)

2.1.4.2 Dealiasing

In a numerical environment, when multiplying two variables approximated with a finite

Fourier series, the common approach is to represent the resulting product using a finite

Fourier series which has the same number of modes as the two original ones. This process

introduces an error in the resulting Fourier expanded variable called aliasing. In order to

show the aliasing effect assume we have two vectors we want to multiply ûk and v̂k and

we transform them in their physical format u(zj) and v(zj), as reported in Eqs. (2.44) and

(2.45).

u(zj) =
N/2−1
∑

k=−N/2

ûke
ikzj j = 0, 1, . . . , N − 1 (2.44)

v(zj) =

N/2−1
∑

k=−N/2

v̂ke
ikzj j = 0, 1, . . . , N − 1 (2.45)

We then perform the multiplication in physical space to get the resulting vector s(zj)

s(zj) = u(zj)v(zj). (2.46)

Hence we transform back the result

s̃k =
1

N

N−1∑

j=0

s(zj)e
−ikzj k = −N

2
, . . . ,

N

2
− 1 (2.47)

56

NUMERICAL METHODS

However, if we were to take Eq. (2.44) and Eq. (2.45) and multiply them in a spectral

setting, we see that

s̃k =
∑

m+n=k

ûkv̂k +
∑

m+n=k±N

ûkv̂k = ŝk + aliasing. (2.48)

As shown in Eq. (2.48), the resulting vector s̃k is not the expected ŝk but there is an

additional term, the aliasing error.

The first possible technique for removing aliasing is the removal by truncation, where

the N length alias-free product of two Fourier series of length N is obtained using a

3N/2 length Fourier transform. This technique is known as padding or the 3/2 − rule.

The two coefficients vectors to be convoluted ûk and v̂k in Eq. (2.44) and Eq. (2.45) are

extended and padded with zeros (the final length of the vectors is 3/2 of the original one)

. We then calculate u(zj) and v(zj) with an DFT counting 3N/2 modes (the last N/2

coefficients are zero). After applying Eq. (2.46), we transform back the result s(zj). In

this way aliasing effects are confined in the last N/2 coefficients s̃k which are outside the

original vector of length N . Dumping those coefficients we obtain an alias-free product

of two Fourier series of length N . This is the most commonly used method and the one

we decided to use for our applications. The latest developments in this approach are the

works of Bowman and Roberts (Bowman & Roberts 2011, Roberts & Bowman 2011)

describing a technique to implicitly dealias a convolution product.

The second method reported by Rogallo (Rogallo 1981) is the aliasing removal by

phase shifts. This technique is based on the consideration that a shift in the physical space

grid results in the multiplication of the Fourier modes by a phase factor in the wave-space.

If we perform Fourier series products on the shifted grid and then we shift the results back

to the original one, we have that the aliasing error is multiplied by a phase factor. This

factor can be used to eliminate or reduce aliasing. The aliasing removal by phase-shifting

is rarely used because it requires a memory doubling and a greater number of operations.

57

CHAPTER 2

2.1.5 Numerical Integration

Contrary to what happens in case of a collocation6 projection, in a Galerkin method in-

tegrals such as the ones shown in Eq. (2.17a) need to be evaluated. These integrals are

generally evaluated throughout a quadrature formula (see Eq. (2.49)), where the value of

the integral is approximated as the sum of the function values in Q quadrature points xj

multiplied byQ quadrature weights wj . In a spectral/hp element method integrals are car-

ried out on standard domain Ωstd into which the real domain Ωe is mapped . The number

of points/weights and their values define the quadrature formula. The quadrature formu-

las mostly used along with Galerkin projections are the well-knownGaussian quadrature

(Stroud 1966) rules,
∫

Ω

Ψ(x)dx ≈
Q−1
∑

j=0

wjΨ(xj). (2.49)

Gaussian quadrature formulas are very accurate for the integration of smooth functions

and they are defined on the standard domain. If our variable u is defined (or mapped) into

the standard domain, for the one-dimensional case we can write

∫ 1

−1

u(ξ)dξ ≈
Q−1
∑

j=0

wju(ξj) (2.50)

allowing the exact integration of polynomials PP of order P greater than Q − 1. If we

assume that the integrand u(ξ) is a polynomial of order P , the maximum value of P we

can exactly integrate with a Gaussian quadrature formula depends on the nature of the

quadrature points ξj . The quadrature formula is exact if:

- u(ξ) is a polynomial of order 2Q − 1 and the quadrature points ξj do not include

the extremes of the interval [−1, 1] (Gauss-Legendre points).

- u(ξ) is a polynomial of order 2Q − 2 and the quadrature points ξj include one of

the two extremes of the interval [−1, 1] (Gauss-Radau-Legendre points).

- u(ξ) is a polynomial of order 2Q− 3 and the quadrature points ξj include both the

extremes of the interval [−1, 1] (Gauss-Lobatto-Legendre points).
6In the collocation approach the test functions are Dirac deltas which extract the values of the trial functions

in the collocation points, removing the need of actually calculate the integral.

58

NUMERICAL METHODS

Extending Eq. (2.50) to higher tensor product dimensions is quite trivial, for example, for

a quadrilateral standard element we have

∫ 1

−1

∫ 1

−1

u(ξ1, ξ2)dξ1dξ2 ≈
Q1−1
∑

j=0

wj

[
Q2−1
∑

i=0

wiu(ξ1j, ξ2i)

]

. (2.51)

However, we need to integrate our variable on the real domain Ωe, which can be achieved

by introducing the coordinate transformation described in section 2.1.3 as

∫

Ωe

u(x1, x2)dx1dx2 =

∫

Ωstd

u(ξ1, ξ2)|J |dξ1dξ2 (2.52)

where J is the Jacobian of the the trasformation, defined as

J =

∣
∣
∣
∣
∣
∣
∣
∣
∣

∂x1

∂ξ1

∂x2

∂ξ1
∂x1

∂ξ2

∂x2

∂ξ2

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∂x1

∂ξ1

∂x2

∂ξ2
− ∂x2

∂ξ1

∂x1

∂ξ2
. (2.53)

2.1.6 Numerical Differentiation

When solving partial differential equations, a fundamental requirement is the approxima-

tion of the derivatives of our variables. In the case of a spectral method using a Fourier

expansion as the basis, the differentiation is as trivial as scaling each spectral coefficient.

Differentiation of Fourier based expansions is briefly shown in section 2.1.7. In this sec-

tion we focus on giving an overview of basic differential operators for a general poly-

nomial basis. If we assume our discrete variable uδ(x) can be represented through a

polynomial expansion of order P such as

uδ(x) ≈
P
∑

n=0

φn(x)ûn (2.54)

the derivative can be defined as

duδ(x)

dx
=

P
∑

n=0

dφn(x)

dx
ûn (2.55)

When applying this approach to a spectral/hp element discretisation a natural choice is

to perform derivatives in the standard domain. A convenient technique is the collocation

59

CHAPTER 2

differentiation, which yields the values of the derivatives in the quadrature points we are

using. Following this method we approximate our variable on the standard domain as

u(ξ) ≈ uδ(ξ) =
Q−1
∑

j=0

hj(ξ)u(ξj), (2.56)

where hj(ξ) are the Lagrange polynomials described in Eq. (2.32), interpolating our

variable through a set ofQ quadrature points (u(ξj)). Hence we can evaluate the derivative

in a quadrature point ξi as

du(ξi)

dξ
≈ duδ(ξi)

dξ
=

Q−1
∑

j=0

dhj(ξi)

dξ
u(ξj) =

Q−1
∑

j=0

diju(ξj) (2.57)

which translates to having the derivative in the ξi quadrature points based on the variable

values in the same ξj points.

Extension to bi-dimensional domains follows easily. If we consider a standard quadri-

lateral element, where

uδ(ξ1, ξ2) =
∑

i,j

hij(ξ1, ξ2)u(ξ1i, ξ2j) (2.58)

and hij(ξ1, ξ2) is a tensorial basis, defined as

hij(ξ1, ξ2) = hi(ξ1)hj(ξ2), (2.59)

the derivative with respect to one of the coordinates (for example ξ1) at a quadrature point

ξsr = [ξ1s, ξ2r] is
∂uδ(ξ1s, ξ2r)

∂ξ1
=
∑

i,j

dhij(ξ1s , ξ2r)

dξ1
u(ξ1i, ξ2j) =

∑

i,j

dhi(ξ1s)

dξ1
hj(ξ2r)u(ξ1i, ξ2j). (2.60)

Recalling the collocation properties of Lagrange basis hj(ξ2r) = δjr and substituting

dhi(ξ1s)/dξ1 = dsi as described in Eq. (2.57), we can write
∂uδ(ξ1s, ξ2r)

∂ξ1
=
∑

i,j

dsiδjru(ξ1i, ξ2j) =
∑

i,j

dsiu(ξ1i, ξ2r). (2.61)

In order to move our differential operator to the generic domainΩe, we apply the chain

rule taking advantage from the metric described in section 2.1.7, so that

∂u

∂x1

∂u

∂x2

=

∂ξ1
∂x1

∂ξ2
∂x1

∂ξ1
∂x2

∂ξ2
∂x2

∂u

∂ξ1
∂u

∂ξ2

=

1

J

∂x2

∂ξ2
−∂x2

∂ξ1

−∂x1

∂ξ2

∂x1

∂ξ1

∂u

∂ξ1
∂u

∂ξ2

. (2.62)

60

NUMERICAL METHODS

2.1.7 Fourier Spectral/hp Element Method

Following the approach presented byKarniadakis in 1990 (Karniadakis 1990), we study

the discretisation of three-dimensional problem by combining the spectral method and

the spectral/hp element method as illustrated in Fig. 2.4 . The first step of this technique

Figure 2.4: Structure of a three-dimensional Cartesian expansion using a spectral/hp element

method in xy-plane (12 quadrilateral elements) and a spectral method in z-direction.

consists of using a bi-dimensional spectral/hp element method to spatially discretise the

problem in the xy plane, hence a mesh of 2D elements is required. On each element the

variable u(x, y) is approximated with uδ(x, y) using the quadrilateral (or triangular) ten-

sorial expansion basis described in section 2.1.3.4. The bi-dimensional discrete variable

61

CHAPTER 2

uδ(x, y) can be written as

uδ(x, y) =
∑

n

φn(x, y)ûn =
P
∑

p=0

P
∑

q=0

φp(x)φq(y)ûpq. (2.63)

The third dimension, the z−direction, is introduced replicating the 2D problem on each

one of the N quadrature points of the z−direction expansion basis. We can write the

discrete variable uδ(x, y, z) as

uδ(x, y, z) =
∑

pqk

φpq(x, y)φk(z)ûnk =
∑

pqk

φpqk(x, y, z)ûpqk. (2.64)

A pseudo-code describing the object-orientated approach of Nektar++ is reported in

Algorithm 1. Compared to a full 3D spectral/hp element approach, using a series of

2D planes reduces the size of the matrix problem involved in the solution process, also

leading to a reduction in the amount of memory used.

// Create a Fourier spectral/hp element expansion

plane = constructor2D(mesh2D, P , boundary conditions)

// Duplication of the planes in z−direction

for i = 0 to 2k − 1 do
PlanesVector[i] = plane;

end

// Transposition object to shuffle data across planes

transposition = constructor(Nplanes)

// DFT object to perform transformations

dft = constructor(type, Nplanes)

Algorithm 1: Fourier spectral/hp element method construction in Nektar++ .

For the study of incompressible flows, and for fluid dynamics applications in general,

a classic choice for the global expansion basis φk(z) is an harmonic expansion. We select

φk(z) to be a real cosine/sine Fourier series of the form

φk(z) = cos(kπz/Lz) + sin(kπz/Lz), (2.65)

62

NUMERICAL METHODS

which in vectorial notation can be written as

φk(z) =

cos(kπz/Lz)

sin(kπz/Lz)

 ûk =

[

ûc
k ûs

k

]

(2.66)

where k is the mode number and Lz is the domain length in the z-direction. The combina-

tion of the spectral expansion with the elemental 2D discretisation yields to the following

data structure

u(x, y, z) =

u(x, y, z0)

u(x, y, z1)

.

.

.

u(x, y, zN−1)

ûpqk =

ûc
pq0

ûs
pq0

.

.

ûc
pqk

ûs
pqk

(2.67)

where u(x, y, zi) is the vector containing the solution values at the quadrature points of

each one of the N 2D planes. The quadrature points in z−direction are selected to be

equally-spaced on the interval 0 ≤ z ≤ Lz. Hence we have N/2 Fourier-cosine modes

with 0 ≤ k < N/2 and N/2 Fourier-sine modes with 0 ≤ k < N/2.

The usage of the Fourier basis requires that both the solution function and the under-

lying geometry be homogeneous (periodic) in the z−direction to satisfy the Fourier basis

essential property, i.e. u(z0) = u(zN−1).

Transformations between physical and coefficient space are usually represented as a

matrix-vector multiplications. For the spectral expansion described above, if we choose

for example a number of Fourier modesN = 4 (i.e. two cosine and two sine trial functions

with k = [0 1]) and four equally spaced points {z0, z1, z2, z3} , the transformation matrix

for a variable u(z) expanded over Lz is

B =

cos(k0πz0/Lz) sin(k0πz0/Lz) cos(k1πz0/Lz) sin(k1πz0/Lz)

cos(k0πz1/Lz) sin(k0πz1/Lz) cos(k1πz1/Lz) sin(k1πz1/Lz)

cos(k0πz2/Lz) sin(k0πz2/Lz) cos(k1πz2/Lz) sin(k1πz2/Lz)

cos(k0πz3/Lz) sin(k0πz3/Lz) cos(k1πz3/Lz) sin(k1πz3/Lz)

. (2.68)

63

CHAPTER 2

2.1.7.1 Helmholtz Problem

Solving the Helmholtz equation is a fundamental step for the solution of a wide range of

problems. In case of fluid dynamics applications the solution of elliptic problems occurs

quite often and it is fundamental part of the scheme to be used throughout this thesis. The

three-dimensional Helmholtz equation for the variable u = u(x, y, z) is

∇2u+ λu =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
+ λu = f. (2.69)

As the operator is linear, it can be re-written as a 2D Laplacian operator in xy (associated

with the spectral/hp element method) plus a 1D Laplacian for the spectral part of the

discretisation

∇2
2Du+

∂2u

∂z2
+ λu = f (2.70)

where

∇2
2Du =

∂2u

∂x2
+

∂2u

∂y2
. (2.71)

The second-order spatial derivate in the z−direction is then applied to the solution expan-

sion

∂2u

∂z2
=

∂2

∂z2

∑

pqk

φpq(x, y)φk(z)ûpqk =
∑

pqk

φpq(x, y)
∂2

∂z2
φk(z)ûpqk. (2.72)

Since we are using a Fourier basis we can differentiate our variable in wave space by

multiplying the solution by the wave number βk = kπ/Lz. In fact we have that

∂

∂z
φk(z) =

∂

∂z
cos(βkz) = −βk sin(βkz) (2.73)

and
∂

∂z
φk(z) =

∂

∂z
sin(βkz) = βk cos(βkz). (2.74)

Therefore, the second derivatives will always be

∂2

∂z2
φk(z) = −β2

kφk(z). (2.75)

Since only second order spatial derivatives are involved, the three-dimensional Helmholtz

problem can be seen as a series of two-dimensional decoupled Helmholtz problems (if we

are in Fourier space), where in each equation the Helmholtz coefficients are modified to

give

∇2
2Du+ (λ− β2

k)u = f. (2.76)

64

NUMERICAL METHODS

From a practical point of view, the 2D Helmholtz equation has to be solved as many

times as the number of homogenous modes. In case of problems in which the first spatial

derivatives respect to z is required, such as the non-linear term in the Navier-Stokes equa-

tions, we can not solve the equations on each plane independently. Therefore inter-planes

operations are required. Such operations are performed with the help of a series of shuf-

fling/unshuffling routines which reorder data structures to facilitate calculations along the

grid of 1D spectral expansions.

The most expensive operation in the z-direction is the transformation between physi-

cal and coefficient space, naturally performed via a matrix-vector multiplication, as shown

before. As the number of spectral collocation points is increased, the common matrix-

vector multiplication becomes inefficient (Boyd 2001). The natural approach is to per-

form the transformation between physical and coefficient space using the FFT algorithm.

FFTW is one of the most common and portable library to perform the FFT and it is cur-

rently developed at MIT by Frigo and Johnson (Frigo & Johnson 2005). This library

will be used to perform all the transformations to and from Fourier space.

2.1.8 Verification of the Algorithm

The reliability of the algorithm has been initially tested using an elliptic problem. Numer-

ical tests have been carried out using four-quadrilateral elements in a 2D mesh extended

in z−direction to solve a 3D Helmholtz equation. The domain length in the third dimen-

sion is Lz = 5, discretised with 8 Fourier modes. The bi-dimensional domain is a square

of size x ∈ [0, 1]× [0, 1] and Fig. 2.6 depicts both the domian and the solution. Boundary

conditions are of Dirichlet type and directly taken from the exact solution reported in Eq.

(2.77). The exact solution of this problem is

uex = sin(πx) sin(πy) sin(2πz/Lz) (2.77)

given the forcing term

f = −(λ + 2π2 + 4π2/L2
z) sin(πx) sin(πy) sin(2πz/Lz). (2.78)

65

CHAPTER 2

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 2 4 6 8 10 12 14
P

|| Error ||2

Figure 2.5: Error convergence as the polynomial expansion order is increased in the 2D planes for

the 3D Helmholtz problem reported in Fig. 2.6.

X

Y Z

u: -0.45 -0.05 0.35

Figure 2.6: Solution of a 3D Helmholtz problem using the Fourier spectral/hp element method.

The polynomial expansion P = 10 in combination with 8 Fourier modes.

66

NUMERICAL METHODS

Fig. 2.5 shows the convergence of the spatial error as the polynomial order P is

increased. Convergence of the error with respect to the number of Fourier modes is neg-

ligible in this case given the harmonic nature of the solution, as the Fourier basis can

exactly represent the solution.

2.2 Temporal Discretisation

Once the spatial operators have been discretised with an appropriate spatial technique (as

reported in previous sections), the next step is to time-integrate our equations. One of

the most standard choices is the use of multi-step schemes, where the solution at the next

time-level is based on previous time-level solutions. Multi-stage schemes instead take ad-

vantages of the involved operator applications at various time-stages (not necessary cor-

responding to previous time-levels). In both cases the time-integration method is meant

to be applied to an ODE (or system of ODEs), where the only explicit differentiation is

the time derivative. Spatial derivatives are encapsulated within the spatial operators. This

classical technique to reduce a system of PDEs to a system ODEs is called the Method of

Lines (MoL) and we will describe it in section 2.2.1.

Multi-step and multi-stage schemes are both well-known and described in literature,

hence we avoid a detailed treatment of them and we refer the reader to the complete work

of Wood (Wood 1990). However, classic considerations are that multi-step schemes re-

quire more memory for the storage of multiple time-steps, but they are computationally

cheaper in term of floating-point operations. Multi-stage schemes on the other hand,

while requiring less memory, may become fairly expensive because of the greater num-

ber of operator evaluations. Therefore, it is typical to encounter some uncertainties when

we face the decision of selecting one approach or the other. To overcome these doubts

we generalise the time-stepping formulation using the General Linear Method approach

(GLM), where multi-step and multi-stage schemes can be implemented in the same man-

ner, regardless if they are implicit, explicit or implicit-explicit.

Butchers unifying General Linear Methods (Butcher 2006, 2009) allow one to move

from one time-integration scheme to another simply by selecting the related pre-stored

67

CHAPTER 2

coefficients matrix. This pre-calculated matrix contains the coefficients associated with a

particular scheme. These coefficients are recast in a unified way leading to a generalised

pre-calculated block-matrix for each time-integration scheme (see appendix B). This ap-

proach allows one to easily investigate various schemes facilitating numerical studies.

In the following we summarise the basic ideas of the time-integration approach we

adopted and reported in (Vos et al. 2011). We start by presenting the Method of Lines

and then we introduce the GLM. In section 2.2.3 the method is extended to encompass

implicit-explicit methods. These schemes will be used to deal with the incompressible

Navier-Stokes equations in section 2.3. Subsequently we dedicate a small section to the

treatment of time-dependent boundary conditions and then we report a brief verification

of the implementation.

2.2.1 The Method of Lines

Time-stepping schemes are commonly applied to initial value problems, which can be

represented by ordinary differential equations. We are mostly interested in physical pro-

cesses which, instead, are modelled via time-dependent partial differential equations. In

this section we show briefly how to reduce a PDE system to an ODE system using the

MoL, to which we can then apply the General Linear Method. The discussion will be car-

ried out using the scalar advection diffusion equation as an example. The PDE reported in

Eq. (2.79) will be spatially discretised with a spectral/hp element method. The problem

is described by the following set of equations:

∂u

∂t
+∇ · F (u) = ∇2u in Ω× [0,∞) (2.79a)

u(x, t) = gD(x, t) on ∂ΩD × [0,∞) (2.79b)

∂u

∂n
(x, t) = gN(x, t) · n on ∂ΩN × [0,∞) (2.79c)

u(x, 0) = u0(x) in Ω (2.79d)

where Ω is a bounded domain of Rd with boundary ∂Ω = ∂ΩD

⋃

∂ΩN and n denotes the

outward normal to the boundary ∂Ω.

Applying a Galerkin projection (as reported in section 2.1.2) we multiply Eq. (2.79a)

by a smooth test function v = v(x), which by definition is zero on all Dirichlet bound-

68

NUMERICAL METHODS

aries. If we integrate over the entire spatial domain we obtain the following variational

formulation: find u ∈ U such that7

∫

Ω

v
∂u

∂t
dx−

∫

Ω

vf(u)dx =

∫

Ω

v∇2udx, ∀v ∈ V, (2.80)

where U and V are suitably chosen trial and test spaces respectively. We obtain the weak

form of the diffusion operator by applying the divergence theorem to the right-hand-side

term yielding: find u ∈ U such that
∫

Ω

v
∂u

∂t
dx−

∫

Ω

vf(u)dx = −
∫

Ω

∇v ·∇udx+

∫

∂Ω

v∇u · ndx, ∀v ∈ V. (2.81)

As v(∂ΩD) is equal to zero, only Neumann conditions will give contributions to the

boundary integral, and we enforce the conditions weakly through substituting∇u = gN

in the boundary integral. In order to impose Dirichlet boundary conditions one can choose

to adopt a lifting strategy where the solution is decomposed into a known function, uD

and an unknown homogeneous function uH , i.e.

u(x, t) = uH(x, t) + uD(x, t). (2.82)

Here uD satisfies the Dirichlet boundary conditions, uD(∂ΩD) = gD, and the homoge-

neous function is equal to zero on the Dirichlet boundary, uH(∂ΩD) = 0. The weak form

(2.81) can then be formulated as: Find uH ∈ UH such that,
∫

Ω

v
∂(uH + uD)

∂t
dx−

∫

Ω

vf(uH + uD)dx =−
∫

Ω

∇v · (∇uH +∇uD)dx

+

∫

∂ΩN

vgN · ndx, ∀v ∈ V. (2.83)

Following a finite element discretisation procedure, the solution is expanded in terms of

a globally C0-continuous expansion basis φn that spans the finite dimensional solution

space U δ. We also decompose this expansion basis into the homogeneous basis functions

φH
n and the basis functions φD

n having support on the Dirichlet boundary such that

uδ(x, t) =
∑

n∈NH

φH
n (x)û

H
n (t) +

∑

n∈ND

φD
n (x)û

D
n (t). (2.84)

7f(u) = −∇ · F (u) in the following.

69

CHAPTER 2

Finally, employing the same expansion basis φH
n to span the test space V , Eq. (2.83) leads

to the semi-discrete system of ODEs

[

MHD MHH
] d

dt

ûD

ûH

 = −
[

LHD LHH
]

ûD

ûH

+ Γ
H + f̂

H
(2.85)

where

MHH [n][m] =

∫

Ω

φH
n φ

H
mdx n ∈ NH , m ∈ NH,

MHD[n][m] =

∫

Ω

φH
n φ

D
mdx n ∈ NH, m ∈ ND,

LHH [n][m] =

∫

Ω

∇φH
n ·∇φH

mdx n ∈ NH , m ∈ NH,

LHD[n][m] =

∫

Ω

∇φH
n ·∇φD

mdx n ∈ NH, m ∈ ND,

f̂
H
[n] =

∫

Ω

φH
n f(u)dx n ∈ NH,

Γ
H [n] =

∫

∂ΩN

φH
n gN · ndx n ∈ NH.

This can be rewritten in terms of the unknown variable ûH as

dûH

dt
=
(

MHH
)−1

−
[

LHD LHH
]

ûD

ûH

+ Γ
H + f̂

H
−MHD dûD

dt

,

(2.86)

which, in the absence of Dirichlet boundary conditions, simplifies to

dû

dt
= −M−1 (Lû− Γ) +M−1f̂ . (2.87)

2.2.2 General Linear Method

We have just shown how to reduce a PDE to and ODE using the Method of Lines, i.e.

from Eq. (2.79) we deduced the initial value problem reported in Eq. (2.87). At this

point we can apply a time-integration method to propagate the equation in time. The

General Linear Method (GLM) connects the two main time-integration schemes families,

i.e. the multi-step methods and the multi-stage methods. Linear multi-step methods use

a collection of r input parameters from the previous time-levels to obtain the solution at

the next time-level. Linear multi-stage methods approximate the solution at the new time-

level by linearly combining the solution at s intermediate stages. The standard initial

70

NUMERICAL METHODS

value problem in autonomous form is represented by the ODE,

dy

dt
= f (y), y(t0) = y0 (2.88)

where f : RN → RN . The nth step of the general linear method comprising of r steps

and s stages is then formulated as:

Y i = ∆t
s
∑

j=1

aijF j +
r
∑

j=1

uijy
[n−1]
j , 1 ≤ i ≤ s (2.89a)

y
[n]
i = ∆t

s
∑

j=1

bijF j +
r
∑

j=1

vijy
[n−1]
j , 1 ≤ i ≤ r (2.89b)

where Y i are called the stage values and F i are called the stage derivatives. Both quanti-

ties are related by the differential equation:

F i = f(Y i). (2.89c)

The matrices A = [aij], U = [uij], B = [bij], V = [vij] are characteristic of a specific

method, and as a result, each scheme can be uniquely defined by the partitioned (s+ r)×

(s+ r) matrix

A U

B V

 . (2.90)

For a more concise notation, it is convenient to define the vectors Y ,F ∈ RsN and

y
[n−1]
i ,y[n]

i ∈ RrN as follows:

Y =

Y 1

Y 2

...

Y s

, F =

F 1

F 2

...

F s

, y[n−1] =

y
[n−1]
1

y
[n−1]
2

...

y
[n−1]
r

, and y[n] =

y
[n]
1

y
[n]
2

...

y
[n]
r

.

(2.91)

Using these vectors, it is possible to write Eq. (2.89a) and Eq. (2.89b) in the form

Y

y[n]

 =

A⊗ IN U ⊗ IN

B ⊗ IN V ⊗ IN

∆tF

y[n−1]

 (2.92)

where IN is the identity matrix of dimensionN×N and⊗ is the Kronecker product. Note

that it is the first element of the input vector y[n−1] and output vector y[n] which represents

71

CHAPTER 2

the solution at the corresponding time-level, i.e. y[n]
1 = yn = y(t0 + n∆t). The other

sub-vectors y[n]
i (2 ≤ i ≤ r) refer to the approximation of an auxiliary set of parameters

inherent to the scheme. These parameters can, for example, be comprised of solutions at

earlier time-levels. Some examples of how common multi-step and multi-stage schemes

can be represented in matrix-form are reported in Appendix B.

2.2.3 Implicit-Explicit GLM Extension

GLM is extended in this section to fit implicit-explicit (IMEX) schemes. IMEX schemes

are used to time-integrate ODEs of the form

dy

dt
= f (y) + g(y), y(t0) = y0 (2.93)

where f : RN → RN is typically a stiff term and g : RN → RN is a non-linear function

(or where f and g have different time-scales).

The main advantage of an IMEX method is that it combines two different type of

schemes to time-integrate different operators. Practically, one would like to use an im-

plicit scheme for the stiff term in order to avoid an excessively small time-step. At the

same time an explicit integration of the non-linear term is preferred, as it avoids the ex-

pensive matrix-inversion deriving from an implicit treatment of the convective terms.

IMEX linear multi-step schemes and IMEX Runge-Kutta schemes can be unified into

an IMEX general linear method formulation, i.e.

Y i = ∆t
s
∑

j=1

aIMij F j + ∆t
s
∑

j=1

aEXij Gj +
r
∑

j=1

uijy
[n−1]
j , 1 ≤ i ≤ s (2.94a)

y
[n]
i = ∆t

s∑

j=1

bIMij F j + ∆t
s∑

j=1

bEXij Gj +
r∑

j=1

vijy
[n−1]
j , 1 ≤ i ≤ r (2.94b)

where the stage derivatives F i andGi are defined as:

F i = f (Y i), Gi = g(Y i). (2.94c)

Adopting a matrix formulation similar to Eq. (2.92), this can be written in the form

Y

y[n]

 =

AIM ⊗ IN AEX ⊗ IN U ⊗ IN

BIM ⊗ IN BEX ⊗ IN V ⊗ IN

∆tF

∆tG

y[n−1]

. (2.95)

72

NUMERICAL METHODS

The stiffly stable schemes used for the incompressible Navier-Stokes solver (which

have an IMEX nature) can be formulated as a general linear method. Using the coeffi-

cients reported in Table 2.1 we obtain for example the following partitioned-matrix for

the second-order variant:

AIM AEX U

BIM BEX V

 =

2
3 0 4

3 −1
3

4
3 −2

3

2
3 0 4

3 −1
3

4
3 −2

3

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

with y[n] =

yn

yn−1

∆tF n

∆tF n−1

.

(2.96)

where the values in the first two rows have been scaled with γ0 compared to the values in

Table 2.1. Some other examples are reported in appendix B. In Algorithm 2 we show a

pseudocode to illustrate the basic steps of the solution process for an IMEX scheme using

Nektar++ framework. Further details can be found in V os et al. (Vos et al. 2011).

2.2.4 Time-Dependent Boundary Conditions

The initial value problem described in Eq. (2.87) is a simplified version of our real re-

duced problem, i.e. the one described by Eq. (2.86). In the real case we intend to solve

for the unknown degrees of freedom ûH knowing the imposed degrees of freedom ûD.

It clearly appears from Eq. (2.86) that not only the definition of the Dirichlet degrees of

freedom is required, but also their time-derivative. Although the value ûD of the Dirich-

let boundary conditions would typically be given for arbitrary t, a prescription of its time

rate-of-change
dûD

dt
is not usually available. In the following we demonstrate how we

can remove this dependence.

We assume that an arbitrary implicit-explicit GLM is applied to Eq. (2.86), where

we decide to treat the diffusion term and the time-derivative of the Dirichlet degrees of

freedom implicitly. The convective part of the equation is treated explicitly8.
8This is a common approach also used in the velocity-correction scheme presented in section 2.3.

73

CHAPTER 2

input : the vector y[n−1]

output: the vector y[n]

for i = 1 to s do

// calculate the temporary variable xi

(1) xi = ∆t
∑i−1

j=1 a
IM
ij F j + ∆t

∑i−1
j=1 a

EX
ij Gj +

∑r
j=1 uijy

[n−1]
j

// calculate the stage value Y i

(2) solve
(

Y i − aIMii ∆tf (Y i)
)

= xi

// calculate the explicit stage derivative Gi

(3) Gi = g(Y i)

// calculate the implicit stage derivative F i

(4) F i = f (Y i) =
1

aIMii ∆t
(Y i − xi)

end

for i = 1 to r do

// calculate y
[n]
i

(5) y
[n]
i = ∆t

∑s
j=1 b

IM
ij F j + ∆t

∑s
j=1 b

EX
ij Gj +

∑r
j=1 vijy

[n−1]
j

end

Algorithm 2: IMEX scheme solution process - pseudocode.

The i− th stage, which we denote as ûH
i for convenience, can be written as

ûH
i =∆t

i
∑

j=1

aIMij

[

(

MHH
)−1

(

f̂
H

j −MHD dûD

dt

∣
∣
∣
∣
j

)]

+∆t
i−1
∑

j=1

aEXij

[(

MHH
)−1

ĝH
j

]

+
r
∑

j=1

uijû
H[n−1]
j , (2.97)

where we have made the substitution

f̂
H

j = −
[

LHD LHH
]

ûD

j

ûH
j

+ Γ
H
j . (2.98)

If we recognise that the variable ûD satisfies the ODE

(

ûD
)′
=

dûD

dt
, (2.99)

74

NUMERICAL METHODS

we can apply the same GLM to this ODE as the one we have used for the original ODE

in terms of ûH , (i.e. Eq. (2.97)), to arrive at

ûD
i = ∆t

i
∑

j=1

aIMij
dûD

dt

∣
∣
∣
∣
j

+
r
∑

j=1

uijû
D[n−1]
j , (2.100)

where we do not have any explicit stage derivatives (or more precisely,Gj = 0) due to the

fact that we choose to treat the right-hand-side term dûD

dt
in Eq. (2.99) implicitly. How-

ever, this is an arbitrary choice and we could have chosen to treat this term explicitly in

both Eq. (2.97) and Eq. (2.99). The dependence from
dûD

dt
can be eliminated substituting

Eq. (2.100) into Eq. (2.97), yielding

ûH
i =∆t

i
∑

j=1

aIMij

[
(

MHH
)−1

f̂
H

j

]

+ ∆t
i−1
∑

j=1

aEXij

[
(

MHH
)−1

ĝH
j

]

+
(

MHH
)−1

MHD

[
r
∑

j=1

uijû
D[n−1]
j − ûD

i

]

+
r
∑

j=1

uijû
H[n−1]
j . (2.101)

This can also be rewritten as

MHHûH
i +MHDûD

i =∆t
i
∑

j=1

aIMij f̂
H

j + ∆t
i−1
∑

j=1

aEXij ĝH
j

+
r
∑

j=1

uij

[

MHHû
H[n−1]
j +MHDû

D[n−1]
j

]

. (2.102)

For brevity we avoid all the implementation and technical details which have been

reported in (Vos et al. 2011). Further information can also be found in (Kirby & Sherwin

2006b).

2.2.5 Verification of the Algorithm

A bi-dimensional linear-advection-diffusion equation has been used as a test case for the

IMEX scheme implementation. In this case, as shown before, the diffusion operator has

been treated implicitly and the advection term explicitly.

∂u

∂t
+ αx

∂u

∂x
+ αy

∂u

∂y
= ν∇u (2.103)

The exact solution of Eq. (2.103), setting ν = 1, is:

u = e−2π2t sin(π(x− αxt)) sin(π(y − αyt)) (2.104)

75

CHAPTER 2

Figure 2.7: Numerical solution of a bi-dimensional linear-advection diffusion equation using a

spectral/hp element method (4 elements and P = 9) and an IMEX scheme for time-integration.

In Algorithm 3 we show a pseudo-code which illustrates the basic set up of the time-

integration procedure in Nektar++ .

Fig. 2.7 illustrates the solution u obtained with the third order multi-step IMEX

scheme with P = 9 and Dirichlet boundary conditions (calculated using the exact solu-

tion). The domain is a square of size x ∈ [0 , 1]× [0 , 1] discretised with 4 quadrilaterals.

The advection coefficients are αx = αy = 1.

YourClass solver(inputs) // your solver

TimeIntegrationMethod SCHEME // the scheme

TimeIntegrationSchemeOperators ODE // the operators

// using functors we identify the methods to be used

ODE.DefineOdeRhs(&YourClass::YourExplicitOperatorFunction,solver)

ODE.DefineProjection(&YourClass::YourProjectionFunction,solver)

ODE.DefineImplicitSolve(&YourClass::YourImplicitOperatorFunction,solver)

// setting the time-stepping scheme

SCHEME = eIMEX1

TimeIntegrationSchemeKey IntKey(SCHEME)

numMultiSteps=1

TimeIntegrationSchemeSharedPtr IntegrationSchemes[numMultiSteps]

TimeIntegrationSolutionSharedPtr ODEsolution

IntegrationSchemesr[0] = TimeIntegrationSchemeManager()[IntKey]

ODEsolution = IntegrationSchemes[0]→InitializeScheme(∆t,U,t0 ,ODE)

// time-stepping

for i = 0 to Nsteps do
U = IntScheme[0]-→TimeIntegrate(∆t,ODEsolution,ODE)

end

Algorithm 3: Pseudo-implementation of an unsteady solver in Nektar++ .

76

NUMERICAL METHODS

Some tests have been undertaken to check the effective time-convergence of the IMEX

multi-step and multi-stage schemes. In Fig. 2.8 the convergence ratio of the error decreas-

ing the time-step∆t is shown. The figure highlights the converge ratio of schemes.

∆t

L
2

e
rr

o
r

1

1

1

3

2

1

1st-order

2nd-order

3rd-order

10−5 10−4 10−3
10−12

10−10

10−8

10−6

10−4

10−2

(a) Multi-Step

∆t

L
2

e
rr

o
r

1
1

3

2

2nd-order

3rd-order

10−5 10−4 10−3
10−12

10−11

10−10

10−9

10−8

(b) Multi-Stage

Figure 2.8: IMEX schemes converge rate with ∆t for an unsteady advection-diffusion problem.

2.3 Incompressible Flows

Considering an incompressible, isothermal flow with constant density and viscosity, the

governing equations are the incompressible Navier-Stokes equations, which dictate con-

servation of mass and conservation of momentum along the three dimensions. In terms of

primitive variables (V , p), the equation are written as

∂V

∂t
+ V ·∇V = −∇p+ ν∇2V (2.105)

∇ · V = 0 (2.106)

where p is the kinematic pressure field, ν is the kinematic viscosity and V = [u, v, w]$

the velocity vector.

In the following we describe the numerical approach used to solve this set of equa-

tions, where no turbulence models are used. Therefore all the simulations presented are

considered Direct Numerical Simulations (DNS) and appropriate resolution is necessary

to resolve all the length scales.

77

CHAPTER 2

2.3.1 Velocity Correction Scheme

The first issue when the Navier-Stokes system has to be solved is to decide in which

way we want to deal with the velocity-pressure coupling. Various approaches can be

used, starting from the coupled methods (e.g. Uzawa algorithm) passing to methods that

perform a change of variables (e.g. velocity-vorticity formulation and streamfunction-

vorticity formulation). There is also a third approach where the Navier-Stokes system is

split into a series of decoupled equations for the pressure and the velocity.

In Nektar++ a stiffly stable splitting scheme in primitive variables is adopted, as pre-

sented in the work of Karniadakis, Israeli and Orszag (Karniadakis et al. 1991). The

splitting scheme decouples the velocity field V from the pressure p, leading to an explicit

treatment of the advection term and an implicit treatment of the pressure and the diffu-

sion terms. Eqs. (2.107a) to (2.107d) show the steps taken to solve the incompressible

Navier-Stokes equations. The values of the coefficients γ0 , αq and βq of the multi-step

implicit-explicit schemes are given in Table 2.1 for orders 1-3.

Eq. (2.107a) describes the first step of the scheme, which consists of calculating

the advection term explicitly and combining it with the solution at previous time-steps,

to create the first intermediate field V̂ , and denotes J the order of the time-stepping

scheme. The pressure solution at the new time level is obtained by solving a Poisson

Eq. (2.107b) with consistent boundary conditions – Eq. (2.107e). In the third step of

the scheme the second intermediate field ˆ̂
V is calculated as shown in Eq. (2.107c). This

intermediate field is then used as a forcing term in the Helmholtz problem which results

from the reformulation of Eq. (2.107d). The divergence-free constraint is introduced into

the splitting scheme via ˆ̂V . In fact the Poisson equation for the pressure is obtained taking

the divergence of Eq. (2.107c) under the assumption that ∇ · ˆ̂V = 0. The divergence-

free condition is therefore introduced implicitly via Eq. (2.107c) and Eq. (2.107b) and

reinforced by the high-order pressure boundary condition as reported in (Karniadakis et al.

1991). However, the new velocity field V n+1 is not divergence-free. As clarified in

(Karniadakis et al. 1991), the resulting velocity field is affected by a bounded divergence

error.

78

NUMERICAL METHODS

V̂ −
∑J−1

q=0 αqV
n−q

∆t
= −

J−1
∑

q=0

βq[(V ·∇)V]n−q (2.107a)

∇2pn+1 = ∇ ·
(V̂

∆t

)

(2.107b)

ˆ̂
V − V̂

∆t
= −∇pn+1 (2.107c)

γ0V
n+1 − ˆ̂

V

∆t
= ν∇2V n+1 (2.107d)

∂p

∂n

n+1

= −
[∂V

∂t

n+1

+ ν
J−1
∑

q=0

βq(∇× ω)n−q +
J−1
∑

q=0

βq[(V ·∇)V]n−q
]

· n (2.107e)

In Eq. (2.107e) the time derivative of the velocity field at the new time level n + 1

is required (ω = ∇ × V). While a standalone time-integration is possible, it is not

the most efficient choice. As reported in (Blackburn & Sherwin 2004), the whole high-

order pressure boundary condition ∂p
∂n

n+1 can be extrapolated starting from its values at

previous time levels. This approach implies that the time-derivative of the velocity ∂V
∂t

n+1

is explicitly calculated using the same coefficients βq used for the other terms in Eq.

(2.107e). This can be written as

∂p

∂n

n+1

= −
[1

∆t

J−1
∑

q=0

βq(V)n−q+ν
J−1
∑

q=0

βq(∇×ω)n−q+
J−1
∑

q=0

βq[(V ·∇)V]n−q
]

·n. (2.108)

Since the summations representing the three extrapolations are identical, we can rewrite

Eq. (2.108) as

∂p

∂n

n+1

= −
J−1
∑

q=0

βq

{[1

∆t
(V) + ν(∇× ω) + [(V ·∇)V]

]

· n
}n−q

, (2.109)

which illustrates the extrapolation process of ∂p
∂n

n+1.

There is not a unique way to treat the convection operator appearing on the righthand

side of Eq. (2.107a). Here we adopt the two classical forms defined in Table 2.2, although

other forms such as the rotational form are also used (Karniadakis & Sherwin 2005).

The convective form requires a smaller number of operations with respect to the skew-

symmetric one. However, in the case of turbulent simulations, the skew-symmetric form

generally leads to smaller aliasing errors (Blaisdell et al. 1996), which often reduces the

need to apply dealiasing techniques.

79

CHAPTER 2

Table 2.1: Stiffly stable splitting scheme coefficients

1st order 2nd order 3rd order

γ0 1 3/2 11/6

α0 1 2 3

α1 0 −1/2 −3/2

α2 0 0 1/3

β0 1 2 3

β1 0 −1 −3

β2 0 0 1

Table 2.2: Advection term forms

Convective (V ·∇)V

Skew-symmetric 1
2

[

(V ·∇)V +∇ · (V V)
]

2.3.2 Verification of the Algorithm

In this section we present some of the flow simulations which have been performed with

Nektar++ to validate the incompressible flow solver. Both 2D and 3D test cases have

been considered and tested. For brevity we report here just few of them. All the selected

cases are canonical and well known, hence we limit our post-processing, providing just

the information required to demonstrate the correctness of the simulations and of the

algorithms.

2.3.2.1 Kovasznay Flow

In 1948, Kovasznay solved the problem of steady, laminar flow behind a two-dimensional

grid. This exact solution to the NS equations is given by:

u = 1− eλx cos 2πy (2.110a)

v =
λ

2π
eλx sin 2πy (2.110b)

p =
1

2
(1− e2λx) (2.110c)

80

NUMERICAL METHODS

λ =
1

2ν
−
[1

4ν2
+ 4π2

] 1
2 (2.110d)

Figure 2.9: Solution of a 2D Kovasznay flow. From left to right: the 12-element mesh, the solution

streamlines with P = 7 and the error convergence with P in the L2 norm for the two velocity

components u, v and the pressure field p.

In Fig. 2.9 the streamlines of the 2D solution obtained with Nektar++ are shown. The

rectangular domain is defined as x ∈ [−0.5 , 1]× [−0.5 , 1.5] and it has been discretised

with 12 quadrilateral elements. The solution looks similar to the low-speed flow of a

viscous fluid past an array of cylinders. The Reynolds number is Re = 1/ν = 40. Eq.

(2.110a) to Eq. (2.110c) have been used to set Dirichlet boundary conditions for the flow

variables. A study of the convergence features of the spectral/hp element method has

been done in this case. The error converges exponentially to 10−12 for high polynomial

expansions as shown in Fig. 2.9.

2.3.2.2 Turbulent Pipe Flow

Investigations of turbulence in pipes started with the experiment of Reynolds in 1883

and have played a fundamental role in the study and understanding of turbulence. In

this section we presented the DNS of a turbulent pipe at Reb ≈ 3000 based on the bulk

velocity ub, corresponding to Reτ = 220 based on the friction velocity uτ . We refer and

compare our results to the work of McIver et al. (McIver et al. 2000). In this work a

81

CHAPTER 2

very similar turbulent pipe (Reτ = 443) was studied using an identical numerical method.

We also used the experimental results of den Toonder et al. (den Toonder & Nieuwstadt

1997) to ensure the correctness of our results. Although there is a small discrepancy

between the values of Reτ , the general behaviour of the flow is similar. The selection of

this slightly reduced Reynolds number is due to practicality, since the simulation has been

run in serial while developing and testing the Nektar++ incompressible flows solver. The

pipe we investigate has a diameterD = 1, a length L = 5 and it has been discretised in the

cross section with 64 quadrilateral elements as shown in Fig. 2.10(a). In the flow direction

we have used 128 Fourier modes with k = 0, . . . , 63; therefore 128 grid points. On each

element we utilise the nodal expansion basis described in Eq. (2.32) with P = 7 and a

second order IMEX scheme with ∆t = 0.002 to time step the Navier-Stokes equations.

The advection term is solved explicitly using the skew-symmetric form and it is smoothed

using the C0 projection of the non-linear term at each time step (Blackburn & Sherwin

2004). In Fig. 2.10(b) the contours of the axial velocity are shown, which qualitatively

indicate the turbulent nature of the flow. We assume a bulk velocity ub = 1 defined as

x

y

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

(a) Cross-section Mesh (b) Axial Velocity

Figure 2.10: Turbulent pipe flow simulation at Reτ = 220 using the Fourier spectral/hp element

method. (a) the xy−plane 2D mesh made of 64 quadrilaterals and (b) a contour plot of the axial

velocity along the pipe. The fluid flows in z−direction.

ub =
1

A

∫

A

u(r)dA =
1

A

∫ D/2

0

∫ 2π

0

u(r)rdrdθ = 1, (2.111)

82

NUMERICAL METHODS

where A = πD2/4 is the area of the pipe cross-section and r the radius of the pipe9.

Assuming ν = 1/3000 we can define the Reynolds number based on the bulk velocity

and the diameter as

Reb =
ubD

ν
= 3000. (2.112)

Since the Fourier expansion in z−direction is periodic by definition, we can not impose

a pressure difference at the extremes of the pipe. Since we need to drive the flow in that

direction, the pressure drop along the pipe is numerically imposed using a forcing term

F . This forcing term is derived from Blasius formula, which relates the pressure drop in

a pipe to the Reynolds number as

F =
∆p

L
=

1

2
f
u2
b

D
(2.113)

where

f =
0.3164

2Re0.25b

. (2.114)

No-sip boundary conditions are imposed along the pipe walls for the three velocity com-

ponents (homogeneous Dirichlet). For the pressure field, high-order boundary conditions

are imposed as reported in Eq. (2.107e). The singularity of the Poisson equation for the

k = 0mode is solved by pinning one degree of freedom to an arbitrary chosen value - zero

in this case. The initial condition is set using a plug condition for the axial velocity and

normally distributed noise (with amplitude 0.001) is added to all the velocity components,

in order to energise all the Fourier modes.

In Fig. 2.11 the modal energy distribution is shown with respect to both time and

the Fourier mode number. Distribution of energy with respect to the mode number k is

presented in Fig. 2.11(a) and the energy trend agree with what reported in (McIver et al.

2000). The bump in the energy profile which can be observed at k ∼ 60 is due to aliasing

effects. Fig. 2.11(b) depicts the energy time-trend associated with some of the Fourier

modes where the transition to turbulence can be observed at t ∼ 70. The second part of

the the post-processing consists of averaging the axial velocity profile in time and space

to produce a velocity distribution along the non-dimensional radius r/D and the viscous
9We are actually using a cartesian system, i.e. r2 = x2 + y2.

83

CHAPTER 2

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70

E
(k

)

k

(a) E(k)

 1e-35

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 0 100 200 300 400 500 600 700 800 900

E
(t

)
time units

k = 0
k = 1
k = 2
k = 5

k = 10
k = 20
k = 30
k = 40
k = 50
k = 60
k = 63

(b) E(t)

Figure 2.11: Modal energy distribution for a turbulent pipe flow simulation at Reτ = 220. In (a)

the energy distribution respect to the Fourier modes frequency k averaged over 1000 time units and

in (b) the modal energy behaviour with time, where the transition to turbulence can be observed at

t ∼ 70. Data reported in (a) show good agreement with what reported in (McIver et al. 2000).

wall unit y+. Given the following turbulence common quantities

uτ =

√
τw
ρ

τw =
∆pD

4L
y =

D

2
− r (2.115)

we can extrapolate the Reynolds number based on the friction velocity, which is

Reτ =
Duτ

ν
= 220 (2.116)

and the non-dimensional wall coordinate and velocity as

y+ =
yuτ

ν
U+ =

u

uτ
. (2.117)

Fig. 2.12(a) shows the non-dimensional velocity profile along the pipe radius as also

reported in (McIver et al. 2000). In Fig. 2.12(b) we present the U+ distribution as a

function of the distance y+ from the walls. We compare the averaged data obtained with

Nektar++ with the analytical curve representing the linear velocity distributionU+ = y+.

To verify that the velocity distribution is consistent with a turbulent simulation we note

that in Fig. 2.12(b), this linear velocity distribution, typical of the viscous sub-layer,

matches with the numerical data for y+ < 5. After the buffer layer we can observe the

84

NUMERICAL METHODS

 0

 5

 10

 15

 20

 0 0.1 0.2 0.3 0.4 0.5

U
+

r/D

Nektar++
McIver et al. (2000)

den Toonder et al. (1997)

(a) U+(r)

 0

 5

 10

 15

 20

 1 10 100

U
+

y
+

U+

U+ = y+

log-law

(b) U+(y+)

Figure 2.12: Velocity profile in a turbulent pipe at Reτ = 220. In (a) the distribution of the non-

dimensional velocity U+ along the non-dimensional pipe radius r/D (solid line). The results are

compared with the numerical results of McIver et al (McIver et al. 2000) and the experimental

results of den Toonder et al. (den Toonder & Nieuwstadt 1997). Discrepancies are due to the

imposition of a constant pressure gradient instead of a constant mass flow. In (b) U+ is plotted

against the viscous wall unit y+. Results show good agreement with what reported in Pope’s text

book (Pope 2000).

U+ distribution matches also with the log − law defined as

U+ =
1

K
ln y+ + C+ K = 0.41 C+ = 6.13. (2.118)

The values for the V on Karman constantK and C+ have been taken from the turbulence

text book of Pope (Pope 2000).

2.3.2.3 Turbulent Channel Flow

The DNS of turbulent channels has been one of the most studied numerical experiments

in the last six decades. The problem has two natural periodic dimensions. This feature has

always encouraged practitioners to discretise the physical domain using a Fourier spectral

method in the two directions non-normal to the walls. Kim et al. in 1987 presented a

detail characterisation of a DNS at Reτ = 180 (Kim et al. 1987) using a Fourier spectral

method in the two periodic dimensions (x and z) and a Chebyshev polynomial expansion

in y, i.e. perpendicularly to the walls. In this section we present similar investigation,

85

CHAPTER 2

but we use a Fourier spectral method just in the z−direction and a spectral/hp element

method to discretise the xy−plane, as reported in Fig. 2.13.

Figure 2.13: Bi-dimensional mesh used to discretise the turbulent channel flow at Reτ = 180.

The 2D mesh replicates the mesh used by Koberg (Koberg 2007). Extension in z−direction is

obtained with a 64-modes Fourier expansion.

The domain size is chosen to be x ∈ [0, 4π], y ∈ [−1, 1] and z ∈ [0, 4π/3] as in the

work of Koberg (Koberg 2007). In his work Koberg discretised the xy-plane with 450

quadrilaterals elements, 15 in the streamwise direction x and 30 in the spanwise direc-

tion y. He demonstrated the discretisation was fine enough to capture turbulent features,

hence we use the same spatial discretisation, shown in Fig. 2.13. A nodal basis (P = 6)

has been used in combination with a second order stiffly-stable time integration scheme

(∆t = 0.001). Pressure and velocity are set to be periodic along x and the flow is driven

by a numerical forcing term defined as in Eq. (2.113), where the friction factor is taken

from the reference text book of Pope (Pope 2000). Zero Dirichlet boundary conditions

are set for the velocity field on the walls in combination with high-order boundary condi-

tion for the pressure. The advection term is treated using the skew-symmetric form and

the spectral vanishing viscosity technique (Kirby & Sherwin 2006a) has been used to sta-

bilise the simulation across the transition to turbulence. The Fourier spectral discretisation

consists of a 64-mode Fourier expansion.

In Fig. 2.14(a) we present the contour of the axial velocity in the channel where we

can see the turbulent nature of the flow. The mean velocity profile in the streamwise

direction is depicted in Fig. 2.14(b) where the results are compared with those reported

in (Kim et al. 1987).

In order to perform some further statistical analysis, we define the fluctuations of the

86

NUMERICAL METHODS

(a) Axial velocity

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

u
/u

b

y/d

Nektar++
Kim et al. (1987)

(b) Mean velocity profile

Figure 2.14: Axial velocity for a turbulent channel simulation at Reτ = 180. In (a) the axial

velocity contours are presented and in (b) the mean axial velocity profile is plotted agains the non-

dimensional distance from the wall. Results are compared with the numerical experiment reported

in (Kim et al. 1987).

i− th velocity component as

u′
i = ui − ūi (2.119)

where ūi is the mean value of the components, defined as

ūi =< ui >=
1

M

M
∑

j=0

(ui)j (2.120)

andM in the number of time-samples. We specify the variance of the fluctuations as

< u′
iu

′
i >=

1

M

M
∑

j=0

(u′
iu

′
i)j . (2.121)

In Fig. 2.15(a) we present the square root of the variance (i.e. the rms) for each velocity

component (solid lines) and we compare them with the results of Kim et al. (Kim et al.

1987) (dashed lines). Fig. 2.15(b) shows the mean value of the non-dimensional axial

velocity profile U+ compared with what is reported in (Pope 2000) as we previously did

for the pipe flow. The values for the log-law constants K and C+ have been taken from

(Pope 2000) as

U+ =
1

K ln y+ + C+ K = 0.4 C+ = 5.5. (2.122)

87

CHAPTER 2

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

rm
s

y

urms
vrms
wrms

(a) < u′

iu
′

i >
1/2

 1 10 100
 0

 5

 10

 15

 20

U
+

y
+

U+

U+ = y+

log-law

(b) U+(y+)

Figure 2.15: In (a) the three components rms velocity fluctuations (solid lines) compared with the

results ofKim et al. (Kim et al. 1987) (dashed lines). Discrepancies are due to the imposition of

a constant pressure gradient instead of a constant mass flow. In (b) the non-dimensional velocity

U+ behaviour along the viscous wall units compared with what reported in (Pope 2000).

We observed good agreement between the numerical simulation performed with Nek-

tar++ and the reference case (Kim et al. 1987), showing that the discretisation is clearly

capturing the features of the flow correctly.

2.4 Discussion

In this chapter we briefly presented the theoretical background related to the numerical

strategies we have implemented and used in the studies which follow in the next chap-

ters. All of the numerical techniques presented here have been implemented within the

Nektar++ framework, but the C++ implementation details have been omitted for brevity.

A technical description of the full framework and routines can be found on the Nektar++

website (Kirby & Sherwin 2006b). However, we completed the description of each sec-

tion with verification to demonstrate that the algorithms implemented work as intended.

We described the basics of the numerical methods we implemented for the 2D spa-

tial discretisation and the time-integration. The 2D spatial discretisation allows an easy

switch between various elemental shape and basis type. It is also designed to encourage

88

NUMERICAL METHODS

the use of different computational approaches to perform operations locally and globally,

as also reported in (Vos 2010). Furthermore, the encapsulation of the building blocks of a

spectral/hp element method allows an easy switch between continuous and discontinuous

Galerkin projection; both optimised to work with high and low order polynomial expan-

sions. A generic formulation that facilitates the usage of a wide range of time-integration

methods via a unique interface has also been presented. The algorithm is based on the

General Linear Method theory, well known within the ODE community although rarely

applied by PDE solvers. This unified implementation should allow users to explore the

variety of methods that exist to solve an unsteady problem. The specific implementation

should also push the users to try new methods, since it is as quick as filling a new coef-

ficients matrix. The high flexibility and efficiency achieved in the spatial and temporal

discretisation will be used in Chapter 3, where we will investigate optimal combinations

of space-time discretisations to solve an hyperbolic problem.

The 3D extension, in which we combine a 2D spectral/hp element method and a

Fourier spectral discretisation, will be used in Chapter 4 to investigate parallelisation

strategies. The implementation of the 3D Fourier spectral/hp element method and of

the incompressible Navier-Stokes solver will be tested along with different approaches

in term of communications and domain decomposition. Exploiting the needs of various

use cases, we intend to create some guidelines when parallelising a turbulent problem.

The focus on turbulent simulation required also the implementation of various stabilisa-

tion techniques, which we omit for brevity but which can be found in (Kirby & Sherwin

2006b).

89

Chapter 3

Time-Stepping Strategies
3.1 Application to Fluid Dynamics . 93

3.2 Case of Study . 95

3.3 Discontinuous Galerkin Projection . 96

3.4 Domain discretisation . 98

3.5 CFL control . 98

3.6 Error Model . 103

3.7 Results . 104

3.8 Discussion . 116

High-order spectral/hp element methods, utilising element-wise polynomial spaces of

order P ≥ 1, are gaining prominence for the efficient discretisation of time-dependent

problems. The exponential convergence of the solution with increasing polynomial or-

der results in lower numerical errors for the same number of degrees of freedom when

compared with linear finite element methods (Karniadakis & Sherwin 2005, Gottlieb &

Orszag 1977). As a consequence, long time-integration can potentially be achieved more

accurately and more efficiently than may be possible with traditional low-order methods.

While the numerical properties of high-order methods for sufficiently smooth solu-

tions are now widely recognised in the asymptotic limit, the choice of discretisation pa-

rameters to achieve a given numerical error in the most computationally efficient manner

are not as effectively understood. Unlike discretizations for linear finite element methods,

those for high-order techniques can be considered a function of both mesh element size

(h) and polynomial order (P), which greatly enriches the space of possible spatial dis-

91

CHAPTER 3

cretizations. Furthermore, the element-wise data locality of these methods has the con-

sequence that traditional operator implementation techniques for low-order finite element

methods, where elemental matrices are coalesced into a single large sparse global matrix,

may not be the most efficient approach when dealing with higher polynomial orders. For

example, local operator implementation using an element-by-element approach has been

shown to be more computationally efficient in two dimensions (Vos et al. 2010) on CPUs,

with the performance difference being more pronounced in three dimensions (Cantwell

et al. 2011b), when using a continuous Galerkin projection. GPUs are more efficient

when there is limited indirection, hence the local element-by-element approach is the best

choice even for linear finite element methods (Markall et al. 2013). Sum-factorisation

(Orszag 1980) exploits the tensor-product nature of the high-order elemental construction

to cast the elemental operations as a sequence of smaller matrix-matrix products which

improves the efficiency still further for very high polynomial orders. As a consequence,

understanding the computational efficiency of these different implementation strategies

and hardware choices across the space of possible discretizations is non-trivial.

With knowledge of the most efficient technique with which to apply an operator for

a specific polynomial order, one might then ask what the optimal choice of discretisa-

tion should be to achieve a given solution accuracy at the minimal computational cost

(Cantwell et al. 2011a). In this case runtime is now a function of both mesh element size

and polynomial order, and there exists a subspace of possible discretizations which satisfy

the error constraint, from which we seek the minimum runtime.

Given a time-dependent problem to solve with a prescribed accuracy on the final so-

lution, we would like to establish the combination of discretisation parameters, operator

implementation and time integration scheme which minimises the solution time. It is

commonly understood that achieving accurate solutions when integrating over long time

periods requires the use of high-order time integration schemes. However, for shorter

time integration periods spatial errors may dominate, so it is important to understand

when high-order schemes are appropriate and when lower order schemes will suffice and

offer the best performance.

As reported in (Bolis et al. 2013), we extend previous mentioned studies by identifying

general trends for the optimal selection of spatial and temporal discretisation for time-

92

TIME-STEPPING STRATEGIES

dependent problems. When integrating in time, the efficiency of the algorithm depends

not just on the implementation of the spatial operator and its cost per application, but also

on the number of time steps needed to reach the desired final time and the cost of each

step. In case for example of explicit time-stepping methods the number of time steps

is related to the discretisation through the CFL condition, which restricts the size of the

time-step based on the eigenspectrum of the discretised spatial operator. The stability

region of the chosen time integration scheme must enclose all eigenvalues of this operator

to ensure numerical stability.

In this study we use a discontinuous Galerkin projection and thus restrict ourselves to

considering the local matrix and sum-factorisation approaches. We also restrict our nu-

merical investigation to a rotating Gaussian transported under a 2D hyperbolic unsteady

linear advection problem on a square domain with upwinded Dirichlet boundary condi-

tions. While this test problem is not necessarily representative of the complexity of typical

fluid-flow applications, it is sufficiently non-trivial to establish basic trends which can be

applied to other more complex PDE problems and will highlight the most important as-

pects of the spatial and temporal discretisation.

3.1 Application to Fluid Dynamics

Computational efficiency, numerical stability and accuracy are fundamental aspects when

solving the equations typical of fluid dynamics, such as the incompressible Navier-Stokes

equations reported in section 2.3. Nevertheless, it is often unpractical to analyse these

numerical features on the problem of interest. In fact, the complexity of the equations

introduces some difficulties in understanding the overall computational characteristics of

a numerical approach. Hence, it is common practice to separately investigate the vari-

ous terms composing the numerical model. When analysing the performance of a single

term of a model, the main task is to reproduce accurately the computational load and the

numerical features of this component as a standalone/reduced problem.

The unsteady linear-advection problem is commonly used to investigate the numer-

ical features of discretisations in case of convective-dominate equations. This problem

93

CHAPTER 3

is also fairly representative of the convective term treatment in many projection algo-

rithms implied in the solution of the incompressible Navier-Stokes equation (Karniadakis

& Sherwin 2005). In fact, the number of operations required at each time-step to perform

the advection calculation does not change from the linear to the non-linear case. This is

because the advection calculation is generally performed in a collocation fashion, hence it

reduces to a vector-vector multiplication after the spatial derivatives have been calculated.

An overview of projection methods for the incompressible Navier-Stokes equations can

be found in (Guermond & Minev 2006).

The projection method we reported in section 2.3.1 is a practical example of how the

convective term is generally treated when incompressible flows are solved decoupling the

velocity field from the pressure field. The explicit time-integration scheme adopted in this

case is a tailored multi-step scheme constructed to fit the needs of the specific projection

method (Karniadakis et al. 1991). However, we can theoretically use any explicit time-

integration scheme to advance in time the Navier-Stokes non-linear term.

At this point we also need to consider the numerical features of our reduced model, i.e.

the unsteady linear-advection equation. Given that it replicates the number of operations

per time-step of the non-linear case, we need also to reproduce the same characteristic in

terms of numerical stability and accuracy on the solution. When explicitly time-stepping

an hyperbolic equation, such as the unsteady advection equation, the first issue we en-

counter is the selection of an appropriate time-integration scheme. The advection opera-

tor deriving from an elemental CG discretisation is characterised by a purely imaginary

eigenspectrum (Karniadakis & Sherwin 2005). To guarantee numerical stability, the sta-

bility region of the explicit scheme must encompass the imaginary axis (we will see it

in more detail in section 3.5). In case of the velocity-correction scheme reported in sec-

tion 2.3.1 the issue is naturally solved by the implicit-explicit time-integration coupling,

which is characterised by an enlarged stability region that includes also the imaginary

axis. To reinforce numerical-stability similarities between the approach adopted in the

velocity-correction scheme and our standalone investigations we chose to apply a discon-

tinuous Galerkin projection. This approach introduces a dumping effect that translates

into a shift of the eigenvalues of advection operator. Therefore, in case of a DG pro-

jection, the eigenvalues are not purely imaginary (Sherwin 2000). As a consequence we

94

TIME-STEPPING STRATEGIES

can perform our investigations using classical explicit time-integration schemes. These

basic time-stepping schemes show a stability region which does not widely encompass

the imaginary axis, as the explicit component of the IMEX scheme in section 2.3.1 would

theoretically do.

Although the whole numerical method we use in this chapter is different from the

numerical approach followed in section 2.3.1, it allows us to highlight the actual issues

regarding computational efficiency. In fact we can reproduce quite accurately:

• the number of operations per time-step;

• the numerical stability constraint deriving from the CFL condition;

• the accuracy features and trends with respect to the spatial discretisation.

In addition, the investigation performed using non-uniform meshes highlights the

practical issues arising in real CFD applications, where some very small elements are

required somewhere in the domain to properly capture the flow features.

3.2 Case of Study

We investigate the relative performance of a second-order Adams-Bashforth scheme and

second- and fourth-order Runge-Kutta schemes when time-stepping a 2D linear advection

problem discretised using a spectral/hp element technique for a range of different mesh

sizes and polynomial orders. Numerical experiments explore the effects of short (2 wave-

lengths) and long (32 wavelengths) time integration for sets of uniform and non-uniform

meshes. The choice of time-integration scheme and discretisation together fixes a CFL

limit which imposes a restriction on the maximum time-step which can be taken to ensure

numerical stability. The number of steps, together with the order of the scheme, affects

not only the runtime but also the accuracy of the solution. Through numerical experi-

ments we systematically highlight the relative effects of spatial resolution and choice of

time integration on performance and provide general guidelines on how best to achieve

the minimal execution time in order to obtain a prescribed solution accuracy. The sig-

nificant role played by higher polynomial orders in reducing CPU-time while preserving

95

CHAPTER 3

accuracy becomes more evident, especially for uniform meshes, compared to what has

been typically considered when studying this type of problem.

The test problem considered is that of the 2D unsteady advection equation on a [−1, 1]2

domain, in which an off-centred Gaussian function is advected about the origin under a

constant rotational divergence-free velocity field V. The problem is mathematically ex-

pressed as
∂u

∂t
+∇ · F (u) = 0, (3.1a)

F (u) = V u, (3.1b)

∇ · V = 0, (3.1c)

V = [2πy,−2πx]$ = [Vx, Vy]
$, (3.1d)

with the exact solution for all times t given by

u(x, y, t) = e−α[(x−β cos 2πt)2+(y−β sin 2πt)2]). (3.1e)

The parameters α and β govern the shape and position of the Gaussian function, re-

spectively. They are fixed at

α = 41, and β = 0.3, (3.2)

in order to produce a Gaussian function with a standard deviation of σ = 0.11, passing

through the domain in a prescribed circle of radius 0.3 centred at the origin. The Gaussian

function attains a maximum value of O(10−9) on the domain boundary when the centre

passes at its closest point, allowing the use of weakly-imposed zero-Dirichlet boundary

conditions on all four edges. We explored the impact of the initial condition/boundary

condition incompatibility issue; after examination, we concluded it does not affect the

results presented in this study. The domain is discretised in space using high-order spec-

tral/hp elements which are briefly described in the following section.

3.3 Discontinuous Galerkin Projection

As with other finite element methods, a domain Ω is decomposed into a set of non-

overlapping elemental regions, Ωe, such that Ω =
⋃

Ωe. We consider only the case of

96

TIME-STEPPING STRATEGIES

conformal meshes. Basic operations, such as differentiation or integration, are carried out

on a reference element Ωst, to which each physical element is mapped using an isopara-

metric coordinate mapping χ : Ωe → Ωst. In two dimensions, this maps the physical

coordinates (x1, x2) of Ωe onto the reference space coordinates (ξ1, ξ2) as mentioned in

section 2.1.3. Within the reference space, a variable u is approximated via an expansion

in terms of a set of N two-dimensional basis functions φn(ξ1, ξ2) as reported in section

2.1.3.4.

We now apply the method of weighted residuals with a Galerkin projection. We derive

a weak formulation of our problem by multiplying Eq. (3.1a) by smooth test functions, v,

and integrating over Ω to arrive at
∫

Ω

v
∂u

∂t
dx+

∫

Ω

v∇ · F (u) dx = 0. (3.3)

Defining PP (Ωe) as the space of polynomials of order P , the discrete approximation

uδ ∈ U δ of the variable u and the discrete approximations of test functions vδ ∈ Vδ,

where

U δ = {u ∈ (L2(Ω))2 : u|Ωe ∈ (PP (Ωe))
2, ∀ Ωe ∈ Ω} (3.4a)

Vδ = {v ∈ (L2(Ω))2 : v|Ωe ∈ (PP (Ωe))
2, ∀ Ωe ∈ Ω}, (3.4b)

we arrive at the equivalent discrete weak formulation,
∫

Ωe

vδ
∂uδ

∂t
dx+

∫

Ωe

vδ∇ · F (uδ) dx = 0, (3.5)

from which a matrix system can be constructed (see (Karniadakis & Sherwin 2005)).

For the discontinuous Galerkin method we require a mechanism for information to

propagate across element boundaries without affecting the stability of the method. Ap-

plying the divergence theorem to the second integral of Eq. (3.5) we obtain
∫

Ωe

vδ
∂uδ

∂t
dx+

∫

∂Ωe

vδF (uδ) · n ds−
∫

Ωe

∇vδ · F (uδ) dx = 0. (3.6)

The coupling is therefore achieved through the boundary fluxes represented by the second

integral in Eq. (3.6). The approach used to calculate these fluxes dictates the stability of

the method. In this study we use an up-wind scheme. Defining uδ
− to be the value of the

solution uδ on the boundary of a given element e and uδ
+ to be the solution on the same

97

CHAPTER 3

boundary of an adjacent element, the boundary flux, denoted with f̃
e
(uδ

−, u
δ
+), is defined

as

f̃
e
(uδ

−, u
δ
+) =

V uδ
−, V · ne ≥ 0,

V uδ
+, V · ne < 0,

(3.7)

where ne denotes the outward-pointing normal to the element. For more details con-

cerning continuous and discontinuous Galerkin formulations and for the case of more

complicated hyperbolic problems (where it may be necessary to use an approximated

Riemann solver) see (Karniadakis & Sherwin 2005, Zienkiewicz et al. 2003, Hesthaven

& Warburton 2008).

3.4 Domain discretisation

The domain Ω = [−1, 1]2 is discretised using a range of quadrilateral meshes of both a

uniform and non-uniform nature. Uniform meshes are structured regular grids of N ×N

elements, where N is in the range 1, . . . , 8. An example is shown in Fig. 3.1(a) for

N = 8. We also consider five non-uniform meshes which contain a mixture of small

and large elements. For these we take the four uniform meshes where N is even and

add a narrow vertical and horizontal band of elements of width h = 0.01 in the centre

of the mesh, an example of which is shown in Fig. 3.1(b). Although this mesh contains

81 elements, for the purpose of comparison we denote this mesh as being non-uniform

N = 8 since it is approximately equivalent to the N = 8 uniform mesh.

The Gaussian function given in Eq. (3.1e) at t = 0 is projected onto each mesh and

used as an initial condition for the simulation. An example is shown in Fig. 3.2 and is the

discretised form of the exact solution on the mesh shown in Fig. 3.1(a) with P = 11.

3.5 CFL control

The stability of an explicit time integration scheme is governed by the CFL condition

(Hirsch 2007). The CFL condition is a stability condition which imposes that the space-

time numerical domain of dependence has to include the analytical one. To formalise the

definition of the CFL condition we consider a one-dimensional hyperbolic equation of the

98

TIME-STEPPING STRATEGIES

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

(a) Uniform Mesh

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

(b) Non-uniformMesh

Figure 3.1: Examples of test meshes used in the study. A uniform mesh with 64 elements (a) and

the equivalent non-uniform mesh (b) with 81 elements. The non-uniform mesh includes a narrow

cross of elements in the centre of the mesh.

Figure 3.2: 2D unsteady advection problem, initial condition projected on 64 uniform elements

with P = 11.

form
∂u

∂t
+ V

∂u

∂x
= 0 (3.8)

discretised in space using a grid∆x and in time with a time-step∆t. Given the definition

of Courant number, which is

C =
V ∆t

∆x
, (3.9)

99

CHAPTER 3

the CFL condition translates into defining the admissible values ofC, which in turn means

selecting ∆x and ∆t such that C ≤ Cmax. When using explicit time-stepping schemes

the numerical stability is guaranteed if Cmax = 1, therefore 0 < C ≤ 1. On the other

hand Cmax can be greater than 1 if we time-step the equation using an implicit schemes.

While the CFL condition can be easily defined and fulfilled in the canonical example

of Eq. (3.8), in real CFD applications the scenario becomes more complex. When moving

from one-dimensional to two- and three-dimensional problems not only the module of

the convective velocity V is important, but also its direction with respect to the spatial

discretisation, which can locally vary. Moreover the spatial discretisation may be not

uniform (e.g. non-uniformly discretised elemental approaches) making difficult to decide

what is the actual value of ∆x. In addition, when using an elemental discretisation, also

the shape of the elements plays a role in defining the actual CFL restriction (Karniadakis

& Sherwin 2005).

As reported in (Karniadakis & Sherwin 2005), when we are dealing with a non trivial

spatial discretisation such as the spectral/hp element method, the CFL condition can be

rewritten as

∆t ≤ C
α

|λdom|
. (3.10)

In this relation α represents the value obtained at the intersection of the stability regions

of the time-integration scheme with the dominating eigenvalue (λdom) of our spatial op-

erator, i.e. the advection operator. We also introduced C, which plays the role of the

Courant number. For the advection operator the value of λdom is a function of the dis-

cretisation itself, the convective velocity and the time-integration scheme we are using.

For the spectral/hp element method it is recognised that |λdom| = f (V , h, P), where both

the module and the direction of the convective velocity V are important (Karniadakis &

Sherwin 2005). The value of∆t can be interpreted as rescaling the stability region of the

time-integration scheme and it can be written more formally as

∆t = C inf
j

{

α(θj)

rj
: λj = rje

θj ∈ Λ

}

, (3.11)

where C is conceptually similar to the Courant number (stability is assured if 0 < C ≤

1), Λ is the eigenspectrum of the discrete spatial operator and α(θj) denotes the distance

from the origin of the boundary of the stability region of the time-integration scheme

100

TIME-STEPPING STRATEGIES

along the azimuthal of the jth eigenvalue. The bound imposed by ∆tmax for C = 1 en-

sures the stability region is large enough to enclose all the eigenvalues of spatial operator.

Selecting C < 1 we introduce a safety margin, reducing ∆t even more and therefore

making the stability region even larger.

In common practice the required ∆t is estimated numerically via an algorithm which

approximates the actual imposition of the CFL condition. The reason for that is because

a precise evaluation of the CFL condition is computationally too expensive. In fact the

eigenvalues calculation of the spatial operator may become prohibitive, especially for

non-linear hyperbolic problems typical of CFD applications, where the operator varies

at each time-step. There are many algorithmic variants for the CFL condition estimator

which depend on the spatial discretisation technique adopted and on the desired level of

accuracy on the estimation of the required time-step. They are generally based on the

local (elemental) evaluation of the CFL condition using an approximate value for |V | and

an approximate value for ∆x. Other approaches exist and they are based on the empir-

ical evaluation of Λ to directly apply Eq. (3.10). Attempts have been made to under-

stand the behaviour of the eigenspectrum for spectral/hp element methods with respect to

changes in the discretisation. Sherwin (Sherwin 2000) investigated (semi-analytically)

the behaviour of the 1D hyperbolic equation, discretised with continuous and discontinu-

ous Galerkin methods, showing that discontinuous projections have significant damping

effects at high frequencies. Karniadakis and Sherwin (Karniadakis & Sherwin 2005)

indicate a growth rate of the maximum eigenvalue proportional to P 2 for two-dimensional

meshes, both for CG and DG projections. Warburton (Warburton 1999, Warburton et al.

1999) performed a study to understand the trend of the eigenvalues for 2D hyperbolic

problems and DG projections which showed similar results.

In any case the output of this type of algorithm is generally a value for the admis-

sible ∆t, assuming C = 1. Selecting C = 1 is theoretically the most efficient choice,

in fact it translates into selecting the biggest admissible time-step ∆tmax after the spatial

discretisation has been fixed. Nevertheless, because of the non-precise nature of these

algorithms, the CFL condition is never exactly fulfilled and the resulting time-step is just

an approximation of ∆tmax. Depending on the algorithm approximation technique and

on the specific problem, the resulting ∆tmax could be not small enough to enforce nu-

101

CHAPTER 3

merical stability. Therefore, is common practice to select a value of C which is smaller

than 1, to introduce a safety margin (the value can vary from case to case). In fact, reduc-

ing C translates into proportionally reducing the ∆tmax deriving from the approximate

evaluation of the CFL condition. This approach is often adopted by CFD practitioners

and the maximum value of C for which numerical stability is achieved is often called the

maximum CFL number for the specific simulation.

In this study we do not use any approximate algorithm but we evaluate precisely the

value of ∆tmax to enforce numerical stability for each one of the accounted discretisa-

tions, therefore always selecting C = 1. Since we are not approximating the imposition

of the CFL condition, we do not need any safety margin, i.e. the maximum CFL number

is always 1 for our simulations.

The first step is to express the semi-discrete system in Eq. (3.5) in terms of the coeffi-

cients as
d

dt
u = Au, (3.12)

where A represents the discretisation of the linear advection operator and u is the vector

of expansion coefficients. The temporal derivative is discretised using three explicit time

integration schemes. The first method is the multi-step second-order Adams-Bashforth

(AB2) scheme. We also consider both the second- and fourth-order explicit Runge-Kutta

schemes (RK2 and RK4) described by the following Butcher tables:

0 0 0

1 1 0

1
2

1
2

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

(3.13)

To maintain numerical stability, the eigenvalue spectrum ofAmust lie within the stability

region of the chosen time-integration scheme.

For each of the test cases considered in this study, the full eigenspectrum of the weak

advection operator A has been calculated using LAPACK (Anderson et al. 1999). Fig.

3.3 shows examples of the eigenvalue spectrums for uniform and non-uniform meshes

102

TIME-STEPPING STRATEGIES

at P = 7. While the eigenvalue distribution may show a predictable trend, as discussed

above, we use the values calculated by LAPACK for implementing the CFL condition,

computing for each numerical simulation the restriction on ∆t as reported in Eq. (3.11).

In Fig. 3.3(b) we also show the stability region of the fourth-order Runge-Kutta

scheme, scaled by ∆tmax to minimally enclose the eigenvalue distribution of the spa-

tial operator constructed on the non-uniform mesh in Fig. 3.1(b). As is apparent in the

figure, the dominating eigenvalue λdom which is in closest proximity to the boundary of

the rescaled stability region of the scheme may not necessarily be those having maximum

modulus or real part, due to the shape of the stability region itself.

-4000

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

-4000 -3000 -2000 -1000 0

Im

Re

(a) Uniform Mesh

-4000

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

-4000 -3000 -2000 -1000 0

Im

Re

(b) Non-uniformMesh

Figure 3.3: Eigenvalues distributions with P = 7 for (a) the uniform mesh shown in Fig. 3.1(a)

and (b) the non-uniform mesh shown in in Fig. 3.1(b). For the non-unifrom case the stability

region for the fourth-order Runge-Kutta scheme is shown, scaled to encompass the eigenvalues

distribution.

3.6 Error Model

In order to better understand which aspects of the spatial and temporal discretisation lead

to errors in the solution, along with their relative contribution, we introduce the following

model to describe the total error ε:

ε = f(

spatial
︷ ︸︸ ︷

C1(h, P),

dispersion/diffusion
︷ ︸︸ ︷

C2(h, P)K(q,∆t, T),

temporal truncation
︷ ︸︸ ︷

C3(q,∆t, T)). (3.14)

103

CHAPTER 3

Eq. (3.14) is composed of three terms, denoting different sources of error, and the simu-

lations outlined in the remainder of this section aim to assess the relative contributions of

each of these throughout the parameter space. The first term, εp = C1(h, P), represents

the projection error, that is the contribution due to the projection of the initial condition

onto the discrete space. This term is time independent and occurs once at the beginning

of the time integration; it is therefore only a function of the discretisation. The third

term εt = C3(q,∆t, T) is the truncation error introduced when discretising the temporal

derivative. This error is not directly dependent on the chosen spatial discretisation, but

depends on the order of the time-integration scheme used (indicated by q), the time-step

∆t, and the final time, T . The remaining term accounts for the dispersion/diffusion error

of the method and numerical errors associated with multiple applications of the spatial op-

erator. This term couples the spatial and the temporal discretisation, where K(q,∆t, T)

is the number of applications of the spatial operator, which may vary from scheme to

scheme, as well as due to the size and number of time steps taken.

3.7 Results

We present results obtained through numerical experiments. The simulations have been

run in serial on a 64-bit Mac Pro using a 2.26GHz Quad-Core Intel Xeon E5520 processor

(8MB of L3 cache) and 16GB of RAM. The operating system was OSX with a 10.8 Dar-

win kernel. All tests were performed using the Nektar++ spectral/hp element framework

version 3.1.0 (Kirby & Sherwin 2006b). The Accelerate Framework provided with OSX

was used for BLAS operations.

3.7.1 Projection Error εp

The first source of error in all tests is the projection error introduced when the infinite-

dimensional initial function is projected onto the finite-dimensional discrete space through

a discontinuous Galerkin approximation. This error is computed as εp = ||u − uδ||L2
,

where u and uδ denote the analytic function and discrete representation, respectively.

This is depicted in Fig. 3.4 which shows the error for both uniform and non-uniform

104

TIME-STEPPING STRATEGIES

meshes.

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10-2 10-4 10-6 10-8 10-10
2
/h

P

(a)

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10-2 10-4 10-6 10-8 10-10
2
/h

P

(a)

 2

 4

 6

 8

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10-2 10-4 10-6 10-8 10-10

P

(b)

 2

 4

 6

 8

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10-2 10-4 10-6 10-8 10-10

P

(b)

Figure 3.4: L2 projection error, εp, of the initial Gaussian function onto spectral/hp element dis-

cretisations using (a) uniform meshes, and (b) non-uniform meshes. Gridline intersections indicate

possible (h, P) discretisations.

The format of these plots shows increasing number of elements 2/h on the y-axis,

with increasing polynomial order P of the expansion used on each element along the x-

axis. Although the data are discrete, we plot them in a continuous form for the benefit of

analysis. Here h corresponds to the size of each element in both coordinate directions.

The isolines denote constant εp where bold lines denote orders of magnitude. This nota-

tion will be used throughout the remaining figures in this paper to represent constituents

of the solution error. For highly refined discretisations, projection errors may be as low

as εp = 10−10. Below an error of 10−3 it can be seen that doubling the polynomial order

decreases the error by a significantly greater magnitude than doubling the number of ele-

ments. This highlights the improved convergence properties of high-order discretisations.

For non-uniform meshes, y − axis values are set to correspond to the uniform mesh

they approximate. For example, a non-uniform mesh with 81 elements corresponds to

a uniform mesh of 64 elements with the additional 17 elements arising from the narrow

strips of elements in the centre of the mesh, and would be represented by 2/h = 8 on

the non-uniform plots, as can be seen in Fig. 3.1. The coarsest non-uniform mesh is that

consisting of 9 elements, corresponding to the 4-element uniform mesh. There are few

differences in the magnitude of the projection error on non-uniformmeshes in comparison

105

CHAPTER 3

to the uniform equivalents. The only notable difference is for few elements and low

polynomial order where the narrow elements provide an increase in projection accuracy.

(a) (2/h, P) = (2, 4) (b) (2/h, P) = (4, 7) (c) (2/h, P) = (8, 11)

Figure 3.5: Qualitative representation of the 2D advection problem initial projection. The three ex-

amples are showing the gaussian approximation at different levels of accuracy for uniform meshes,

where (a) εp = 10−1 (b) εp = 10−3 (c) εp = 10−8.

3.7.2 Effects of Time-integration on the Total Error ε

We now investigate how the choice of time integration scheme affects the L2-error. Ad-

ditionally, for each of the three schemes, we will consider two durations of integration

in order to help assess when the error introduced by a given scheme becomes important.

Short time integration is understood to be integration to a final time of T = 0.25, corre-

sponding to the Gaussian being advected for a quarter of a rotation around the domain and

equivalent to a distance of approximately two widths of the bump. Long time integration

equates to integration to a final time of T = 4.00, corresponding to four cycles around the

domain and therefore approximately thirty-two wavelengths.

3.7.2.1 Uniform Meshes

Fig. 3.7 summarises these tests for uniform meshes using the local elemental matrix ap-

proach for operator evaluations. The left column of plots in this figure correspond to short

time integration while the right column shows results for long time integration. The con-

tours of error now correspond to the total error ε accumulated throughout the simulation.

In addition, we overlay contours of CPU time. We measure only the time-integration

106

TIME-STEPPING STRATEGIES

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

2/
h

P

(a)

10
-2

10
-3

10
-2

10
-3

10
-1

10
-2

10
-3

AB2
RK2
RK4

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
P

(b)

10
-3

10
-4

10
-3

10
-3

AB2
RK2
RK4

Figure 3.6: Maximum time-step (∆tmax) as dictated by the CFL constraint (C = 1) for (a)

uniform and (b) non-uniform meshes using second-order Adams-Bashforth (AB2), second- and

fourth-order Runge-Kutta (RK2 and RK4) schemes.

portion of the total execution, discounting setup costs and I/O. Given a prescribed error

tolerance, one now seeks to find a discretisation which achieves this tolerance in the min-

imal CPU time. This corresponds precisely to the (h, P) combination of minimal runtime

which lies on, or to the right of, the chosen error contour. Such minima are denoted by

black connected circles, highlighting the optimal path to follow to reduce error at minimal

computational cost.

The first observation is that while solution accuracy is comparable across all time

integration schemes on coarse meshes, the fourth-order Runge-Kutta scheme achieves

far greater accuracy on finer meshes than the second-order schemes. Integrating over

long time periods leads to a greater relative increase in error for refined meshes than

for coarse meshes across all time integration schemes. These two regimes correspond

to where temporal and spatial errors dominate; this will be explored more precisely in

section 3.7.4.

CPU time clearly increases with longer time integration. The time-step used in each

test is chosen at the limit of the CFL condition, C = 1, and is reported in Fig. 3.6.

The choice of C derives from the assumption that we do not have a priori knowledge of

the initial condition and therefore all eigenvectors could potentially be energised. While

107

CHAPTER 3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-210-310-4 10-5

2
/h

(a)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-210-310-4 10-5

2
/h

(a)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-210-310-4 10-5

2
/h

(a)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-210-310-4 10-5

2
/h

(a)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
100

101

10-1 10-2 10-3 10-4

C
P

U
 t

im
e

[s
]

(b)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
100

101

10-1 10-2 10-3 10-4

C
P

U
 t

im
e

[s
]

(b)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
100

101

10-1 10-2 10-3 10-4

C
P

U
 t

im
e

[s
]

(b)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
100

101

10-1 10-2 10-3 10-4

C
P

U
 t

im
e

[s
]

(b)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-210-3 10-4 10-5

2
/h

(c)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-210-3 10-4 10-5

2
/h

(c)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-210-3 10-4 10-5

2
/h

(c)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-210-3 10-4 10-5

2
/h

(c)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
100

101

10-1 10-2 10-3

C
P

U
 t

im
e

[s
]

(d)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
100

101

10-1 10-2 10-3

C
P

U
 t

im
e

[s
]

(d)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
100

101

10-1 10-2 10-3

C
P

U
 t

im
e

[s
]

(d)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
100

101

10-1 10-2 10-3

C
P

U
 t

im
e

[s
]

(d)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
10-1

100

101

10-2 10-4 10-6 10-810-9

2
/h

P

(e)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
10-1

100

101

10-2 10-4 10-6 10-810-9

2
/h

P

(e)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
10-1

100

101

10-2 10-4 10-6 10-810-9

2
/h

P

(e)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
10-1

100

101

10-2 10-4 10-6 10-810-9

2
/h

P

(e)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
100

101

10-1 10-2 10-4 10-6 10-8

C
P

U
 t

im
e

[s
]

P

(f)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
100

101

10-1 10-2 10-4 10-6 10-8

C
P

U
 t

im
e

[s
]

P

(f)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
100

101

10-1 10-2 10-4 10-6 10-8

C
P

U
 t

im
e

[s
]

P

(f)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
100

101

10-1 10-2 10-4 10-6 10-8

C
P

U
 t

im
e

[s
]

P

(f)

10-2

Figure 3.7: Isolines of L2 error (solid red) and CPU time (dotted blue) for second-order Adams-

Bashforth (a,b), second-order Runge-Kutta (c,d) and fourth-order Runge-Kutta (e,f), at times T =

0.25 (a,c,e) and T = 4.00 (b,d,f). All plots are for uniform meshes using the local matrix operator

implementation. Black circles denote the optimal (h, P)-discretisation for the the contours of

error where the minimum lies within the explored parameter space.
108

TIME-STEPPING STRATEGIES

Fig. 3.6(a) shows that ∆tmax clearly depends on both h and P for uniform meshes,

Fig. 3.6(b) highlights that for non-uniform meshes the maximum timestep is almost inde-

pendent of h for the parameter space considered. It is apparent that for uniform meshes

Runge-Kutta schemes support a larger time-step than Adams-Bashforth. For example,

for P = 8 and 2/h = 4, the second-order Adams-Bashforth scheme requires a timestep

≈ 10−3 while the fourth-order Runge-Kutta scheme requires only≈ 10−2.5. However, the

fourth-order Runge-Kutta scheme supports only a slightly larger timestep than its second-

order counterpart, particularly on coarse meshes

From the contours in Fig. 3.7 we note that for highly accurate solutions the only feasi-

ble strategy is to use a high-order discretisation and a high-order time integration scheme

together to reduce projection and temporal truncation errors. Even if larger time-steps

can be used with the fourth-order Runge-Kutta scheme, it remains slightly more compu-

tationally expensive overall than the second-order version since each step requires more

work per time-step. Therefore, if we have a high tolerance of errors (for example, 10−1) a

second-order time integration scheme using a lower-order discretisation obtains the result

in less time than a higher-order scheme, even for the long time period investigated.

We now highlight those (h, P)-combinations which achieve the lowest runtime for

each order of magnitude in solution error. These optimal discretisations do not show

a clear pattern, but in general to achieve a more accurate solution over long times with

second-order time integration schemes the trend suggests that increasing polynomial order

offers the most effective strategy. This makes sense, since dispersion errors from repeated

application of the operators will decrease exponentially with increasing P . For short

times, the total error has a lower temporal component so a more balanced increase in mesh

refinement and polynomial order gives the best performance by reducing projection error

(i.e. moving normal to the contours of εp). The fourth-order scheme suggests that for long

time periods increasing mesh element density (h-refinement) is the best approach, but

such a conclusion may be considered misleading since the CPU time and error contours

are essentially parallel in this region of the parameter space.

109

CHAPTER 3

3.7.2.2 Non-uniform Meshes

Introducing non-uniformity into the mesh has the most apparent effect on coarse meshes

where the small elements impose a much stronger restriction on the CFL limit, and there-

fore the time step, than would otherwise be the case. This is shown in Fig. 3.8, where

CPU time is significantly higher for coarse discretisations than in the equivalent plots for

uniform meshes in Fig. 3.7. The increase is less pronounced on finer meshes since the

disparity of element sizes is reduced. As a consequence of this change, the choice of opti-

mal discretisation on non-uniform meshes is typically in the fine-mesh, low-order range.

In contrast to the uniform case, to improve accuracy in the solution the best strategy for

non-uniform meshes is to increase mesh refinement. For smaller error tolerances Fig. 3.8

suggests increasing P is the optimal strategy, however this is purely an artificial conse-

quence of the finite bounds imposed on the parameter-space of this study. It should be

noted that, even at ε = 10−2, the discretisation giving minimum CPU time uses P ≥ 4

which is significantly higher than most conventional finite element methods.

3.7.3 Operator Implementation

So far we have only assessed performance using the local elemental matrix approach for

performing matrix-vector multiplications. In this case applications of the explicit matrix

operators are performed using a block-diagonal matrix, where each block corresponds to

the operator on a single element of the domain. In this section we present performance us-

ing the sum-factorisation technique (Orszag 1980). The local elemental matrix approach

was shown to be efficient in the continuous Galerkin case for intermediate polynomial

orders (P ≈ 4 to P ≈ 7) while at higher polynomial orders sum-factorisation is found to

be more efficient (Vos et al. 2010, Cantwell et al. 2011b,a).

In both approaches the operations are performed elementally and afterward the ele-

mental contributions are assembled throughout the assembly procedure described in sec-

tion 2.1.3.2. In order to highlight the differences between the two techniques we consider

the elemental operator B, which reconstructs the physical representation of the variable

u(x, y) from the expansion basis coefficients û, as

u(x, y) = Bû. (3.15)

110

TIME-STEPPING STRATEGIES

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

101

10-210-310-410-5

2
/h

(a)

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

101

10-210-310-410-5

2
/h

(a)

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

101

10-210-310-410-5

2
/h

(a)

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

101

10-210-310-410-5

2
/h

(a)

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1 10-210-3 10-4

C
P

U
 t

im
e

[s
]

(b)

10-1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1 10-210-3 10-4

C
P

U
 t

im
e

[s
]

(b)

10-1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1 10-210-3 10-4

C
P

U
 t

im
e

[s
]

(b)

10-1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1 10-210-3 10-4

C
P

U
 t

im
e

[s
]

(b)

10-1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

101

10-210-310-4 10-5

2
/h

(c)

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

101

10-210-310-4 10-5

2
/h

(c)

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

101

10-210-310-4 10-5

2
/h

(c)

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

101

10-210-310-4 10-5

2
/h

(c)

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1 10-210-3 10-4

C
P

U
 t

im
e

[s
]

(d)

10-1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1 10-210-3 10-4

C
P

U
 t

im
e

[s
]

(d)

10-1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1 10-210-3 10-4

C
P

U
 t

im
e

[s
]

(d)

10-1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1 10-210-3 10-4

C
P

U
 t

im
e

[s
]

(d)

10-1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
101

10-2 10-4 10-6 10-8 10-10

2
/h

P

(e)

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
101

10-2 10-4 10-6 10-8 10-10

2
/h

P

(e)

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
101

10-2 10-4 10-6 10-8 10-10

2
/h

P

(e)

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
101

10-2 10-4 10-6 10-8 10-10

2
/h

P

(e)

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1 10-2 10-4 10-6 10-810-9
C

P
U

 t
im

e
[s

]

P

(f)

10-1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1 10-2 10-4 10-6 10-810-9
C

P
U

 t
im

e
[s

]

P

(f)

10-1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1 10-2 10-4 10-6 10-810-9
C

P
U

 t
im

e
[s

]

P

(f)

10-1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1 10-2 10-4 10-6 10-810-9
C

P
U

 t
im

e
[s

]

P

(f)

10-1

Figure 3.8: Isolines of L2 error (solid red) and CPU time (dotted blue) for second-order Adams-

Bashforth (a,b), second-order Runge-Kutta (c,d) and fourth-order Runge-Kutta (e,f), at times T =

0.25 (a,c,e) and T = 4.00 (b,d,f). All plots are for non-uniform meshes using the local matrix

operator implementation. Black circles denote the optimal (h, P)-discretisation for the contours

of error where the minimum lies within the explored parameter space.
111

CHAPTER 3

In case we use a local elemental matrix approach, B is a precomputed matrix which we

can directly apply to the vector û. Disregarding the transformation from real to reference

space for simplicity, this matrix can be conceptually precomputed as

B =

φ0(x0, y0) φ1(x0, y0) · · · φn(x0, y0)

φ0(x0, y1) φ1(x0, y1) · · · φn(x0, y1)
...

φ0(xQ, yQ) φ1(xQ, yQ) · · · φn(xQ, yQ)

, (3.16)

where φn(x, y) = φp(x)φq(y) is the two-dimensional tensorial expansion basis described

in section 2.1.3.4 and (xQ, yQ) is the two-dimensional quadrature points grid.

The result obtained by applyingB to û can be equally achieved via the sum-factorisation

technique. Following this approach we do not perform a matrix-vector multiplication, it

is in fact a matrix-free technique. The sum-factorisation technique takes advantage of the

tensorial nature of both the expansion basis and the quadrature point grid and the operator

application translates in

u(xi, yj) =
P
∑

p=0

φp(xi)
{ P
∑

q=0

φq(yj)ûpq

}

(3.17)

where the right-side summation is performed first.

In Figure 3.9 we present timings for uniform meshes and the sum-factorisation tech-

nique. These confirm the findings in the literature are also valid for the discontinuous

Galerkin case. Furthermore, the optimal discretisations for all error tolerances now lie in

the coarse-mesh, high-order regime, since this is the parameter range in which the tech-

nique is most efficient. Discussion of this aspect is covered in the literature so we do not

consider it further here.

3.7.4 Spatial/temporal dominance

To further understand the relative contributions of the remaining terms in Eq. (3.14),

we measure the error (κ) in the solution when using a Courant number of C = 0.1.

This has the effect of reducing the time-step by an order of magnitude and consequently

we can consider the truncation error, κt = C3(q,∆t, T) to be small or negligible. The

remaining error arises from the projection error, κp ≡ εp, and the dispersion error, κd ≈

112

TIME-STEPPING STRATEGIES

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-2 10-4 10-5

2/
h

(a)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-2 10-4 10-5

2/
h

(a)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-2 10-4 10-5

2/
h

(a)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-2 10-4 10-5

2/
h

(a)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

100

102

10-1 10-2 10-3 10-4

C
P

U
 t

im
e

[s
]

(b)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

100

102

10-1 10-2 10-3 10-4

C
P

U
 t

im
e

[s
]

(b)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

100

102

10-1 10-2 10-3 10-4

C
P

U
 t

im
e

[s
]

(b)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

100

102

10-1 10-2 10-3 10-4

C
P

U
 t

im
e

[s
]

(b)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-2 10-4 10-5

2
/h

(c)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-2 10-4 10-5

2
/h

(c)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-2 10-4 10-5

2
/h

(c)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-2 10-4 10-5

2
/h

(c)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

100

102

10-1 10-2 10-3

C
P

U
 t

im
e

[s
]

(d)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

100

102

10-1 10-2 10-3

C
P

U
 t

im
e

[s
]

(d)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

100

102

10-1 10-2 10-3

C
P

U
 t

im
e

[s
]

(d)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

100

102

10-1 10-2 10-3

C
P

U
 t

im
e

[s
]

(d)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-2 10-4 10-6 10-810-9

2
/h

P

(e)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-2 10-4 10-6 10-810-9

2
/h

P

(e)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-2 10-4 10-6 10-810-9

2
/h

P

(e)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

10-1

100

101

10-2 10-4 10-6 10-810-9

2
/h

P

(e)

10-2

10-3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
100

10-1 10-2 10-4 10-6 10-8

C
P

U
 t

im
e

[s
]

P

(f)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
100

10-1 10-2 10-4 10-6 10-8

C
P

U
 t

im
e

[s
]

P

(f)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
100

10-1 10-2 10-4 10-6 10-8

C
P

U
 t

im
e

[s
]

P

(f)

10-2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
100

10-1 10-2 10-4 10-6 10-8

C
P

U
 t

im
e

[s
]

P

(f)

10-2

Figure 3.9: Isolines of L2 error (solid red) and CPU time (dotted blue) for second-order Adams-

Bashforth (a,b), second-order Runge-Kutta (c,d) and fourth-order Runge-Kutta (e,f), at times T =

0.25 (a,c,e) and T = 4.00 (b,d,f). All plots are for uniform meshes using the sum-factorisation

technique. Black circles denote the optimal (h, P)-discretisation for the contours of error where

the minimum lies within the explored parameter space.
113

CHAPTER 3

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

2
/h

P

(a)

AB2 T = 0.25

RK2 T = 0.25

RK4 T = 0.25
 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14
P

(b)

AB2 T = 4.00

RK2 T = 4.00

RK4 T = 4.00

Figure 3.10: Influence zones for uniform meshes and the three time-integration schemes consid-

ered for (a) short time integration, and (b) long time integration. Lines indicate κ/ε = 1, where

κ corresponds to the error when using C = 0.1. Discretisations where the spatial error dominates

are to the lower-left of the line while to the upper-right temporal error dominates.

εd, introduced through the repeated application of the spatial operators. This enables us

to identify for which discretisations the ratio of κ/ε ≈ 1, where we recall that ε is the

error with C = 1. For κ/ε > 1 we have that the spatial error is dominating and where

κ/ε < 1 temporal errors dominate. Figure 3.10 summarises this data for the three time

integration schemes. The lines indicate the boundary between the spatial and temporal

error dominance. The region to the left of a given line indicates discretisations for which

the dominant error is due to spatial inaccuracy, while the region to the right corresponds

to temporal error dominating.

As expected, the error from using fourth-order Runge-Kutta is predominantly spa-

tially dominant unless using refined high-order discretisations. This is consistent with the

earlier analysis, indicating the one should increase P for optimal execution time given a

desired accuracy. For both second-order schemes the break-even point occurs with much

coarser discretisations. Over longer time integration the region of temporal dominance

extends further towards coarser meshes and lower polynomial orders. This is a conse-

quence of the additional dispersion error introduced by the order of magnitude increase in

the number of time-steps taken to reach the same final time. Although the spatial/temporal

dominance is qualitatively predictable, it is interesting to remark how those regions are

114

TIME-STEPPING STRATEGIES

actually shaped in the (h, P)-plane and where their boundaries are located for the specific

case.

3.7.5 Performance prediction

The ability to predict the time required for a simulation depends on the accuracy when

forecasting the eigenvalues distribution of the weak advection operator, given that a direct

calculation is often prohibitive in real applications. In order to enhance the understanding

of the CFL restrictions which govern our simulations, we investigate the spectrum of

A for regular meshes. Our intention is to recognise a trend in the growth rate of the

eigenvalues with respect to (h, P) and then predict ∆tmax using Eq.(3.11).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

|λ
d
o
m

|

P

2/h

Actual values
Model values

Figure 3.11: Dominant eigenvalue magnitude for uniform meshes. Actual values obtained using

LAPACK (solid lines) are compared with the estimate (dashed lines) of Eq.(3.18).

We asses this by monitoring, during our numerical experiments, the actual magnitude

|λdom| of the eigenvalue which dominates the stability of the scheme. For regular meshes

the eigenvalue which quantifies the CFL restriction appears to be the one showing the

minimum real part, i.e. θj = π. We model |λdom| growth rate as

|λdom| ≈ B
(

h−1/2P 2 + h−1/4P
)

≈ B̃P 2. (3.18)

Throughout a calibration process we extractB = 9.6265. Figure 3.11 shows a comparison

115

CHAPTER 3

between the actual values of |λdom| and the model predictions. Although Eq.(3.18) is a

rough estimate of |λdom|, the discrepancies between the forecasted and actual values are

always less than 20%. The maximum error appears for high values of P , where the model

overestimates the eigenvalue magnitude.

The model reported in Eq.(3.18), although problem specific, is consistent with what

is anticipated in (Karniadakis & Sherwin 2005), where |λdom| growth rate was identified

as being proportional to P 2 for a weak advection operator. Provided that ∆tmax can be

estimated using Eq.(3.18) and Eq.(3.11), we can know beforehand the CPU-time required

for a specific (h, P, T) combination.

3.8 Discussion

In this chapter we have systematically assessed the relative importance of discretisation

and time-integration scheme when targeting minimal runtime. The spatial discretisation

and time integration schemes both impose restrictions on the overall accuracy of the so-

lution, but their relative error contributions will vary depending on the exact choice of

discretisation parameters chosen. All the results demonstrate there are substantial bene-

fits for using high-order methods for transient problems, while also highlighting some of

the subtleties in choosing optimal discretisations to minimise runtime.

For each time integration scheme and specific choices for the final time T , we have

identified the region in the (h, P)-plane for which the error in the solution is primarily

due to the underlying inaccuracy of the spatial discretisation rather than a consequence

of time integration. Outside this region, typically for more refined discretisations, time

integration errors are the dominant cause of solution error. These divisions naturally differ

for the three time integration schemes with the spatially dominant zone extending to finer

discretisations for high-order time integration schemes, compared with the lower-order

counterparts. A consequence of this is that higher-order time integration schemes offer

no advantage over their computationally less-expensive lower-order counterparts if the

solution error at the chosen discretisation is spatially dominated under both schemes.

The choice of the time-integration scheme therefore requires careful consideration.

In particular, we have noted that for short-time integration and for error tolerances down

116

TIME-STEPPING STRATEGIES

to 10−3, high-order time integration schemes, such as the fourth-order Runge-Kutta, are

not competitive for our 2D advection test problem. Second-order Adams-Bashforth and

second-order Runge-Kutta achieve the same solution accuracy in lower runtimes in these

cases. However, achieving highly accurate solutions typically requires a high-order dis-

cretisation, and therefore a high-order time-integration scheme, in order to keep both the

spatial and temporal error contributions sufficiently small. Furthermore, over long time-

integration periods, the shift in the break-even point between spatially and temporally

dominated zones dictates that high-order time integration schemes are more important for

maintaining overall solution accuracy.

High-order methods offer exponential reduction in error with increasing polynomial

order. Increasing P should therefore offer a more attractive approach to increasing the

solution accuracy than refining the mesh. This is evident in some of the uniform mesh

results, particularly for long time-integration periods. The second-order schemes show

significant variation in CPU time along a given error contour and the path of minima is

predominantly in the direction of increasing P .

In changing the elemental polynomial order, the choice of implementation strategy for

matrix-vector operations requires consideration. For continuous Galerkin the literature

highlights the use of a whole-domain global matrix approach for low polynomial orders,

a local elemental block-matrix approach for intermediate orders and the local elemen-

tal sum-factorisation approach for higher orders. The exact break-even points between

these different strategies is of course dependent on the element type and performance

of the computational hardware, but general observations can be made. We confirm a

similar trend is true for discontinuous Galerkin projections for the local elemental and

sum-factorisation strategies.

We conclude with a discussion of the effect of element-size diversity on the time step

and consequently the selection of spatial and temporal discretisation for optimal perfor-

mance. Variation in size and advection velocity across mesh elements dictates the spread

of the eigenspectrum of the spatial operator, with smaller size-to-velocity ratios leading

to greater magnitude eigenvalues. This leads to a more restrictive time step in order to en-

close the entire eigenspectrum inside the stability region of the time-integration scheme.

In general, accuracy on uniform meshes can be best achieved using a high-order discreti-

117

CHAPTER 3

sation, and best improved through further increasing the polynomial order. While high-

order discretisations are still effective for the non-uniform meshes considered, the most

efficient way to increase accuracy is to reduce the size of the larger elements, thereby

essentially converging towards a uniform mesh. This aligns with the common wisdom

that h-refinement is most appropriate on meshes where there is a significant disparity in

element size. Furthermore it also raises the possibility of variable polynomial order usage

which was not explored in this study.

Finally, there is a common understanding that high-order methods generally lead to

stringent CFL limitations, due to the eigenvalues of the spatial operators growing as a

polynomial power of P . However, we have shown that even for a coarse error tolerance

on the solution, high-order methods often become the most efficient choice. This is due to

the accuracy of the solution increasing faster than the stability requirements limit the time

step. Consequently high-order methods offer substantial performance over their linear-

order counterparts for transient simulations.

As we stated from the outset, the absolute numerical values presented in this chap-

ter are code dependent and will also vary along with the nature of the problem, size of

the problem and the machine used. However, the numerical experiments highlight some

general trends and the results support the common wisdom that high-order methods are

particularly important for long and accurate time integration.

118

Chapter 4

Parallelisation Strategies
4.1 Application to Fluid Dynamics . 120

4.2 Algorithm Overview . 125

4.3 Parallelisation Approaches . 129

4.4 Test Cases . 143

4.5 Scalability Model . 145

4.6 Numerical Experiments . 159

4.7 Discussion . 166

The fast development of super-computers forces software designers to make a continuous

effort to keep algorithms up-to-date and able to exploit all the benefits coming from hard-

ware innovation. In the last decade investigations of numerical schemes, parallelisation

paradigms and algorithm efficiency have been fundamental to push the limits forward.

Parallelisation strategies usually depend on the applications (nature and size of the prob-

lem), the hardware and the numerical methods involved in the solution of the problem.

Predicting the scalability and efficiency of an algorithm on a specific architecture is not

trivial, as demonstrated by the seminal work of Gruma et al. in 1993 (Grama et al.

1993). In this chapter we discuss how a sensible and flexible implementation can be used

to achieve higher levels of parallelism and efficiency when solving the three-dimensional

Navier-Stokes equations. Although the following results, techniques and considerations

might be applied to other engineering problems, we focus on the solution of incompress-

ible flows using the velocity-correction scheme described in section 2.3.

In section 4.1 we give a brief overview of the role played by parallel computing in

119

CHAPTER 4

CFD applications. Subsequently, in section 4.1.1 we recall some relevant work on the

topic, in particular those which are at the base of our studies. In section 4.1.2 we state

the objectives and the investigation philosophy of our study. After these introductory sec-

tions we present, in section 4.2, the building blocks of the incompressible Navier-Stokes

algorithm. In this part we describe, from an algorithmic point of view, the main steps

required to advance in time the velocity correction scheme reported in section 2.3. In

particular, we restrict our attention to the time-stepping cycle. In section 4.3 we introduce

the actual parallelisation of the algorithm. Initially, we describe in detail the two basic

parallelisation approaches mentioned in section 4.1.1, highlighting their practical issues.

Afterward we show how to combine these techniques to attain a hybrid parallelisation

approach. Section 4.4 describes briefly the test cases which will be used to perform nu-

merical experiments and the machine specifications. In section 4.5 we present the steps

to construct a scalability model for our hybrid parallel algorithm. Using this model we

show how performance can be predicted in section 4.5.6, providing some guidelines on

how to interpret the model outcomes. Finally, in section 4.6 we highlight some scalabil-

ity tests performed on the Imperial College parallel cluster using Nektar + +. In these

tests we solve the 3D Navier-Stokes equations for two different flows, the turbulent pipe

and channel reported in section 2.3.2. In section 4.7 we then summarise our findings and

observations.

4.1 Application to Fluid Dynamics

A practical CFD application in which parallelisation is of critical importance is the DNS

of a turbulent flows. When there is no turbulence model all the scales need to be resolved.

Therefore, the spatial discretisation needs to be fine enough to capture also the smallest

scale (Komolgorov scale), which is commonly denoted with η. The Kolmogorov dissipa-

tive scale can be related to the kinematic viscosity ν and to the rate of kinematic energy

dissipation ε as

η =
(ν3

ε

) 1

4

. (4.1)

If we call h our spatial resolution, we need to select h ≤ η to capture the Kolmogorov

scale. Given the integral scale L along a given direction (discretised with N points), to

120

PARALLELISATION STRATEGIES

satisfy the resolution requirements it must also be true that Nh > L. Combining the

previous constraints with Eq. (4.1) and the approximation ε ≈ u′3/L, we obtain that, for

a three-dimensional problem, the number of degrees of freedom N grows with Re as

N3 ≥ Re9/4 (4.2)

where

Re =
u′L

ν
. (4.3)

The greater the number of degrees of freedom the greater the number of operations

and the memory requirements. Hence the computational cost of a DNS solution grows

exponentially as we increase the Reynolds number. Moreover, explicit time-integration

schemes are often employed to time-step the Navier-Stokes equations. As reported in

chapter 3, refining the spatial discretisation implies a reduction of the time-step for explicit

methods (CFL condition). The obvious consequence is that to integrate until τ = L/u′

we need a number of time-steps proportional to L/Cη, where C is the Courant number.

Deducing L/η ∼ Re3/4 from previous equations, we can conclude that the DNS of a

turbulent flow requires a number of floating-points operations which exponentially grows

with Re as

FLOP ≈ Re9/4Re3/4 ≈ Re3. (4.4)

Practical Reynolds numbers are of the order of thousands to millions, making serial com-

putations impossible, as Eq. (4.4) suggests.

4.1.1 Overview of Previous Works

In the last five decades, along with the development of faster and bigger super-computers

(Meuer et al. 2013), CFD practitioners progressed their parallelisation approaches to take

advantages of new hardware, performing simulations of more complex flows (in term of

geometries) and higher Reynolds numbers. As a consequence, there is a vast literature on

the topic. In this section we report the works which have been fundamental for our studies.

The techniques which follow will constitute the building blocks of our implementation.

Karniadakis et al. focused on the solution of the 3D incompressible Navier-Stokes

equations using the Fourier spectral/hp element method described in section 2.1.7. Be-

tween 1995 and 1996 they presented a series of studies in which they benchmarked and

121

CHAPTER 4

modelled the scalability of their code Prism (Evangelinos & Karniadakis 1996, Craw-

ford et al. 1996). The parallelisation was implemented in the spectral direction, sending

different Fourier modes to different processors, and using MPI All − to − All calls to

transpose data through the processes to perform operations (such as derivatives) in the

third dimension. Under the assumption of a flat topology they also presented a scalability

model able to predict the code behaviour. The maximum number of processors which

can be used following this approach is equal to the number of Fourier modes adopted in

the spectral discretisation. The upper bound in the number of employable processors is

commonly referred as the natural bottleneck of the technique.

Also in the nineties Fisher et al. approached the solution of turbulent incompressible

flows, implementing parallel algorithms which apply an elemental decomposition of the

spectral/hp element discretisation (Fischer 1990, Fischer & Rønquist 1994, Fischer 1994,

Fischer & Patera 1994, Fischer 1997). In their studies 2D and 3D domains are discretised

using a full spectral/hp element method. The natural bottleneck for this parallel technique

is the number of elements from which the mesh is constructed. They implemented opti-

mal decomposition techniques and focused on the speed-up of the linear system parallel

solution. When using an iterative solver they centred on reducing the communication pat-

tern which dominates each conjugate method iteration but also on the overall reduction of

the iteration count introducing appropriate preconditioners. More recently they moved on

the direct solution of liner systems in parallel achieving high levels of granularity (few el-

ements per processor) and strong scaling up to thousands of CPUs (Tufo & Fischer 2001,

Fischer et al. 2008).

The common practice is to optimise the algorithm and the communication pattern of a

specific approach in order to achieve strong scalability up to the related bottleneck. After-

ward the general enhancement is to gain benefits from a new architecture (larger number

of CPUs) increasing the number of degrees of freedom, which allows the investigation of

higher Reynolds numbers. Although this weak scalability is still very useful for turbulent

simulations, it may not always be of practical interest. In fact the approaches just men-

tioned force users to study larger problems (in terms of degrees of freedom) in order to

exploit the growing performances of super-computers.

In 2007 Hamman et al. presented a study (Hamman et al. 2007) where both the

122

PARALLELISATION STRATEGIES

modal and elemental parallelisation were applied concurrently. They implemented an al-

gorithm where a 1D spectral/hp element method combined with a 2D Fourier spectral

expansion were used to solve a 3D turbulent channel flow. They utilised the same ve-

locity correction scheme presented in section 2.3 and a hybrid parallel approach which

consists in a mixed elemental-modal decomposition using a MPI cartesian communica-

tor. Assuming a fixed number of iterations for the solution of the linear systems involved

in the sub-steps of the schemes, they also produced a scalability model. The scalability

performances presented in this work clearly suggest that a hybrid-algorithmic approach

provides the tools to achieve strong scalability on specific architectures.

4.1.2 Motivations

In this study we investigate the issue from a different perspective: the design of the algo-

rithm and its optimal usage. The aim is to identify possible algorithmic solutions which

can extend the strong scalability range by mixing standard implementations, but also de-

sign a software environment able to adapt itself to various problem needs and hardware

configurations. Combining the flexibility of an elemental tessellation with the accuracy

of spectral approximations, Nektar++ is equipped with various algorithmic components

to solve 3D problems. A sensible usage of these components can be employed to tune

the code to achieve higher levels of parallelism. Parallelisation approaches and numerical

discretisation techniques are encapsulated within C++ classes in Nektar++ (see Appendix

A). This flexibility facilitates alternative selections of one or more combined algorithms,

allowing the optimised use of the provided hardware characteristics for the solution of a

specific problem. The ability to select the most appropriate numerical method or paral-

lelisation approach plays a relevant role in the parallelisation efficiency, portability and,

at the same time, provides a solid base for exploiting possible new hardware features.

Typical variables characterising a super-computer such as latency, bandwidth, cache and

available memory per node, can be pushed to their limits selecting the most suitable nu-

merical techniques. An immediate consequence of this approach is an optimal usage of

the computational resources, reducing computational time and costs.

A common scenario in many engineering applications is a 3D problem which needs

123

CHAPTER 4

to be solved to a desired accuracy. Within a 3D spectral/hp element discretisation we

can alter with various parameters to keep an optimal balance of computation, commu-

nication and memory usage. The number of degrees of freedom (i.e. the resolution) is

proportional to both the number of elements and the spectral expansion order. Proper

combination of these two parameters can maximise the efficiency of a mesh decompo-

sition technique on a given machine, preserving the desired accuracy. Applying a 3D

hybrid discretisation as presented in section 2.1.7, we can also select which type of par-

allelisation we want to implement. Following the approach presented by Kardiadakis

(Evangelinos & Karniadakis 1996), we could solve each Fourier mode (i.e. each pair of

2D spectral/hp element planes) on a different processor taking advantage of the Fourier

basis orthogonality for linear operators. Communications are then required just when

operations in the spectral direction are needed. On the other hand, we could decompose

our operations across processors elementally, as efficiently performed by Fisher (Fischer

1990, Fischer & Rønquist 1994, Fischer 1994, Fischer & Patera 1994, Fischer 1997) in

his previously mentioned studies. In this case, communication is required while solving

the linear systems. The former solution generally requires the transmission of fewer and

bigger messages compared to the latter. Depending on the hardware features and on the

ratio of the degrees of freedom between the elemental and spectral discretisation, one par-

allelisation approach may outperform the other. Furthermore, a sensible combination of

them could be the most efficient choice and it can be used to increase the scalability limit.

As a variant/extension ofHamman et al. (Hamman et al. 2007) study, we investigate

the scalability of a similar algorithm where the 3D domain is built throughout a 2D spec-

tral/hp element method and a 1D Fourier spectral expansion (i.e. the Fourier spectral/hp

element method described in section 2.1.7). As test cases for our investigations we re-use

the turbulent simulations presented in section 2.3.2. These basic turbulent flows can be

solved using harmonic expansions in two of the three dimensions (as accomplished in

(Hamman et al. 2007)). However, we decide to remove the periodicity constraint in one

of the dimensions. This approach will allow future studies of more complex geometries,

such as flows over airfoils and stability analysis.

Our studies highlight how the two basic parallel approaches yield to different results in

terms of efficiency and scalability. We also show that the combination of these two paral-

124

PARALLELISATION STRATEGIES

lel algorithms allows strong scalability beyond the natural bottlenecks given by the mesh

size and the number of Fourier modes. An iterative approach coupled with a diagonal

precoditioner has been used to solve the linear systems arising during the time integra-

tion. The selection of an appropriate preconditioner to reduce significantly the number

of iterations in a conjugated gradient method is not trivial. In order to facilitate the con-

struction of a scalability model we limit our investigation to the easily pre-computable

diagonal preconditioner. We compare in the results section, when it is possible1, the it-

erative approach with a direct solution of the linear system where preconditioning is not

required.

4.2 Algorithm Overview

When solving the three-dimensional Navier-Stokes equations a sequence of operations

(usually confined in dedicated routines) is required to reach the desired final condition.

These operations can be interpreted as computational costs and expressed as the time

required to perform them. A basic classification of these costs is:

• input− output costs (also know as I/O costs);

• set− up costs;

• time− integration costs.

I/O costs consist of the time required to load all the problem details from the input

file (mesh, boundary conditions, parameters, etc.) and the time to write the solution to file

once the simulation is finished (or at some intermediate steps during the time-integration).

An efficient parallelisation of I/O routines is the subject of current research and may

influence the code performance and reliability (No et al. 2002). Although we have an

operating parallel implementation of I/O routines we disregard their contribution in this

study as they ideally appear just at the very beginning and the very end of a simulation. In

the case of long time-integration, fairly common in turbulent scenarios, their cost can be
1A direct solution of the linear system is possible when we are using a pure spectral parallelisation, leaving

two or more whole planes per processor.

125

CHAPTER 4

considered negligible compared to the main computation. For the same reason we ignore

also the set-up costs, i.e the time required, once the problem is loaded, to build and to

store all the required matrices, vectors and variables which are used during the simulation.

These are common assumptions when investigating parallel efficiency (Hamman et al.

2007, Evangelinos & Karniadakis 1996). Therefore we are left with the time-integration

costs, which we defined as all the costs required to actually time-step the initial flow

condition to its final state throughout the velocity correction scheme steps indicated in

section 2.3. Fig. 4.1 provides a diagrammatic representation of the algorithm where just

Figure 4.1: Incompressible Navier-Stokes solution algorithm. Details of the building blocks of

the time-integration process. The most expensive routines are highlighted, i.e. the advection term

calculation and the elliptic solvers for pressure and velocity (Poisson and Helmholtz).

the time-integration costs are presented. We can observe that, removing all the I/O and

set-up routines, we end up applying repeatably a series of steps in the time-integration

loop. In the following, we present a description of this procedural algorithm. Some ideas

about parallelisation are introduced to supply a general picture of the problem but their

detailed description is left to section 4.3.

126

PARALLELISATION STRATEGIES

The initial condition enter the time-integration loop and, after all the sub-steps are

performed, it is advanced in time (by ∆t). This is repeated as many times as required to

reach the final state (in terms of final time or in terms of the number of steps). As Fig. 4.1

suggests some of the sub-steps in the velocity correction scheme are more computational

demanding than others. Indeed, as we shall show in the results section, the total compu-

tational time required for a time-step is dominated (80% or more) by the advection term

calculation and the elliptic solves.

The parallelisation, and thus the communication, plays a significant role in these three

steps. To reduce and decouple the number of communications throughout the cycle we

decide to advance our variables (pressure and velocity) in a semi-physical space, which

corresponds to ũk(x, y) for the generic variable u in Eq. (4.5). This means that the

variables in physical space u(x, y, z) will be Fourier transformed while time-stepping

and moved back to physical space just when constructing the nine components of the

advection term.

physical space
︷ ︸︸ ︷

u(x, y, z) =
∑

k

eiβkz

︷ ︸︸ ︷

φk(z)

Fourier space
︷ ︸︸ ︷

ũk(x, y) =
∑

k

∑

pq

φpqk(x, y, z)

coefficient space
︷︸︸︷

ûpqk . (4.5)

This approach allows us to reduce the number of DFTs required during the compu-

tation but also decouples the two parallelisation approaches. The parallelisation along the

Fourier expansion requires communication during the advection term calculation only,

where the non-linear terms needs to be constructed in physical space in order to take the

collocation inner products N(ui) = uj∂ui/∂xj for i, j = 0, 1, 2. We will give an overall

description of this parallelisation in section 4.3.1.

After the calculation of the advection term, the high-order pressure boundary condi-

tions need to be evaluated. Fourier-transformed variables facilitate a local evaluation of

Eq. (2.107e), provided that we have an even number of modes per processor. In fact the

few derivatives in the Fourier space, required for this calculation, can be obtained through

a multiplication by the wave number and a coefficient swap between the conjugated co-

sine/sine modes ∂ũk(x, y)/∂z = iβkφk(z)ũk(x, y).

Once we have locally recombined the advection term we need to solve four linear

systems. The elemental parallelisation requires a series of messages to be passed between

127

CHAPTER 4

processors only when solving elliptic problems. The various chunks of mesh obtained

by the partitioning algorithm need to communicate during the system solution. We will

discuss in more detail the solution of a linear system in parallel in section 4.3.2.

All the forcing terms can be set-up locally and no Fourier transformations are required

after the advection term. Some more communications andDFTsmay be required during

the set-up of the problem. For example a first series of DFTs are undertaken for the

transformation of initial/boundary conditions and forcing terms. Also the distribution of

the mesh partitions among processors will require a sequence of messages. As mentioned

before, we disregard all these communications because they appear just at the beginning

of the simulation and can be considered una tantum costs.

In order to have a consistent notation throughout this chapter we define in Table 4.1

the quantities we will use in the following to quantify the problem size, messages size and

number of operations.

Table 4.1: List of quantities used to define operations and communications.

Nplane
el number of elements in a 2D plane

NZ number of degrees of freedom in the spectral direction z (number of planes)

Nel total number of elements NZ ×Nplane
el

P polynomial expansion order

NXY number of degrees of freedom in the xy−plane Nplane
el × (P + 2)2

NTOT total number of degrees of freedom in the 3D domain NXY ×NZ

PXY number of processors associated with the mesh partitioning

P Z number of processors used for the DFT parallelisation

P TOT total number processors P Z × PXY

N loc
el Nel/P TOT (elements on each processor)

N loc
XY N loc

el × (P + 2)2

128

PARALLELISATION STRATEGIES

4.3 Parallelisation Approaches

In this section we describe in detail the parallelisation approaches we have inserted in

our implementation, i.e. the parallelisation of the spectral component of the discretisation

(modal parallelisation) and of the spectral/hp element component (elemental parallelisa-

tion). Section 4.3.1 highlights how the modal parallelisation has been inserted while in

section 4.3.2 we focus on the mesh decomposition process and the elemental paralleli-

sation. Finally in section 4.3.3 we show how to combine the two techniques to create a

hybrid approach.

4.3.1 Modal Parallelisation

We now focus on the parallelisation of the spectral method discretisation following the

approach presented by Karniadakis et al. (Evangelinos & Karniadakis 1996, Crawford

et al. 1996). As mentioned in section 4.2 the time-integration is carried out in Fourier

space. The only step during the cycle in Figure 4.1 for which a physical representation

of the variables is required is when the advection term is calculated. Knowing in advance

that we have to transform the velocity components back to physical space, we can take

advantage of this and keep available both the forms. If we pay attention at each step

of the convective term routine in Algorithm 4, we can discern what form is the most

convenient to use for each operation (the physical or the Fourier space). In the rest of the

chapter we assume the advection term is evaluated in its convective form and no dealiasing

routines are applied. Hence we call ui with i = 0, 1, 2 the three velocity2 components in

physical space and ũi the same variables in their Fourier transformed form. Following

the same logic, we call N(ui) and Ñ(ui) the three advection-term components in their

physical and Fourier transformed state respectively. The sequence of operations required

for the advection term is described in Algorithm 4. IDFT and DFT are respectively

the inverse and regular discrete Fourier transforms. Differentiation is achieved through

a matrix-vector multiplication using the elemental derivative matricesDx andDy in the

xy−plane. D̃z indicates a pseudo-matrix able to swap the cosine with the sine coefficient

and multiply by the wave number. In practice this operation is performed without any
2In previous chapters we also used (u, v, w).

129

CHAPTER 4

matrix application.

input : ũ0, ũ1, ũ2

output: Ñ(u0), Ñ(u1), Ñ(u2)

// Transformation back to physical space

for i = 0 to 2 do

(1) IDFT (ũi) = ui

end

for i = 0 to 2 do

// Derivatives in the 2D spectral/hp element plane

(2) ∂ui/∂x = Dxui ∂ui/∂y = Dyui

// Derivatives in the spectral direction

(3) ∂ũi/∂z = D̃zũi

// Transformation back to physical space

(4) IDFT (∂ũi/∂z) = ∂ui/∂z

// Construction of the i− th advection component

(5) N(ui) = u0∂ui/∂x + u1∂ui/∂y + u2∂ui/∂z

// Transformation to Fourier space

(6) Ñ(ui) = DFT (N(ui))

end

Algorithm 4: Non-linear advection term procedure.

Step (1) of Algorithm 4 consists of performing a series of 1D IDFTs for each one of

the velocity components. We perform NXY 1D IDFTs (in serial) for each component,

i.e. one IDFT for each quadrature point of the 2D discretisation. At this stage we have

both the physical and the Fourier transformed representations of the velocity. During

steps (2) and (3) we decide to use the physical space for derivatives in the xy− plane

and the Fourier space for derivatives in z−direction, reducing in this way the number of

DFTs required. The three derivatives in the z−direction will be in Fourier space and

they require a set of IDFTs in step (4) to be consistently transformed and ready to be

130

PARALLELISATION STRATEGIES

multiplied and added in the fifth step. The last step (6) highlights the final transformation

of the advection term components N(ui) into Fourier space in order to be processed,

without any other transformations, in the remaining part of the cycle. From Algorithm

4 we can deduce that the total number of DFTs has been reduced to nine. Each one of

these nine globalDFTs actually refer to a series of NXY 1D DFTs.

4.3.1.1 FFT Parallelisation

Parallelising the spectral method translates to performing theDFTs in parallel, since the

transformation from Fourier to physical space is the only global operation, i.e. requiring

all the information in the z−direction. The DFT of a set of N data requires Θ(N2) op-

erations (N is a power of 2). In practice the ‘naive’ version of a DFT becomes slow as

the number of DOFs increases (N). Therefore we use an FFT algorithm to perform such

transformations. Since the algorithm of Cooley and Tukey appeared (1965), many other

variants of the FFT algorithm have been created (an example is the Temperton vari-

ant published in 1983). In order to have a deeper appreciation of the operations required

during an FFT we give a brief description of it in the following. The original3 FFT algo-

rithm reduces the number of operations from Θ(N2) to Θ(N logN) where N is a power

of 2. The basic idea can be shown by considering the one-dimensional, unordered, radix-2

FFT Y = (Y [0], Y [1], . . . , Y [N − 1]) of a sequence X = (X [0], X [1], . . . , X [N − 1]),

Y [i] =
N−1
∑

k=0

X [k]ωki with 0 ≤ i ≤ N − 1 (4.6)

where ω = e2jπ/N and j =
√
−1. The powers of ω are also known as twiddle factors.

Assuming that N is a power of 2, the FFT algorithm permits the N−points of the DFT

to be split in two (N/2)−points DFTs as:

Y [i] =
(N/2)−1
∑

k=0

X [2k]ω2ki +
(N/2)−1
∑

k=0

X [2k + 1]ω(2k+1)i (4.7a)

Y [i] =
(N/2)−1
∑

k=0

X [2k]ω̃ki + ωi

(N/2)−1
∑

k=0

X [2k + 1]ω̃ki (4.7b)

ω̃ = e2jπ/(N/2) = ω2 (4.7c)
3Other FFT variants allow N to be factorized in different ways, i.e. N does not have to be a power of 2.

131

CHAPTER 4

The parallelisation of the FFT algorithm in an efficient and scalable manner has

been a research topic since parallel computing started. This is because the FFT is a very

useful tool in many scientific fields such as time series, wave analysis, convolutions, signal

processing, image filtering and the solution of partial differential equations. The two

main techniques to parallelise the FFT algorithm are the Binary-Exchange Algorithm

and the Transposed Algorithm. The work of Gupta and Kumar provides a guideline to

understand the scalability of the two approaches (Gupta & Kumar 1993). Their analysis

shows that the Binary-Exchange algorithm yields good performance on super-computers

which have a high communication bandwidth compared to the processing speed of the

CPUs. The transposed algorithm is the most widely used today because it provides a

good scalability when the processing speed is very high (hundreds of thousands of fast

CPUs) compared to the communication network bandwidth. During the last twenty years

various authors have presented ad hoc implementations of the parallel FFT algorithm

(optimised for their machines). In 2003 Takahashi presented an algorithm to perform

a 3D FFT using the transposed technique optimising the cache utilisation (Takahashi

2003). Chan et al. implemented a 3D parallel FFT algorithm for flat cartesian meshes

and tested it on a BlueGene/L system in 2008. The algorithm showed good scalability up

to thousands of processors (16384 nodes) (Chan et al. 2008). Ning and Laizet developed

a FORTRAN library which implements the transposed algorithm (May 2010). The library

has been tested on HECToR and Jugene (the German BG/P), showing scalability up to

hundreds of thousands of processors (Li & Laizet 2010).

The common understanding is that the transposed algorithm is the most efficient on

the current facilities, and the main reasons are:

• it uses the 1D serial FFT algorithm. This routine is generally well-known and it is

optimised on each architecture (processors type);

• there is a large number of open-source libraries that implement the 1D serial FFT

and the data transposition;

• the application of the transposition method does not require many changes to the

serial code. Indeed, from the mathematical point of view, the FFT is performed in

a serial fashion;

132

PARALLELISATION STRATEGIES

• the data transposition procedure can be implemented at a different level. As a con-

sequence, the routine that actually performs the serial 1D FFT can be switched

(we can exploit the optimised FFT of the machine we are using);

• in a distributed memory architecture, after the communication process, the opera-

tions can be performed within a single node. It reduces the number of communica-

tions;

• it allows a flexible ratio between the message size and the number of messages,

permitting a certain level of optimisation;

• it theoretically permits the overlap of communications and computations, reducing

the computational time.

Overall, on the basis of these considerations, we decide to implement the parallelisa-

tion of the purely spectral part of the discretisation following the transposition philosophy.

We will call this parallel approach FFT Transposition in the rest of the chapter.

4.3.1.2 Parallel Algorithm

In practice this approach consists of splitting the NZ 2D planes (discretised with a spec-

tral/hp element method) across a set of P Z processors. While doing this splitting we have

to keep in mind that we need the conjugated modes cosine/sine to be on the same pro-

cessors to avoid communications when taking first order spectral derivatives (see section

2.1.7). This last remark translates into a simple constraint; i.e we have to maintain an

even number of planes per processor. Operations like derivatives and linear system solu-

tions can be performed locally, plane by plane, using routines for 2D spectral/hp element

discretisation and exploiting the nature of Fourier expansions. In fact the time-integration

in Fourier space removes the necessity to transform our variables from physical space

to the coefficient space for the harmonic component of the basis (required when solving

linear systems or taking derivatives in z−direction). The transformation from Fourier

to coefficient space can be performed locally for the polynomial part of the basis as Eq.

(4.5). Moreover, the orthogonality of the Fourier basis changes 3D elliptic problems into

133

CHAPTER 4

a series of 2D problems, as reported in section 2.1.7, allowing local solution of planes

separately.

Figure 4.2: Graphical illustration of the FFT Transposition approach. The example considers 4

processors, NZ = 4 and NXY DOFs in the xy-plane. We force each processor to perform the

same number of 1D serial FFTs, using padding vectors if necessary. We are not imposing the

constraint about the number of planes per processor just for clarity of presentation.

In Fig. 4.2 we provide a general description of the FFT Transposition approach. In

this representation we remove the constraint on the number of planes per processors,

without affecting the main concepts. Actually the constraint is fundamental to reduce

communications (transpositions) when the first order spectral derivative is required, as

for the advection term. Otherwise, if the problem is purely elliptic, we can have just a

single plane per processor because the second derivatives in the spectral direction does

not require communications (cosine goes back to be a cosines after being differentiated

twice). Starting from an NXYNZ domain, the data are shuffled and shared as a collection

of ‘pencils’. A series of 1D serial FFTs is performed in sequence on each group of

pencils. The second step is to reshuffle the data among the processors back to the original

ordering. It requires double the amount of memory to store the data in a proper order and

an MPI All− to−All communication to send data through the communication network.

The number of 1D FFTs per processor is kept balanced and equal, distributingNXY /P Z

134

PARALLELISATION STRATEGIES

per processor, whatever the number of planes we initially have per processor. In case the

subdivision NXY /P Z can not been done exactly some padding quadrature points are

inserted to balance the computational load on the processors.

Defining the natural bottleneck Btran as the maximum number of processors we can

use, we would say that Btran = max(P Z) = NZ in general and Btran = max(P Z) =

NZ/2 in case of the Navier-Stokes solver (because of the two planes constraint). In the

literature it is often found that Btran = N for this technique also for the solution problems

which are not purely elliptic, whereN is the number of complex modes. The discrepancy

lies in the definition of the basis. In our case we define the Fourier basis as a series of NZ

real modes with NZ/2 different frequencies k = 0, . . . , NZ/2− 1. This can be translated

as a series of NZ/2 complex modes, therefore matching the common definition of natural

bottleneck for the transposed algorithm.

4.3.2 Elemental Parallelisation

The second type of parallelisation can be implemented using a mesh decomposition tech-

nique. Domains which have been discretised using an elemental approach naturally sug-

gest a distribution of the computational load across a collection of processors by assigning

operations on different elements to different CPUs. If we callNel the number of elements

in the mesh, the maximum number of processors we can use to parallelise operations ob-

viously corresponds to Nel. In the specific case we are investigating, having series of 2D

planes, the natural bottleneck traduces in Bdec = max(PXY) = Nplane
el . As mentioned

in previous sections, the elemental parallelisation affects just the solution of linear sys-

tems, that is the Poisson and the three Helmholtz solvers highlighted in Figure 4.1. While

basic operations, such as derivatives and physical/coefficient space transformations, can

be performed elementally in a spectral/hp element discretisation, the solution of a linear

system requires information about elements connectivity. Therefore, when the elliptic

solvers appear in the time-integration loop and the elements are located on different pro-

cessors, communication is required to impose the connectivity conditions associated with

the spatial discretisation4. In this study we take into account basic continuous Galerkin
4Continuous and Discontinuous Galerkin projections have different connectivity rules.

135

CHAPTER 4

projections, hence C0 continuity between elements needs to be imposed. In the following

we briefly describe the solution procedure of a linear system in Nektar++ to highlight

operations and communications.

The linear systems for the elliptic solvers are built in order to apply a static condensa-

tion approach (Karniadakis & Sherwin 2005). This technique is based on the boundary-

interior decomposition of the polynomial basis we use in the spectral/hp element discreti-

sation. Given a typical linear system Mx = f , we reorder the DOFs x in such a way

that we have the boundary degrees of freedom followed by the interior ones as

M b M c

MT
c M i

xb

xi

 =

f b

f i

 , (4.8)

where the subscripts b and i indicates boundary and interior degrees respectively. Ob-

serving the structure of the system, also depicted in Figure 4.3, it is observed that the

matrixM i is block-diagonal as a consequence of the non-overlapping nature of the inte-

rior modes. Pre-multiplying by a block matrix of the form

I −M cM

−1
i

0 I

 , (4.9)

we obtain

M b −M cM

−1
i MT

c 0

MT
c M i

xb

xi

 =

f b −M cM

−1
i f i

f i

 . (4.10)

// Calculate the new right hand-side vector

(1) gb = f b −M cM
−1
i f i

// Calculate the Schur complement

(2) S = M b −M cM
−1
i MT

c

// Solve the linear system

(3) Sxb = gb

// Calculate the right hand-side vector

(4) gi = f i −MT
c xb

// Solve the final linear system

(5)M ixi = gi

Algorithm 5: Static condensation solution procedure.

136

PARALLELISATION STRATEGIES

Mi

Mc
Boundary−
Boundary
matrix

Form of Interior−Interior matrix

Local Boundary−Interior matrix

}
ATMe A =

Mc

Mc

Mi

Mi

Mi

1

1

2

2

Nel

Nel

lo
ca

l t
o

gl
ob

al

m
ap

pi
ng

McMb

Mc
T

Interior−Interior matrix
}

Boundary−Interior matrix}
Figure 4.3: A general global matrix pattern after DOFs have been reordered to apply a static

condensation approach. Courtesy ofKarniadakis and Sherwin (Karniadakis & Sherwin 2005).

The solution of the reduced linear systems at steps (3) and (5) in Algorithm 5 can

be performed using a direct or an iterative method. The system in step (5) can be solved

locally, using a direct approach, and it does not require communication. Mesh decompo-

sition techniques play a relevant role in the solution of the boundary DOFs linear system,

i.e. step (3).

4.3.2.1 Mesh Decomposition

In the case that all the elements of a 2D plane are located on the same processor, hence

we are not decomposing the mesh, the solution of each 2D plane is performed in serial

fashion and connectivity between elements is naturally enforced during the global ma-

trix construction. On the other hand, when the mesh is decomposed, communication is

required between boundary DOFs lying on the partition boundaries, as shown in Figure

4.4.

Partitioning routines for elemental discretisations are quite common nowadays. The

general issue is to optimise the mesh decomposition reducing the number of communi-

cating edges. In Nektar++ the mesh is partitioned using the open-source library METIS

137

CHAPTER 4

Figure 4.4: Schematic of a mesh decomposition approach. A regular mesh with 16 quadrilaterals

is distributed across 4 processors. Pairwise communications are required between the DOFs on

the partitions edges during matrix-vector multiplications in the linear systems solutions.

(Karypis 2013). Starting from a dual-graph containing all the elements, a tree-decomposition

is applied using internal METIS routines which minimise the number of cuts, i.e. the

number of communications required. Once the mesh has been partitioned a universal

numbering of the DOFs is used to coordinate messages between MPI processes. This

task is achieved using the open-source library Gslib by Fisher (Fischer et al. 2008). The

selection of these task-specific libraries was dictated by their high efficiency and porta-

bility along with their practical implementation which fits into the Nektar++ structure

and layout. A complete description of these libraries is beyond the scope of this chapter,

therefore we redirect the interested reader to the cited documentation for further details.

Assuming the mesh partitions are generated by minimising the number of DOFs on

their edges and the communication patterns between processes is defined, we are left with

the decision on the solutionmethod to employ, i.e. iterative or direct. Theoretically speak-

ing there are no restrictions for this choice. Generally a direct approach is more expensive

in terms of memory requirements, yielding to some possible memory constraints when the

problem size increases. An iterative approach could require on the other hand more oper-

ations, due to its recursive nature, which can be however reduce by tuning the conjugated

gradient algorithm tolerance. In this study we consider just an iterative approach for the

138

PARALLELISATION STRATEGIES

parallel solution of the elliptic problems appearing in the time-stepping cycle. Neverthe-

less, if we are not inserting an elemental decomposition in the 2D planes we compare the

iterative approach with a direct solution of the system. In this case each plane is entirely

on a single processor and then we solve the system using a Cholesky factorisation coupled

with a reverse Cuthill-McKee algorithm (LAPACK) (Anderson et al. 1999).

4.3.2.2 Parallel Algorithm

Since the direct solution of the system is applied just when communications are not re-

quired between elements, we describe in the following the iterative algorithm in order

to highlight where communications play a role at this level of parallelism. The itera-

tive algorithm to solve a generic linear system in Nektar++ is based on Demmel et al.

Preconditioned Conjugated Gradient Method (PCGM) (Demmel et al. 1993).

The pseudo-code in Algorithm 6 illustrates the sequence of operations for the solu-

tion of a linear system Ax = b. We report the basic steps of this algorithm in order to

highlight where the parallelism is introduced. We consider a diagonal preconditionerK

and a maximum number of iterations NMAX
iter . The iterative procedure stops if the max-

imum number of iterations is reached or the residual is small enough (below a specified

tolerance). We disregard the initial operations, considered as set-up costs and we focus

on the for loop.

Step (1) to (4) can be performed locally on each processor, hence they do not require

communication. A exchange of data is required to perform the reduction of the inner

products in step (7) and to evaluate the if statement. In these cases the partial inner

products are performed locally and then an MPI All − Reduce summation is required

to attain the total value of the products. Step (5) would require communication just in

case of non-diagonal preconditioners. In our analysis we limit our implementation to the

use of diagonal preconditioners to facilitate the modelling of the communications pattern.

Most of the communication appears in step (6), where we need to perform a matrix-vector

multiplication. At this step messages are required between boundary degrees of freedom

lying on the partition boundaries at each iteration, as evident from Fig. 4.4. A detailed

description of the communication pattern will be provided in section 4.5.

139

CHAPTER 4

input : initial guess x0

output: final solution x

// calculate initial residual r0

r0 = b−Ax0

// solve for w0 where K is the preconditioner

Kw0 = r0

// set parameters

q−1 = p−1 = 0 β−1 = 0 s0 = Aw0

ρ0 = (r0,w0) µ0 = (s0,w0) α0 = ρ0/µ0

for i = 0 to NMAX
iter do

(1) pi = wi + βi−1pi−1

(2) qi = si + βi−1qi−1

(3) xi+1 = xi + αipi

(4) ri+1 = ri − αiqi

if (ri+1, ri+1) < tolerance then
break

end

(5) Solve for wi+1 the system Kwi+1 = ri+1

(6) si+1 = Awi+1

(7) ρi+1 = (ri+1,wi+1) µi+1 = (si+1,wi+1)

(8) βi = ρi+1/ρi

(9) αi+1 = ρi+1/(µi+1 − ρi+1βi/αi)

end

Algorithm 6: Preconditioned Conjugated Gradient Method. Demmel et al. (Dem-

mel et al. 1993).

4.3.3 Hybrid Parallelisation

The natural consequence of having the two previously discussed approaches implemented

is to use them concurrently. As reported by Hamman et al. (Hamman et al. 2007),

140

PARALLELISATION STRATEGIES

combinations of parallelisation approaches can extend the limit in the number of pro-

cessors that can be adopted. In fact the total bottleneck of the combined techniques is

Btot = BtranBdec. In Fig. 4.5 we can appreciate how the same initial domain can be de-

composed using the modal parallelisation approach (FFT Transposition), the elemental

parallelisation approach (Mesh Decomposition) or both of them at the same time (Hybrid).

(a) Domain (b) FFT Transposition

(c) Mesh Decomposition (d) Hybrid

Figure 4.5: Parallelisation strategies visualisation over four processes. The Fourier spectral/hp

element domain reported in (a) can be decomposed according to the Fourier modes (b) or as an

arbitrary decomposition of the 2D mesh (c). A third option is a combined approach (d).

141

CHAPTER 4

From the implementation point of view, the problem translates into encapsulating in

C++ classes the concept of parallelisation in order to facilitate the usage of both tech-

niques. In Nektar++ the task is achieved through two layers:

• encapsulation of the MPI communicators;

• appropriate usage of those communicators within derived classes.

All communicators derive from an abstract class containing the required methods to trans-

mit data between processors. In the case of parallel execution those methods will be

replaced by MPI routines, otherwise by their serial counterparts. The top level commu-

nicator can be decomposed, creating a MPI virtual topology (Gabriel et al. 2004). The

cartesian virtual topology (rows and columns) shown in Fig. 4.6 facilitates the conceptual

handling of the two parallel techniques. The global communicator namedm comm con-

Figure 4.6: Structure of the MPI cartesian communicator for an hybrid parallelisation approach. In

this example 20 MPI processes are used to parallelise a Fourier spectral/hp element discretisation

with 42 elements per plane and 4 planes.

tains all the information about parallelisation and can be easily transmitted/instantiated in

derived classes. In the case of the creation of a cartesian MPI communicator, m comm

contains two sub-communicators equipped with the same general methods.

142

PARALLELISATION STRATEGIES

m_comm->GetRank()

m_comm->SendRecv(Proc,input,output)

m_comm->GetRowComm()->GetRank()

m_comm->GetRowComm()->Send(Proc,input)

m_comm->GetColumnComm()->GetRank()

m_comm->GetColumnComm()->AlltoAll(input,output)

As can be observed in the graphical illustration of the communicator, the mesh parti-

tions are distributed across columns, requiring a specific communicator for each row. The

decomposition of the 2D plane is accomplished on the root process just once, i.e. P0 in

Fig. 4.6. Subsequently, each partition will be sent to the appropriate process. For example

the first partition, the yellow one, will be sent to P5, P10 and P15. The second partition,

the blue one, will be sent to P1, P6, P11,P16 and so on. When solving the linear systems

arising during the algorithm steps, each row can be considered as a standalone problem,

because of the modal decoupling between planes, hence requiring communication just

through its row communicator. It also appears from this particular example that P1 is not

required to communicate with P2, since the respective partitions do not share DOFs (actu-

ally in each row the blue process does not need to communicate with the green one). The

composition of all the partitions on a row produces a full 2D plane, but each row refers to

a different plane (or set of consecutive planes in the most general case). Therefore opera-

tions across planes require another set of communicators, i.e. the column communicators.

Before and after an FFT, data needs to be reordered. Following the procedure described in

Fig. 4.2. Given that the partitions are identical across a column, data shuffling is bounded

within each column communicator.

4.4 Test Cases

In order to study the performance of the different parallelisation approaches discussed in

section 4.3 we need to select some tests cases. We focus on turbulent simulations making

use of the turbulent flow verifications presented in section 2.3.2. Since we are now inter-

ested in monitoring the parallel computational time when running different approaches,

we simplify the problem set up. Initial conditions are applied via a restart file containing

143

CHAPTER 4

the already converged turbulent states we reached in previous simulations. This choice

removes an initial overhead of PCGM iterations due to the white noise effect on the resid-

ual. No stabilisation techniques are applied, since the simulations do not require them

once they have passed the transition phase. The advection term is treated in its convec-

tive form and a first order IMEX scheme is used to time-step the incompressible Navier-

Stokes equations. In Fig. 4.7 an overview of the domain discretisation is provided, where

the plane and element distribution is highlighted. As mentioned in section 2.3.2 the fluid

flows in the z−direction in the pipe and in the x− direction for the channel. In Table 4.2

we concentrate on the features of both discretisations in terms of DOFs and bottlenecks.

(a) Pipe (b) Channel

Figure 4.7: Domain discretisation structure of the turbulent test cases. Pipe flow discretisation (a)

and channel flow discretisation (b).

Table 4.2: Turbulent test case discretisation features. The total bottleneck Btot = BtranBdec.

Test case P Nplane
el NZ Nel NXY NTOT Btran Bdec Btot

Pipe 7 64 128 8192 5184 663552 64 64 4096

Channel 6 450 64 28800 28800 1843200 32 450 14400

We present in the following results obtained through numerical experiments. All the

simulations have been run on the Imperial College cluster CX2, an SGI Altix ICE 8200

EX system. Among the possible choices of node type, we selected the 8-core nodes,

which allows the utilisation of 512 cores in total (64 nodes). Each one of the 8 cores in a

node is a Nehalem CPU running at 2.93 GHz. The memory per node is 24 GBytes (fast

144

PARALLELISATION STRATEGIES

memory) and the system has dual-rail Infiniband interconnect. The operating system is

Linux with kernel version 3.0.58-0.6.6.

4.5 Scalability Model

Creating a scalability model consists of quantifying the number of operations and com-

munications involved in the execution of a parallel algorithm and, based on the hardware,

predicting the computational time required to solve a specific problem. The first distinc-

tion when building a scalability model is between the time spent in performing operations

and the time spent for communication. While it is important to avoid operation duplica-

tion among processes, the real challenge is to minimise the communication costs, since

this is often the cause of poor scaling. If we denote by TOi the time required to perform

the i− th operation in the algorithm we want to model and TCj the time required for the

j − th communication, we can define the total time T required for the parallel execution

as

T =
∑

i

TOi +
∑

j

TCj. (4.11)

The modelling of TOi consists of the operation count throughout the algorithm execu-

tion. Such a type of quantification can be achieved commonly by measuring the number

of operations associated with basic pieces of code, e.g. matrix-vector multiplications,

inner products, vector-vector summations etc. In the following we will evaluate oper-

ations at the elemental level. The DOFs associated with a 2D element can be easily

calculated based on the polynomial expansion employed in the discretisation. Practically,

each element is defined with (P + 2)2 quadrature points and (P + 1)2 DOFs (expan-

sion coefficients). While DOFs indicate the number of coefficients of the polynomial

expansion, hence the problem unknowns, quadrature points are more indicative of the

problem size for operations in physical space. Vector-vector summations and multipli-

cations are based on the variables physical representation within the advection operator

(quadrature points) and on their DOFs counterpart during the linear system solution. The

matrix-vector multiplication in Nektar++ can be obtained throughout a series of algo-

rithmic variants, as also mentioned in the previous chapter. For this study we force all

145

CHAPTER 4

matrix-vector multiplications to take advantage of the sum-factorisation technique, which

requires (4P 3+18P 2+26P +12) operations per element as reported by V os et al. (Vos

2010). The number of operations then need to be scaled with respect to the time required

on a specific machine to perform an operation. We name this time tO and it is quantified

as seconds to perform an operation.

Communication costs are generally more complex to model. The first consideration

is that they strongly depend from the hardware configuration. The cluster topology5 plays

a relevant role in the data exchange between processes. Possible layouts such as a mesh-

topology, a hypercube-topology or a ring-topology require ad hoc modelling to take into

account the physical message path. In this study we follow the most common approach

when estimating communication costs (Hamman et al. 2007, Evangelinos & Karniadakis

1996, Tufo & Fischer 2001), i.e. assuming a “flat” topology with no contention between

messages. Under this hypothesis, the time TC for a set of messages to be transmitted and

received can be modelled as

TC = Number of messages ×
[

τL +Message Size × τB
]

(4.12)

where we call τL the latency, measured in seconds [s] and τB the inverse of the bandwidth.

Citing what is reported on most MPI manuals we define

Latency (τL)

The overhead associated with sending a zero-byte message between two MPI tasks. Total

latency is a combination of both hardware and software factors, with the software contri-

bution generally being much greater than that of the hardware. It is usually measured in

milli/microseconds.

Bandwidth (1/τB)

The rate at which data can be transmitted between two MPI tasks. Like latency, band-

width is a combination of both hardware and software factors. It is usually measured in

bytes/megabytes per second.
5A network topology is defined as the arrangement of computers in a network. Practically it defines how

the computers, or nodes, are connected to each other.

146

PARALLELISATION STRATEGIES

We suppose each DOF is to be represented by a double in C++, hence an 8-byte in-

formation packet. Therefore τB , instead of being quantified using its canonical unit of

measure [s/Mbytes], will be translated in [s/DOFs] to facilitate substitutions during the

modelling phase. In order to map the features of the employed machine, we sample la-

tency and bandwidth via the MPI benchmarking application IBM-MP1. Running a set of

basic MPI message-passing routines, IBM-MP1 samples the latency (the time required

to send/receive a 0-byte message) and the bandwidth, monitoring the time required to

conduct a communication for various message sizes. The timings are performed on vari-

ous routines like Alltoall, Allgather and Sendrecv. The typical output of an IBM-MP1

sampling for the Sendrecv routine on 16 processes is reported below. The latency is the

average time for the 0-byte message and bandwidth is calculated for messages of size

1 byte to 4194304 bytes. The difference in bandwidth for the different message sizes

(especially after 1024 bytes), suggests that the packet-size in which the total message is

decomposed for transmission is not always optimal.

#---

Benchmarking Sendrecv

#processes = 16

#---

#bytes #repetitions t_min[usec] t_max[usec] t_avg[usec] Mbytes/sec

0 1000 0.85 0.86 0.85 0.00

1 1000 0.85 0.85 0.85 2.23

2 1000 0.84 0.84 0.84 4.54

4 1000 0.89 0.89 0.89 8.53

8 1000 0.89 0.89 0.89 17.11

16 1000 0.83 0.83 0.83 36.63

32 1000 0.85 0.86 0.85 71.37

64 1000 1.01 1.02 1.01 120.24

.

.

65536 640 40.10 40.31 40.21 3100.66

131072 320 68.18 68.84 68.51 3631.71

262144 160 123.69 125.93 124.82 3970.42

524288 80 228.95 238.12 233.57 4199.50

1048576 40 455.65 513.20 482.10 3897.10

2097152 20 1068.75 1250.00 1175.17 3199.99

4194304 10 2198.60 2834.49 2498.70 2822.38

#---

147

CHAPTER 4

For practical usage we unify the values of latency and bandwidth by their arith-

metic means spanning different messages size and routines. The average value for the

bandwidth is 1.64 · 103 MB/s which, after manipulation, translates into τB = 4.87 ·

10−9 s/DOFs. For the latency we obtain τL = 2.09 · 10−6 s.

4.5.1 Advection Term Modelling

We start the modelling of the advection term costs by quantifying the time required to

perform all the FFTs. As stated in section 4.3.1, overall nine FFTs are required. Each

one of these FFTs is composed of a set of 1D−FFTs, one for each pencil. The number

of pencils on each column communicator is defined by the number of quadrature points

associated with the local mesh partition. Assuming the mesh is evenly partitioned, we can

quantify the number of pencils on each column communicator as (P + 2)2Nplane
el /PXY .

Given that the number of pencils will be balanced among the P Z processes and that a

single FFT costs NZlog2(NZ), we can summarise the cost of the 9 FFTs as

TA
O1 = tO · 9

[Nel/NZ

P ZPXY
(P + 2)2NZlog2(NZ)

]

. (4.13)

The elemental cost of calculating the physical derivatives will be proportional to the cost

of executing a matrix-vector multiplication, where the matrix is a general derivative ma-

trix. Therefore, the number of operations for an elemental matrix-vector multiplication

will be scaled with respect to the number of elements on the process, yielding to

TA
O2 = tO · 9

[Nel

P ZPXY
(4P 3 + 18P 2 + 26P + 12)

]

. (4.14)

Each advection component then requires 9 vector-vector multiplications to calculate the

uj∂ui/∂xj factors. This term can be modelled starting from the elemental size of each

vector, hence the number of quadrature points (P +2)2, and then by multiplying it for the

number of elements on each process as

TA
O3 = tO · 9

[Nel

P ZPXY
(P + 2)2

]

. (4.15)

148

PARALLELISATION STRATEGIES

Finally we need to take in account the 6 vector-vector summations required to build the

three advection term components N(ui). For each component i we have to sum the three

uj∂ui/∂xj (with j = 0, 1, 2), therefore two summations per component. Applying the

same approach we described for the previous term, where the number of operations is

directly proportional to the vectors size, we obtain

TA
O4 = tO · 6

[Nel

P ZPXY
(P + 2)2

]

. (4.16)

Once we have quantified the number of operations and their computational cost, we are

left with the communication costs modelling. Within the advection term routines, commu-

nication is required during the 9 FFTs only, for shuffling and reshuffling data between

processes belonging to the same column communicator. We apply the communication

model described in Eq. (4.12). For each FFT two MPI Alltoall calls are needed (shuf-

fling and reshuffling) which formally require (P Z − 1) messages, as also stated in (Ham-

man et al. 2007, Evangelinos & Karniadakis 1996, Tufo & Fischer 2001). The messages

size can be calculated by recalling that the number of pencils will be balanced across the

P Z process, yielding to

TA
C1 = 18(P Z − 1)

[

τL +
Nel

P ZPXY
(P + 2)2τB

]

. (4.17)

The very last step is to put together all the contributions mentioned above to create a full

model for the advection term calculation cost as

TA = tO ·
∑

i

TA
Oi +
∑

j

TA
Cj = tO · TA

O + TA
C , (4.18)

where TA
C = TA

C1. In addition, neglecting the terms not depending on P or NZ , we have

TA
O =

Nel

P ZPXY

(

36P 3+176P 2+290P +9P 2log2(NZ)+18P log2(NZ)+36log2(NZ)
)

.

(4.19)

149

CHAPTER 4

4.5.2 Elliptic Solver Modelling

In contrast with the advection routine, the vector operations during the linear system so-

lution are performed in coefficient space, hence (P + 1)2 is the typical vector dimension.

All operations are carried out elementally, therefore each process deals with the assigned

N loc
el . Steps (1), (2), (3) and (4) in Algorithm 6 can be modelled using the same logic

applied in the previous section. At each step we have one scalar-vector multiplication and

one vector-vector summation yielding

TE
O1 = tO · 8

[Nel

P ZPXY
(P + 1)2

]

. (4.20)

The two inner products appearing at steps (7) of Algorithm 6 and the inner product re-

quired during the evaluation of the stopping criteria consist of a vector-vector multiplica-

tion and a sum reduction. The vector-vector multiplication requires (P + 1)2 operations

while the sum reduction (P +1)2−1. In order to simplify the model we assume that both

components of the inner product routine require (P + 1)2 operations, leading to

TE
O2 = tO · 6

[Nel

P ZPXY
(P + 1)2

]

. (4.21)

The diagonal preconditoner can be considered a vector-vector multiplication and, as a

consequence, step (5) of Algorithm 6 can be modelled as

TE
O3 = tO ·

[Nel

P ZPXY
(P + 1)2

]

. (4.22)

The most expensive step of Algorithm 6 is the application of the matrix system (6). In

this case we reuse the sum-factorisation operation count defined earlier in this section and

we quantify the number of operations as

TE
O4 = tO ·

[Nel

P ZPXY
(4P 3 + 18P 2 + 26P + 12)

]

. (4.23)

Communications appear during the inner product reductions and during the matrix-vector

150

PARALLELISATION STRATEGIES

multiplication. The inner product reduction can be modelled using the Allgather model

also used in (Hamman et al. 2007). The number of messages is (PXY − 1) for each inner

product, since the local reductions need to be composed into a global reduction, which

happens on one processor. The message size is simply one DOF because the results of the

local reductions is a number which needs to be sent to the process taking care of the final

summation. This results in the communication time

TE
C1 = 3(PXY − 1)

[

τL + τB
]

. (4.24)

Communications during matrix-vector multiplication are more complex. The number of

messages required between mesh partitions can be quantified as 2log2(PXY). This com-

munications count, typically considered when determining the number of messages for

mesh decomposition approaches (Hamman et al. 2007, Tufo & Fischer 2001), derives

from the tree-graph nature of common mesh partitioners. Given that each mesh partition

translates into a graph node connected to other nodes via edges and given that minimisa-

tion of connections is usually obtained via recursive bisection algorithms, we can easily

infer that the number of connections will be proportional to log2(PXY).

On the other hand forecasting the message size is not really possible. In fact each

edge of the graph can be comprised of a varying number of DOFs and it will depend on

the domain nature. To formalise a prediction we assume that each partition will have the

maximum possible number of communicating edges. In Fig. 4.8 we show that the maxi-

mum number of edges for aN loc
el partition is ∝ 2(N loc

el +1); under the assumption that the

partition is the middle of the mesh, therefore none of its edges are on the domain bound-

aries. Observing in Fig. 4.8 the possible shapes of a partition as we increase the number

of elements we can simply count the number of edges on the boundaries. Collecting to-

gether previous considerations, we can apply the communication model descried in Eq.

(4.12) obtaining

TE
C2 = 2log2(PXY)

[

τL + 2
(Nel

P ZPXY
+ 1
)

(P + 1)τB
]

. (4.25)

151

CHAPTER 4

Figure 4.8: Overview of how a partition containing N loc
el can be cast. The different groupings

suggest that the maximum number of edges which may require communication is ∝ 2(N loc
el + 1)

The very last step, as before, is to put together all the contributions mentioned above to

create a full model for the elliptic solver cost as

TE = tO ·
∑

i

TE
Oi +
∑

j

TE
Cj = tO · TE

O + TE
C , (4.26)

where TE
C = TE

C1 + TE
C2. Neglecting the terms not depending on P or NZ TE

O is

TE
O =

Nel

P ZPXY

(

4P 3 + 33P 2 + 56P
)

. (4.27)

4.5.3 Incompressible Navier-Stokes Model

Recalling the Navier-Stokes solver algorithm described in Fig. 4.1, we can build up the

total cost TNS of one step of the solution cycle as

TNS = a · TA + b · N Poisson
iter · TE + 3 · c · NHelmholtz

iter · TE (4.28)

The coefficients a, b, c will be set in next section via a calibration process. Those co-

efficients concentrate and encapsulate all the unpredictable issues, such as memory con-

tentions, missing details from the model and machine specific features. Calibration will

then be required every time a different machine is used. The number of iterations Niter

for the elliptic solvers will vary depending on the problem nature and between solutions

of Helmholtz and Poisson equations. The preconditioner also plays a fundamental role in

152

PARALLELISATION STRATEGIES

the reduction ofNiter. Basic diagonal preconditioners, as the one accounted in this study,

generally show poor performance in terms of reducing the number of iterations. For the

presented turbulent simulations, typical values are N Poisson
iter ∼ 80 and NHelmholtz

iter ∼ 10.

Introduction of suitable preconditioners would certainly speed-up the simulations, making

the following results an upper bound on practically achievable performances.

4.5.4 Calibration

As anticipated in section 4.5.3, calibration consists in assigning a value to those coeffi-

cients which, within the model, take into account all the issues that can not be predicted

or strictly modelled. In Eq. (4.28) we introduced a first estimate for the incompressible

Navier-Stokes solver scalability model, which is however not suited for a quick and effi-

cient calibration. Given that the scalability model should generally be easy to use and to

calibrate, we decide to simplify what is reported in Eq. (4.28) as

TNS
c = a1 · tO · TA

O + a2 · TA
C + b1 · tO · TE

O + b2 · TE
C . (4.29)

where we collapse the 3-Helmholtz and the Poisson elliptic solver contributions into two

terms, where computations and communications are highlighted.

Calibration is then performed by running timing tests where the two parallelisation

techniques are applied separately. Monitoring the computational time of these simulations

we calculate the required coefficients, which are

tO = 0.9 · 10−6 a1 = 0.5 a2 = 0.2 b1 = 3.5 (4.30)

and

b2 =

{

400 if Nplane
el /PXY < 4

10 otherwise
(4.31)

where b2 has two different values because the actual bottleneck for the mesh decompo-

sition techniques is appearing before the theoretical one. In fact, the current implemen-

tation can reach a level of granularity of four elements per processor, and not less. This

limitation is associated with the libraries selected to handle the the mesh decomposition

153

CHAPTER 4

technique (METIS and Gslib) and the lack of overlap between communication and com-

putation during the linear system solution.

Application of the calibrated model to the turbulent simulations of section 4.4 sug-

gests a good prediction capability. Fig. 4.9 shows a comparison between the actual time

required to run one step of the turbulent pipe flow simulation using various approaches

(black lines) and what is predicted by the model (red solid line), suggesting good agree-

ment between the model and the real data.

 0.001

 0.01

 0.1

 1

 16 32 64 128 256 512

T
 [

s]

Processors

FFT Transposition
Mesh Decomposition

Hybrid
Model

Figure 4.9: Scalability model calibration. On the y-axis the time required to perform one cycle of

the solution process reported in Fig. 4.1. The model of Eq. (4.29) after calibration (red solid line)

is compared with the measured times for the turbulent pipe flow test case.

4.5.5 Limitations

The scalability model presented in this section, and that will be used to predict perfor-

mance in section 4.5.6, is affected by a series of limitations. As remarked above, we

have disregarded some pieces of the algorithm in order to focus on the two main routines,

namely the advection and the elliptic operators. This is a typical approach when creat-

ing a scalability model (Hamman et al. 2007), although it may introduce some errors.

Furthermore, we have removed the number of iterationsNiter from the model to simplify.

154

PARALLELISATION STRATEGIES

The calibration has been carried out by monitoring the solution time on the SGI Altix

ICE 8200 EX system described in section 4.4, therefore the current coefficients must be

considered specific for that machine. Series of 1000 samples has been taken for each

test case during calibration and numerical tests. The values presented are based on the

arithmetic mean of those samples.

Finally, we would like to stress that the model, and therefore the considerations deriv-

ing from it, is specific to Nektar++ . In fact the lack of accuracy when predicting hybrid

parallelisation solution mainly derives from possibly non-optimal code implementations

and from external library selection (e.g.MPI version, METIS, etc.). However, despite the

strong dependence of the results on our implementation, the study provides some generic

understanding and suggests overall guidelines on how to address typical issues arising

when a specific problem needs to run efficiently on a parallel machine.

4.5.6 Performance Prediction

We recall that PXY and P Z correspond to the number of processes employed for the

elemental and the modal parallelisation respectively. In the following we denote pairs

of these values with the notation (PXY ,P Z), since they act as cartesian coordinates in

the following graphs. In Fig. 4.10 and Fig. 4.11 we can observe the computational

time (expressed in seconds) for one step of the cycle. The surfaces indicate the time

will be reduced using different combinations of parallel approaches. In fact both figures

suggest that a hybrid approach can reduce the computational time and potentially extend

the bottlenecks of standalone approaches. The practical mesh decomposition bottleneck,

appearing when we send less than four elements per processor, can be observed for both

the pipe and channel simulation. In fact we can observe in Fig. 4.10 and Fig. 4.11 a

jump at PXY = 16 (pipe case) and PXY ≈ 128 (channel case) respectively. We would

like to recall that the current mesh decomposition bottleneck does not match the expected

theoretical performance (one element per processor) as highlighted in section 4.5.4. While

Fig. 4.10 shows a steeper time-reduction in the P Z direction, Fig. 4.11 suggests that, for

problems with an high number of elements per plane, increasing PXY is the fastest path

to reach higher levels of scalability.

155

CHAPTER 4

 1
 8

 16

 32

 64 1 8 16
 32

 0.001

 0.01

 0.1

 1 Time [s]

PZ

PXY

Time [s]

 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16
 0.18
 0.2

 1
 8

 16

 32

 64 1 8 16
 32

 0.001

 0.01

 0.1

 1 Time [s]

PZ

PXY

Time [s]

 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16
 0.18
 0.2

Figure 4.10: Computational time prediction for the turbulent pipe flow using Eq. (4.29). Practical

bottleneck for the mesh decomposition technique is clearly visible at PXY = 16.

These trends are consistent with the intuitive understanding that having few elements

per plane and a lot of Fourier modes promotes the usage of an FFT transposition rou-

tine (pipe example). On the other hand, when we have a lot of elements per plane and

few planes (channel example), a mesh decomposition technique may be preferred. When

applying an FFT transposition to a problem with a lot of elements per plane (and eventu-

ally also an high polynomial expansion) we need to consider the number of DOFs which

require transposition. The number of pencils, described in Fig. 4.2, is proportional to

the number of elements and the polynomial order. As a consequence the amount of data

communicated can increase drastically as Nplane
el and P increase, possibly saturating the

system bandwidth.

The three-dimensional representations of the time required for one step of the cycle

provide qualitative indications of the algorithm behaviour. In Fig. 4.12 we propose the

speed-up maps based on the model prediction as evidence of the parallel performance in

a more quantitative style. Speed-up is defined as the ratio between the time required to

perform a step of the cycle using one processor and the time required using a combination

of (PXY ,P Z). These maps reinforce the overall understanding that a mesh with few ele-

156

PARALLELISATION STRATEGIES

 1

 8

 16

 32 16 64 128
 256

 0.001

 0.01

 0.1

 1

 10 Time [s]

PZ

PXY

Time [s]

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 1

 8

 16

 32 16 64 128
 256

 0.001

 0.01

 0.1

 1

 10 Time [s]

PZ

PXY

Time [s]

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Figure 4.11: Computational time prediction for the turbulent channel flow using Eq. (4.29). Prac-

tical bottleneck for the mesh decomposition technique is clearly visible at PXY ≈ 128.

ments per plane and a lot of planes scales better if we use an FFT transposition approach.

In fact an inspection of Fig. 4.12 denotes that the iso-speed-up lines (black solid) are

more deformed in the P Z direction for the pipe simulation than for the channel. More-

over, observing Fig. 4.12(a), the isolines suggest the a mesh decomposition technique can

not reach on its own the same level of speed-up of the FFT transposition approach for this

test case.

Fig. 4.12 suggests another consideration, i.e. using a hybrid approach is generally

more convenient than using a single parallelisation technique, even within the scalabil-

ity limits of the single parallel approaches. This conclusion derives from observations

of the iso-speed-up lines. We can analyse, for example, the isoline in Fig. 4.12(a) high-

lighted using black dots (it starts at coordinates (PXY = 16,P Z = 2), corresponding to

P TOT = 32). If we follow this line down to where it intersects theP Z-axis we appreciate

how a pure FFT transposition approach would require P Z = P TOT > 32 processors

to achieve the same level of speed-up. This result is plausible under the hypothesis we

made for the scalability model. However it is purely an artefact of the model, since

communications are assumed to be contention-free. In reality communications are not

157

CHAPTER 4

Figure 4.12: Speed-up prediction for the turbulent pipe flow (a) and turbulent channel flow (b)

using the model described in Eq. (4.29). Black solid lines indicate points with same speed-up

(iso-speed-up lines). Speed-up is defined as S = TNS
c (PXY = 1,P Z = 1)/TNS

c (PXY ,PZ).

contention-free and the physical outline of the machine plays a role in delaying/blocking

messages between nodes. Mixing parallel approaches when it is not necessary generally

yields to performance deprecation compared to the most appropriate standalone parallel

implementation. The intuitive consequence is that a hybrid approach will have a speed-up

which is always in between the speed-up of the standalone techniques.

158

PARALLELISATION STRATEGIES

4.6 Numerical Experiments

In this section we present some numerical experiments we performed on the SGI Altix

ICE 8200 EX system described in section 4.4 for both the turbulent pipe flow and the tur-

bulent channel flow. The aim of these experiments is to prove the validity of the assump-

tions we made in previous sections. The results presented are obtained using Nektar++

version 3.3.0 (Kirby & Sherwin 2006b), averaging, in each experiment, 1000 samples of

the solution cycle timing. We compare, in the following, the parallel solution using both

an iterative and a direct method for the pure FFT transposition approach. The different

strategies are identified as:

• FFT Transposition (Iterative), when solving the linear system using an iterative

method;

• FFT Transposition (Direct), when solving the linear system using an direct method

(LAPACK);

• Mesh Decomposition (Iterative), since we do not consider direct solution of the

linear system when the mesh is decomposed over multiple partitions;

• Hybrid, when we combine FFT Transposition (Iterative) and Mesh Decomposition

(Iterative).

The speed-up calculations are scaled, in each experiment, by the 16-core run using the

FFT Transposition (Iterative) approach.

4.6.1 Turbulent Pipe

The first example is the solution of the turbulent pipe flow presented in section 2.3.2. In

Fig. 4.13 we show the average percentage of time spent in the routines composing the

Navier-Stokes algorithm of Fig. 4.1. As anticipated, most of the time is employed for the

advection term calculation and the solution of the linear systems (75% or more).

In Fig. 4.13(a) and (b) we observe how the total computational time is distributed

across the routines when solving the linear systems (a) directly or (b) iteratively. The

parallelisation approach in these cases is identical but the linear systems arising from the

159

CHAPTER 4

16 32 640

20

40

60

80

100

120

Processors

C
PU

 [%
]

Advection Poisson Helmholtz Others

(a) FFT Transposition (Direct)

16 32 640

20

40

60

80

100

120

Processors
C

PU
 [%

]

Advection Poisson Helmholtz Others

(b) FFT Transposition (Iterative)

16 32 640

20

40

60

80

100

120

Processors

C
PU

 [%
]

Advection Poisson Helmholtz Others

(c) Mesh Decomposition (Iterative)

128 256 5120

20

40

60

80

100

120

Processors

C
PU

 [%
]

(32,4) (16,16) (32,16) (PZ , PXY)

Advection Poisson Helmholtz Others

(d) Hybrid

Figure 4.13: Turbulent pipe flow parallel simulation - CPU usage of the algorithm steps on a

cluster of 8-core nodes. The histograms show the percentage of time spent in the three main

routines using different parallel approaches.

solution of the Poisson and Helmholtz equations are solved directly using a Cholesky fac-

torisation in the first case, or via Algorithm 6 in the second case. For both simulations

the FFT Transposition approach is applied and the extra time required to solve the sys-

tem iteratively is purely due to the slow convergence of the PCG method, especially for

the Poisson equation. A moderate reduction of the number of iterations can be attained

via the introduction of more suitable preconditioners or constraining the PCGM residual

tolerance. However, it is unlikely to obtain the same performance as a direct solution. In

addition to previous considerations, we note that the advection term calculation is the one

160

PARALLELISATION STRATEGIES

generally dominating the FFT Transposition approach. This result is a consequence of

the communication appearing during the FFT parallel algorithm. On the other hand Fig.

4.13(c) highlights how communication plays a relevant role during the linear system solu-

tion in the case that we are decomposing the mesh. In fact at each iteration of Algorithm

6 a set of mesages must be exchanged between mesh partitions. The direct consequence

is a complete dominance of the linear system solution on the overall computational time.

We report also some hybrid combinations of the two parallel approaches. As can be noted

in Fig. 4.13(d) those simulations are dominated by the advection calculation.

In Fig. 4.14 we present the speed-up S of different simulations associated with the

standalone approaches and the hybrid simulations, alomg with the ideal linear speed-

up (red solid line). While the FFT Transposition approach is scaling linearly up to its

theoretical bottleneck, we note that, as expected, the Mesh Decomposition scalability is

reduced, limiting the number of elements per process to four, and not less.

 0.01

 0.1

 1

 10

 16 32 64 128 256 512

1
/S

Processors

FFT Transposition (Iterative)
FFT Transposition (Direct)

Mesh Decomposition (Iterative)

Linear
Hybrid

Transposition Limit

Decomposition Limit

Figure 4.14: Turbulent pipe flow parallel simulation - scaling features on a cluster of 8-core nodes.

The red solid line indicates the theoretical linear speed-up based on the 16-core (2 nodes) run using

the FFT Transposition (iterative) approach. The Transposition and Decomposition bottlenecks are

marked with a vertical black dashed line.

Comparing the FFT Transposition variants, i.e. (Iterative) and (Direct), we also can

161

CHAPTER 4

appreciate that the direct approach is more efficient. Some hybrid combinations of the two

parallel approaches are marked in Fig. 4.14 with blue triangles, showing that the classical

scalability limits can be overcome with the help of a flexible implementation. Although

the hybrid approaches scale well, the speed-up does not perfectly match the ideal one, but

it is slightly sub-linear. Another interesting remark concerns the performance comparison

between hybrid approaches and the FFT Transposition (Direct). In fact it can be observed

that the 128-core hybrid simulation is characterised by a speed-up very similar to the 64-

core FFT Transposition (Direct) case. This result, even if code dependent, suggests that

selecting the most appropriate numerical approach can improve performance and reduce

the overall computational time. Efficiency of numerical simulations from an energy per-

formnace point of view is becoming increasingly important. Optimal approaches should

minimise both the computational time and the energy consumption, therefore getting the

same performance using half the number of processors is the most efficient choice.

16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Processors

Ef
fic

ie
nc

y
=

S/
P

(PZ , PXY)

(32,4) (16,16)

(32,16)

FFT Transposition (Iterative)
FFT Transposition (Direct)
Mesh Decomposition (Iterative)
Hybrid

Figure 4.15: Turbulent pipe flow parallel simulation - efficiency of parallelisation approaches on

a cluster of 8-core nodes. The histograms show the efficiency E of different parallel simulations

defined as E = S/P where S is the speed-up and P is the total number of processors used for

the simulation. The speed-up is based on the 16-core (2 nodes) run using the FFT Transposition

(iterative) approach.

162

PARALLELISATION STRATEGIES

A final quantification of the investigated techniques is given in Fig. 4.15, where the

parallel efficiency E = S/P TOT is illustrated. Again the reference run is the 16-core

FFT Transposition (Iterative) simulation, hence E = 1 in that case. The efficiency bars

depicted in this figure reinforce the basic considerations we derived previously, and that

we can summarise as:

• when using an FFT Transposition approach a direct solution of the arising linear

systems is the most effective choice;

• hybrid approaches recover efficiency permitting scalability beyond the theoretical

bottleneck;

• when a problem is Fourier-dominated (many plane but few elements per plane), the

FFT Transposition approach is the most efficient choice.

Finally, we remark on a point which can be noticed both in Fig. 4.14 and Fig. 4.15, i.e.

within its scalability limits, a Mesh Decomposition (Iterative) technique is more efficient

than its FFT Transposition counterpart (Iterative). This consideration is intuitively valid

when most of the communications between partitions are inside the same node, there-

fore with τL ∼ 0. We observed the same behaviour in some preliminary tests we have

not reported here, when we tested the parallelisation approaches on a singe node. The

Mesh Decomposition approach is generally more efficient on shared memory machine,

where the latency is very low and sending a lot of small messages becomes the most at-

tractive method. Moreover recent MPI libraries take advantage of the physical memory

layout and, given that the memory is shared between processors, do not physically send

messages, but point processes to the right locations in memory.

4.6.2 Turbulent Channel

As we have just considered for the turbulent pipe, in Fig. 4.16 we present the CPU

time percentage spent within the different routines of the incompressible Navier-Stokes

solver. Compared to the pipe simulations the turbulent channel flow discretisation is

dominated by the number of elements. Consequently, most of the time is spent in solving

the linear systems, apart from the FFT Transposition (Direct) approach. We note the

163

CHAPTER 4

solution of the Poisson equation when using an iterative solver is the dominant routine,

due to the high number of iterations required. The hybrid parallel simulations show in

this case a dominance of the elliptic solver over the advection routine, as a consequence

of the elevated number of DOFs in the xy−plane. Although we are using roughly the

same number of P Z processors as we applied for the pipe hybrid approaches, in this case

the number of points in z−direction are reduced, bounding the communication overhead

associated with the FFT transposition routine.

16 320

20

40

60

80

100

120

Processors

C
PU

 [%
]

Advection Poisson Helmholtz Others

(a) FFT Transposition (Direct)

16 320

20

40

60

80

100

120

Processors

C
PU

 [%
]

Advection Poisson Helmholtz Others

(b) FFT Transposition (Iterative)

16 32 64 128 2560

20

40

60

80

100

120

Processors

C
PU

 [%
]

Advection Poisson Helmholtz Others

(c) Mesh Decomposition (Iterative)

256 5120

20

40

60

80

100

120

Processors

C
PU

 [%
]

(PZ , PXY)(16,16) (32,16)

Advection Poisson Helmholtz Others

(d) Hybrid

Figure 4.16: Turbulent channel flow parallel simulation - CPU usage of the algorithm steps on

a cluster of 8-core nodes. The histograms show the percentage of time spent in the three main

routines using different parallel approaches.

Fig. 4.17 shows the scalability features we observed while testing the channel flow

164

PARALLELISATION STRATEGIES

case. Within the FFT Transposition bottleneck, significantly reduced in this case, we note

that the FFT Transposition (Direct) method performs better than the other two approaches,

confirming that an iterative method without a suitable preconditioner may become critical

as we increase the linear system size. In addition we observe that the Mesh Decom-

position (Iterative) approach is performing better than the FFT Transposition (Iterative),

confirming the considerations we have reported in the final part of the previous section.

 0.01

 0.1

 1

 10

 16 32 64 128 256 512

1
/S

Processors

FFT Transposition (Iterative)
FFT Transposition (Direct)

Mesh Decomposition (Iterative)

Linear
Hybrid

Transposition Limit

Decomposition Limit

Figure 4.17: Turbulent channel flow parallel simulation - scaling features on a cluster of 8-core

nodes. The red solid line indicates the theoretical linear speed-up based on the 16-core (2 nodes)

run using the FFT Transposition (iterative) approach. The Transposition and Decomposition bot-

tlenecks are marked with a vertical black dashed line.

As before, the practical bottleneck of the Mesh Decomposition technique is reduc-

ing the overall efficiency of the approach, which shows a sub-linear scaling. However,

if we try to extrapolate visually the possible ideal speed-up of the Mesh Decomposition

approach up to 64 processors, we can conclude that a direct solution of the linear system

could provide the same performance using fewer processors. Therefore, even in this case,

the choice which optimises CPU-time and energy consumption is the 32 processor ap-

proach using the FFT Transposition (Direct) method. The hybrid approaches can be used

to extend the scalability limits for this problem too, or used to recover scalability as for

165

CHAPTER 4

the 256 processors run, where the Mesh Decomposition approach stops scaling. All the

observations we just made are summarised in the efficiency plot in Fig. 4.18.

16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Processors

Ef
fic

ie
nc

y
=

S/
P

(PZ , PXY)

(16,16)

(32,16)

FFT Transposition (Iterative)
FFT Transposition (Direct)
Mesh Decomposition (Iterative)
Hybrid

Figure 4.18: Turbulent channel flow parallel simulation - efficiency of parallelisation approaches

on a cluster of 8-core nodes. The histograms show the efficiencyE of different parallel simulations

defined as E = S/P where S is the speed-up and P is the total number of processors used for

the simulation. The speed-up is based on the 16-core (2 nodes) run using the FFT Transposition

(iterative) approach.

4.7 Discussion

In this chapter we presented a methodology to parallelise a 3D incompressible Navier-

Stokes algorithm based on discretisation flexibility. Despite the results and guidelines

deriving from this study depending on the Nektar++ specific implementation, we can

identify some general behaviours and trends. A priori choices in the decision-making

process while developing a CFD software may therefore benefit from the systematic in-

vestigations we have reported.

Initially we described how, given a Fourier spectral/hp element method, we can ap-

proach the task of parallelisation. Careful consideration of the implied numerical meth-

166

PARALLELISATION STRATEGIES

ods led to the recognition of two canonical parallelisation possibilities. One discretisation

component allows an elemental decomposition of the domain and the other a modal de-

coupling of the Fourier modes. Although experience and intuition can generally suggest

which approach is more suitable for a specific scenario, in general mesh problems this

task becomes difficult, especially when moving from one machine to another or when we

have to tackle, with the same algorithm, a range of different physical problems. Even

from a purely theoretical perspective, it is straightforward to understand how a standalone

parallel approach can not be optimal in all situations.

Acknowledging the factors which affect parallel efficiency is a fundamental step to un-

derstanding the optimal choices. In the context of a Fourier spectral/hp element method,

we highlighted how the ratio between the DOFs in the xy−plane and the number of modes

in the periodic dimension requires special attention. In fact we recognised that problems

with a higher number of modes compared to the number of elements per plane appears to

benefit from the FFT Transposition approach. On the other hand, a domain discretisation

which is element-dominated generally prefers a Mesh Decomposition technique. Keeping

in mind this overall guideline, we also need to recall the role played by actual vector sizes

moved to and processed by different CPUs. Fitting the local cache and optimising the

effect of latency and bandwidth on the communication pattern is essential. Parallelisation

approaches requiring an increased number of messages, such as the Mesh Decomposi-

tion, can suffer from performance reductions if the latency is high. On the contrary, we

observed that data locality removes this limitationmaking such type of parallel techniques

optimal on shared memory machines.

While an ad hoc algorithm design can address some of the efficiency issues, an un-

predictable role is played by the employed libraries. Recent MPI and FFTW versions are

characterised by a certain level of optimisation, as a consequence of their high portability

and popularity. For example, MPI applies message decomposition to maximise the band-

width usage. Therefore, selection of the most appropriate libraries has been identified as

one of the key aspects for an efficient algorithm design.

Once we have acknowledged the principal quantities which impact the efficiency and

portability of the two parallel algorithms considered, we presented a hybrid parallel so-

lution. We illustrated an implementation procedure where, encapsulating the concept of

167

CHAPTER 4

parallelisation, we are able to introduce one or more parallel technique concurrently. By

mixing the efficiency properties of the two parallel algorithms a series of benefits have

been identified and they are:

1. a flexible implementation, which allows an easy switch between parallel techniques,

provides users with direct and accessible tools to tune the parallel efficiency of their

simulations;

2. hybrid parallel solutions extend the strong scalability limits, promoting the usage

of larger machines without modifying the code.

In turn we demonstrated that a substantial effort during the implementation process to

increase algorithm flexibility is generally beneficial. Moreover, by implementing both

the commonly used parallel approaches, we removed the uncertainties appearing when

deciding which approach to implement. As we stressed before, the DOFs in xy−plane

and the number of Fourier modes are first indicators of which technique is more appro-

priate. Generally speaking we want to tackle the solution of CFD problems where those

quantities can vary, reaching also extreme values. Without the possibility of quantifying

in advance those variables, the implementation framework we presented is a possible way

to address the drawback.

In monitoring computational times for different scenarios we realised that hybrid par-

allel solutions should mainly be used to extend scalability limits. In fact, within the

bottlenecks of the two parallel techniques we investigated, the optimal parallel approach

was always the FFT Transposition or the Mesh Decomposition. Combining parallel ap-

proaches in this case returns performances which can be considered as an average between

the two limiting techniques. However we can not totally exclude that a hybrid parallel so-

lution may be the optimal approach in some peculiar scenarios (problem size, machine,

libraries, etc.). Although we do not have numerical evidence supporting efficiency porta-

bility across architectures, we can speculate that in general relative optimums can be

found in each scenario, or at least that we can preserve a certain level of efficiency for

our parallel simulations also on different machines. In addition, the flexibility of choos-

ing between different techniques allows for the possibility of compensating for a reduced

efficiency in the implementation. An example of this last remark is the poor scaling of the

168

PARALLELISATION STRATEGIES

Mesh Decomposition approach reported in Fig. 4.17. As can be seen, the 128-processor

run stops scaling before the theoretical bottleneck (which is one element per processor).

That is because of an absence of computation/communication overlap and possible ineffi-

ciencies associated with external libraries. However, we observe that, although the current

implementation may require refinements and improvements, a hybrid approach is able to

recover efficiency, allowing effective parallel simulations even in the development phase.

The extension of the strong scalability limits we achieved throughout the hybrid paral-

lel implementation proposes a further consideration concerning CFD simulations. As we

stated in the initial part of this chapter, a common philosophy is to exploit a new machines

potentials by investigating larger problems (and/or larger Reynolds numbers), hence cap-

italising on weak scalability. Our view is that good weak scalability follows from good

strong scalability. Therefore when we force an algorithm to extend its strong scalability

limits we secure the chance of running our simulations faster on larger machines (strong

scalability) and at the same time we maintain the progression ratio between problems size

and machines size (weak scalability).

Assuming the implementation reaches an optimal level, where all implementation in-

efficiencies are removed, predicting performance as a function of the machine and prob-

lem features is feasible. As a standard approach when investigating parallel efficiency we

introduced a scalability model, specifying all the details of its construction. We stressed

that modelling requires assumptions when building relations between machine, algorithm

and problem size and that these assumptions introduce errors which can be misleading.

The model we proposed furnishes sensible guidelines on what is the best approach when

parallelising a specific problem. The model does not take into consideration the physical

layout of the computer (interconnect, processors per node, etc.), therefore it must be con-

sidered indicative and not quantitative. A specialised scalability model could be coupled

with a pre-run optimisation routine, which queries the machine and analyses the problem

details to work out directly the optimal combination of strategies to reduce computational

time and energy consumption.

Application on fluid dynamics have been considered in this chapter, namely a turbu-

lent pipe and turbulent channel case. In both cases we demonstrated that a hybrid parallel

approach can be utilised to extend the bottlenecks of standalone parallel techniques. We

169

CHAPTER 4

want to emphasise that not all the hybrid parallel combinations we tried actually showed

good scalability properties. Depending on the grouping of elements and Fourier modes

across processors, some combinations may not perform efficiently. However, using those

test cases as a benchmark, we identified a systematic methodology to investigate and

achieve an efficient parallelisation. Furthermore, we showed that suitable numerical tech-

niques may result in reducing the computational time without increasing the number of

processors. This is the case of the FFT Transposition (Direct) approach, which gener-

ally performs as well as a Mesh Decomposition method with twice the number of CPUs.

Minimising the energy consumption when running a simulation is a point of interest in

current research about high performance computing. Again, implementation flexibility

plays a relevant role in addressing these goals.

170

Chapter 5

Conclusions

As anticipated in the introduction chapter, there are many parameters which influence the

efficiency of a CFD simulation. The research presented in this thesis was philosophically

driven by our belief in the existence of potential benefits coming from implementation

flexibility. We demonstrated that effective improvements of CFD algorithms can be ad-

dressed at various levels; from a conscious selection of the numerical methods involved

in the problem approximation, to the implementation of ad hoc computational strategies.

This thesis, in particular, considered investigations of optimal approaches when explicitly

time-stepping partial differential equations and efficient parallelisation methodologies for

CFD simulations.

In next section we will provide a detailed summary of the work reported in this thesis.

However, we would like to recall briefly here our main findings:

• Computational efficiency investigations when time-stepping a basic PDE using ex-

plicit time-stepping schemes and the spectral/hp element method have shown that:

1. A spectral/hp element method with an intermediate polynomial order (4 ≤

P ≤ 8) is generally the most efficient computation choice to get a desired

accuracy on the solution.

2. Short-time integration can be performed more efficiently using a low-order

multi-step scheme.

3. High-order multi-stage schemes are generally useful to preserve accuracy on

long-time integrations.

171

CHAPTER 5

4. When we have small elements in the mesh it is generally more efficient to

improve accuracy refining the mesh size (h-refinement).

• Computational efficiency investigations on the parallelisation front have shown that:

1. The modal and the elemental decomposition approaches can be efficiently

coupled, for a Fourier spectral/hp element method, using MPI virtual topolo-

gies.

2. A flexible implementation can be very useful to tune our software to the most

convenient approach depending on the problem of interest.

3. Sensible combinations of the two parallel approaches exist and they can be

used to extend the strong scalability limits and to recover parallel efficiency.

4. A proper selection of the algorithms involved in the problem solution, e.g.

iterative vs direct linear system solvers, can promote efficiency from an energy

consumption perspective.

In this thesis we tried to improve the level of understanding on a relevant topic such

as the computational efficiency for the solution of fluid dynamics problems. Although

we mainly focused on the spectral/hp element methods, some of our considerations and

practical recipes can be useful to many CFD practitioners, regardless the type of spatial

discretisation they are adopting. In the last few years researchers oriented their investiga-

tions to parallel computational efficiency. Some examples of tailored numerical methods

to improve parallel efficiency are still available in literature (Kim & Sandberg 2012).

However, the most relevant improvements derive from the combination of the message

passing model and the shared memory model (Lusk & Chan 2008), in order to exploit

the features of new super-computers. In fact, new architectures are characterised by many

multi-core nodes that need to communicate, but a good amount of shared memory is

available on each node. While in 2008 this approach was still in a development stage,

nowadays is becoming more common and efficient also for CFD applications (Mininni

et al. 2011, Hoefler et al. 2013, Friedley et al. 2013).

172

CONCLUSIONS

5.1 Summary

In Chapter 2 we illustrated the overall framework, in terms of numerical methods, which

has been used to practically conduct the investigations of efficiency. We started by pre-

senting the spatial discretisation techniques. Focusing on high-order methods, we showed

the capability of such approximations to reach high levels of accuracy while recalling their

widespread use by CFD practitioners over the last few decades (Karniadakis & Sherwin

2005). The approach presented by Karniadakis (Karniadakis 1990) in the 1990’s has

been introduced in our implementation, combining the spectral/hp element method with

a pseudospectral method to create a 3D discretisation. We stressed the advantages of this

discretisation methodology, which provides a modal decoupling of the approximation, re-

ducing a 3D problem into a series of 2D discretisations, promoting efficiency and reduc-

ing memory usage. An encapsulation of this technique in C++ classes has also been illus-

trated. In this context we highlighted how code reutilisation deriving from object-oriented

programming can be very beneficial in facilitating numerical methods implementation.

Having described the approach we followed in spatially discretising a 3D domain,

we introduced a unified technique to time-step partial differential equations. Based on

Butcher’s General Linear Method (GLM) (Butcher 2006), the framework we imple-

mented allows a universal treatment of different time-stepping schemes which allows one

to easily select from a wide variety of time-stepping schemes. We also described in more

detail some specific aspects of this implementation, the ones directly connected to the our

final application, i.e. incompressible flow simulations. Namely we extended our discus-

sions to the encapsulation of implicit-explicit (IMEX) time-stepping schemes into a GLM

prototype and to the practical enforcement of strongly-imposed time-dependent boundary

conditions. This translated to a decoupling of the scheme-related coefficients/methods

and we showed how it translates in a GLM formulation. The latter issue has been solved

demonstrating that by applying a similar GLM approach to the Dirichlet set of degrees of

freedom, we can eliminate the dependence of the time-derivative of the boundary condi-

tions from the general formulation.

Finally, in chapter 2, we presented the approach taken to solve the 3D incompress-

ible Navier-Stokes equations. Taking advantage of the spatial and temporal discretisation

173

CHAPTER 5

abilities in Nektar++ , we introduced a splitting scheme algorithm for the solution of 2D

and 3D incompressible flows (Karniadakis et al. 1991). We also reported and validated

some canonical test cases, in particular the turbulent flow in a pipe and a channel.

In Chapter 3 we focused on the computational efficiency of low and high-order methods

when implied in the solution of an unsteady problems. Given the complexity of the issues

we limited ourself to a simplified test case, namely a 2D unsteady linear advection equa-

tion. Although simple, this can be seen as a reduced model for many applications in CFD

for both compressible and incompressible flows. Indeed, the explicit integrated part of the

velocity correction scheme corresponds to the solution of a non-linear unsteady advection

equation. In addition, when a sub-stepping algorithm is introduced during the splitting

scheme, a discontinuous Galerkin projection is applied also for incompressible flows.

Acknowledging the relevance of the selected test case, we investigated the efficiency

of Nektar++ when solving this type of equation. As a practical example we employed

a Gaussian function rotating around the centre of a square domain convected by a time-

independent, but spatially dependent, advective field. We assumed the CPU-time required

to integrate the equation as an indicator of the global algorithm efficiency, and fixed the

level of accuracy desired on the final solution. Recalling that the accuracy in numeri-

cal terms translates into the error deriving from the spatial and temporal discretisation,

we performed a series of parametric simulations systematically varying the parameters

which affect accuracy, i.e. the polynomial expansion order, the mesh, the time-stepping

scheme and the final time. Furthermore, a relevant role is played by numerical stability

constraints deriving from the well-known CFL condition. Although not directly, restric-

tions on the applicable time-step influence accuracy throughout the temporal accumula-

tion error, which is a monotonically increasing function of the number of required steps

and therefore of the final time. Associated with each combination of those parameters we

can recognise a definite numerical error on the solution. The final goal of this study was

to understand the optimal parameters combinations to achieve a desired level of accuracy

on the final solution for a selected final time, minimising the CPU-time.

The main conclusion of this study contradicted the general understanding regarding

the utilisation of high-order methods to spatially discretise time-dependent problems. The

174

CONCLUSIONS

common idea is that high-order methods tend to limit practical efficiency because CFL re-

strictions grow algebraically with the polynomial expansion order. We demonstrated that,

despite being true that the eigenvalues dictating stability grow algebraically with P , the

accuracy of the final solution improves even faster (in an exponential manner for smooth

problems). Therefore, given a desired level of accuracy, high-order methods tend to be,

computationally speaking, the faster route to reach the required results. Although this

last remark was clearly observable in the presented graphs for the uniform mesh family,

we could not demonstrate the same conclusion for non-uniform meshes. For those set of

meshes we recognised that an h refinement was more beneficial within our parameters

range, promoting the utilisation of low order methods. However, observing the results

obtained in those simulations, we can speculate that possible absolute optimums may be

found for polynomial orders higher than the ones we considered. Another general re-

mark is about the efficiency of time-stepping schemes. In this context we noted that for

short-time integrations, low order time-stepping schemes (AB2, RK2) turn out to be com-

putationally faster than the widely used high-order RK4. However, in case high accuracy

is required (∼ 10−9), higher-order time-stepping schemes appeared to be the only possi-

ble approach.

In Chapter 4 we introduced a methodic approach, based again on implementation flex-

ibility, to undertake the parallelisation of our CFD algorithm. We initially recalled the

relevance of parallel computing for CFD applications, reporting some of the parallel solu-

tions adopted by various authors. Recognising the fundamental role of algorithms porta-

bility across architectures we stressed the importance of implementation strategies as a

tool to optimise code efficiency. While super-computers continue to improve their ca-

pabilities, CFD practitioners need to keep their algorithms up-to-date in order to utilise

these resources efficiently. Consequently, the ability to easily switch to the most appro-

priate approach, as a function of the problem nature and the hardware features, dictates

the need to tune our solution methodology to the most convenient one for each specific

scenario. Following these considerations, we presented an hybrid parallelisation approach

to parallelise the velocity correction scheme algorithm. We took advantage of the natural

predisposition of the Fourier spectral/hp element method to be parallelised in different

175

CHAPTER 5

ways. The common procedure when parallelising this type of discretisation is to apply ei-

ther an elemental decomposition of the domain or a modal decomposition of the harmonic

expansion. Using the turbulent flows described in Chapter 2 as test cases, we combined

these two approaches. This hybridisation provides, together with the opportunity to select

the optimal method, the option to apply the parallel approaches concurrently to extend

strong scalability limits. Although weak scalability remains a useful aspect for CFD ap-

plications, we believe that any effort to amplify strong scalability naturally promotes an

efficient execution of our algorithms as the hardware performance increases. Moreover,

achieving weak scalability is not always of practical interest, especially when we simply

desire to run our simulations faster on a bigger machine, without enlarging the problem

size.

Parallel speed-up and efficiency observations gave rise to a series of considerations

and conclusions. First we demonstrated that the combination of parallel approaches can

be directly used to extend the strong scalability limits or to recover efficiency when the

scenario, or the implementation itself, is not optimal. In addition we noted that hybrid

approaches were not beneficial within the scalability limits of the standalone techniques,

at least for the cases we investigated. Therefore they should be used just to enforce strong

scalability. The CFD problems we investigated were characterised by different discretisa-

tion features. In particular we observed that the parallel speed-up of spectral dominated

problems (pipe flow) is promoted by a modal decomposition (FFT transposition). On the

other hand, when we have a lot of elements, a mesh decomposition approach is prefer-

able. However, we recognised that low latency machines (e.g. shared memory environ-

ment such as a single node) can take advantages of mesh decomposition technique in any

case. The reason is that the communication overhead deriving from the latency of many

small messages is almost eliminated. Comparing the speed-up of an iterative method and

a direct approach when solving a linear system suggested a further consideration. In fact

we noted that a sensible usage of a direct method can yield the same speed-up levels with

fewer cores. In conclusion, implementation flexibility can be also used to optimise our

simulations from an energy consumption point of view.

176

CONCLUSIONS

5.2 Final remarks

Throughout a series of practical applications we showed how implementation flexibility

can be used to tune our simulations parameters to achieve a greater level of efficiency.

Despite the fact that results were obtained using a single code, Nektar++ , we can state

that in general, variety in the selectable computational strategies helps to fit a wide range

of needs. Although the implementation effort may appear prohibitive, we demonstrated

it yields appreciable benefits. While seeking for greater performance, we gained a deeper

understanding about some problems related to CFD algorithms, such as the efficiency of

high-order methods when utilised in an explicit time integration.

As often happens in research, the presented work, while producing some understand-

ings, inspired other possible investigations. On the time-integration front we find it could

be of interest a comparison between the presented explicit time-integration schemes and

their implicit counterparts. This would provide a deeper understanding of how efficiency

is affected by CFL restrictions compared to the higher operation count per time-step typ-

ical of implicit methods.

The parallelisation study naturally suggests some further numerical experiments and

implementation extensions. First we find the implementation of a parallelisation opti-

miser of practical interest. Indeed, we intend to refine and consequently use the scalabil-

ity model presented in this thesis to realise a top level algorithm, which, after collecting

the required parameters from the machine and the problem, can automatically detect the

most efficient parallel approach in a given situation. When a mesh decomposition was ap-

plied, we took into account diagonally preconditioned iterative methods only for solving

the arising linear systems. In this context we are planning to extend our studies to en-

compass other preconditioners and also direct parallel methods for the solution of linear

systems. Moreover, it could be of interest to explore the benefits coming from a multi-

level static condensation approach. Hybrid parallelisation paradigms, i.e. multithreading

and GPU usage combined with MPI, gained great popularity in the last five years, es-

pecially since the development of new hybrid hardware architectures, which utilise both

CPUs and GPUs. The next step in terms of implementation improvements would be to

make our software able to take advantage of this new technology and investigate the real

177

CHAPTER 5

benefits in a variety of parameters settings.

One of the consequences of this thesis is that with the development of the many nu-

merical techniques, Nektar++ has been extended to enable the study of a wide range of

practical CFD problems. Indeed, we plan to use the developed tools to investigate the

vortex shedding behind a vibrating cylinder, in order explore the wake topology.

178

Bibliography

Ainsworth, M. (2004a), ‘Discrete dispersion relation for hp-version finite element ap-

proximation at high wave number’, SIAM J. Numer. Anal. 42(2), 553–575.

Ainsworth, M. (2004b), ‘Dispersive and dissipative behaviour of high order discontinuous

Galerkin finite element methods’, J. Comput. Phys. 198(1), 106–130.

Ainsworth, M., Monk, P. & Muniz, W. (2006), ‘Dispersive and dissipative properties of

discontinuous Galerkin finite element methods for the second-order wave equation’,

Journal of Scientific Computing 27(1), 5–40.

Alastruey, J., Khir, A., Matthys, K., Segers, P., Sherwin, S., Verdonck, P., Parker, K.

& Peiro, J. (2011), ‘Pulse wave propagation in a model human arterial network: As-

sessment of 1-D visco-elastic simulations against in vitro measurements’, Journal of

Biomechanics 44, 2250–2258.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz,

J., Greenbaum, A., Hammarling, S., McKenney, A. & Sorensen, D. (1999), LAPACK

Users’ Guide, third edn, Society for Industrial and Applied Mathematics, Philadelphia,

PA.

Antonietti, P., Mazzieri, I., Quarteroni, A. & Rapetti, F. (2012), ‘Non-conforming high

order approximations of the elastodynamics equation’, Computer Methods in Applied

Mechanics and Engineering 209–212, 212–238.

Ascher, U., Ruuth, S. & Wetton, B. (1995), ‘Implicit-Explicit Methods for Time-

Dependent Partial Differential Equations’, SIAM Journal on Numerical Analysis

32(3), 797–823.

179

BIBLIOGRAPHY

Barkley, D., Blackburn, H. & Sherwin, S. (2007), ‘Direct optimal growth analysis for

timesteppers’, International Journal for Numerical Methods in Fluids 231, 1–20.

Blackburn, H. & Sherwin, S. (2004), ‘Formulation of a Galerkin spectral element–Fourier

method for three-dimensional incompressible flows in cylindrical geometries’, J. Com-

put. Phys. 197(2), 759–778.

Blaisdell, G., Spyropoulos, E. & Qin, J. (1996), ‘The effect of the formulation of non-

linear terms on aliasing errors in spectral methods’, Applied Numerical Mathematics

21(3), 207–219.

Bolis, A., Cantwell, C., Kirby, R. & Sherwin, S. (2013), ‘From h to p efficiently: Optimal

implementation strategies for explicit time-dependent problems using the spectral/hp

element method’, Submitted to Internation Journal for Numerical Methods in Fluids .

Bowman, J. & Roberts, M. (2011), ‘Efficient dealiased convolutions without padding’,

SIAM J. Sci. Comput. 33(1), 386–406.

Boyd, J. (2001), Chebyshev and Fourier spectral methods, second edn, Dover Publica-

tions, Inc.

Butcher, J. (1987), The numerical analysis of ordinary differential equations: Runge-

Kutta and general linear methods, Wiley, Chichester.

Butcher, J. (2006), ‘General linear methods’, Acta Numerica 15, 157–256.

Butcher, J. (2009), ‘General linear methods for ordinary differential equations’, Mathe-

matics and Computers in Simulation 79(6), 1834–1845.

Canstonguay, P., Williams, D., Vincent, P., Lopez, M. & Jameson, A. (2011), On the De-

velopment of a High-Order, Multi-GPU Enabled, Compressible Viscous Flow Solver

for Mixed Unstructured Grids, in ‘20th AIAA Computational Fluid Dynamics Confer-

ence’, number AIAA-2011-3229, Honolulu, Hawaii, USA.

Cantwell, C., Sherwin, S., Kirby, R. & Kelly, P. (2011a), ‘From h to p efficiently: selecting

the optimal spectral/hp discretisation in three dimensions’,Mathematical Modelling of

Natural Phenomena 6(3), 84–96.

180

BIBLIOGRAPHY

Cantwell, C., Sherwin, S., Kirby, R. & Kelly, P. (2011b), ‘From h to p efficiently: Strategy

selection for operator evaluation on hexahedral and tetrahedral elements’, Computers

& Fluids 43(1), 23–28.

Canuto, C., Hussaini, M., Quarteroni, A. & Zang, T. (2006), Spectral Methods: Funda-

mental in Single Domain, Scientific Computing, Springer, New York.

Canuto, C., Hussaini, M., Quarteroni, A. & Zang, T. (2007), Spectral Methods: Evolution

to Complex Geometries and Applications to Fluid Dynamics, Scientific Computing,

Springer, New York.

Carmo, B., Sherwin, S., Bearman, P. & Willden, R. (2011), ‘Flow-induced vibration of a

circular cylinder subjected to wake interference at low Reynolds number’, Journal of

Fluids and Structures 27, 503–522.

Chan, A., Balaji, P., Gropp, W. & Thakur, R. (2008), ‘Communication analysis of parallel

3D FFT for flat cartesian meshes on large Blue Gene systems’, High Performance

Computing-HiPC 2008 5374, 350–364.

Chapman, B., Jost, G. & Pas, R. v. d. (2007), Using OpenMP: Portable Shared Memory

Parallel Programming (Scientific and Engineering Computation), The MIT Press.

Cockburn, B. & Shu, C. (1998), ‘The Local Discontinuous Galerkin Method for Time-

Dependent Convection-Diffusion Systems’, SIAM J. Numer. Anal. 35(6), 2440–2463.

Cockburn, B. & Shu, C. (2001), ‘Runge–Kutta discontinuous Galerkin methods for

convection-dominated problems’, Journal of Scientific Computing 16(3), 173–261.

Collatz, L. (1966), The Numerical Treatment of Differential Equations, Springer Verlag,

New York.

Crawford, C., Evangelinos, C., Newman, D. & Karniadakis, G. (1996), ‘Parallel bench-

marks of turbulence in complex geometries’, Computers & Fluids 25(7), 677–698.

De Basabe, J. & Sen, M. (2010), ‘Stability of the high-order finite elements for acoustic

or elastic wave propagation with high-order time stepping’, Geophys. J. Int. 181, 577–

590.

181

BIBLIOGRAPHY

De Basabe, J., Sen, M. & Wheeler, M. (2008), ‘The interior penalty discontinuous

Galerkin method for elastic wave propagation: grid dispersion’, Geophys. J. Int.

175, 83–93.

Demmel, J., Heat, M. & van der Vorst, H. (1993), ‘Parallel numerical linear algebra’, Acta

Numerica 2, 111–197.

den Toonder, J. & Nieuwstadt, F. (1997), ‘Reynolds number effects in a turbulent pipe

flow for low to moderate Re’, Physics of Fluids 9(11), 3398–3409.

Dumbser, M., Käser, M. & Toro, E. (2007), ‘An arbitrary high-order Discontinuous

Galerkin method for elastic waves on unstructured meshes – V. Local time stepping

and p-adaptivity’, Geophys. J. Int. 171(2), 695–717.

Eskilsson, C. (2005), Spectral/hp Discontinuous Galerkin Methods for Computational

Hydraulics, PhD thesis, Chalmers University of Technology.

Evangelinos, C. & Karniadakis, G. (1996), Communication Performance Models in

Prism: A Spectral Element-Fourier Parallel Navier-Stokes Solver, in ‘Proceedings of

the 1996 ACM/IEEE Conference on Supercomputing (SC’96)’.

Feitelson, D. (1999), ‘On the interpretation of top500 data’, International Journal of High

Performance Computing Applications 13(2), 146–153.

Fischer, P. (1990), ‘Analysis and Application of a Parallel Spectral Element Method for

the Solution of the Navier-Stokes Equations’, Computer Methods in Applied Mechanics

and Engineering 80, 483–491.

Fischer, P. (1994), ‘Parallel domain decomposition for incompressible fluid dynamics’,

Contemporary Mathematics 157 AMS, 313–322.

Fischer, P. (1997), ‘An overlapping Schwarz method for spectral element solution of the

incompressible Navier-Stokes equations’, J. Comput. Phys. 133, 84–101.

Fischer, P., Lottes, J., Pointer, D. & Siegel, A. (2008), ‘Petascale algorithms for reactor

hydrodynamics’, Journal of Physics: Conference Series 125(1), 012076.

182

BIBLIOGRAPHY

Fischer, P. & Patera, A. (1994), ‘Parallel Simulation of Viscous Incompressible Flows’,

Ann. Rev. Fluid Mech. 26, 483–528.

Fischer, P. & Rønquist, E. (1994), ‘Spectral element methods for large scale parallel

Navier-Stokes calculations’, Computer Methods in Applied Mechanics and Engineer-

ing 116(1–4), 69–76.

Fornberg, B. (1996), A Practical Guide to Pseudospectral Methods, Cambridge Univer-

sity Press.

Friedley, A., Bronevetsky, G., Lumsdaine, A. & Hoefler, T. (2013), Hybrid MPI: Ef-

ficient Message Passing for Multi-core Systems, in ‘accepted at IEEE/ACM Interna-

tional Conference on High Performance Computing, Networking, Storage and Analysis

(SC13)’, Denver, Colorado, USA.

Frigo, M. & Johnson, S. (2005), ‘The Design and Implementation of FFTW3’, Proceed-

ings of the IEEE 93(2), 216–231.

Gabriel, E., Fagg, G., Bosilca, G., Angskun, T., Dongarra, J., Squyres, J., Sahay, V., Kam-

badur, P., Barrett, B., Lumsdaine, A., Castain, R., Daniel, D., Graham, R. & Woodall,

T. (2004), ‘Open MPI: Goals, concept, and design of a next generation MPI implemen-

tation’, Recent Advances in Parallel Virtual Machine and Message Passing Interface

3421, 97–104.

Gottlieb, D. & Orszag, S. (1977), Numerical analysis of spectral methods: theory and ap-

plications, CBMS-NSF, Society for Industrial and Applied Mathematics, Philadelphia.

Gottlieb, S., Shu, C. & Tadmor, E. (2001), ‘Strong stability-preserving high-order time

discretization methods’, SIAM Review 43(1), 89–112.

Grama, A., Gupta, A. & Kumar, V. (1993), ‘Isoefficiency: measuring the scalability of

parallel algorithms and architectures’, IEEE Parallel Distributed Technology Systems

Applications 1(3), 12–21.

Guermond, J. & Minev, J. (2006), ‘An overview of projection methods for incompressible

183

BIBLIOGRAPHY

flows’, Computer Methods in Applied Mechanics and Engineering 195(44–47), 6011–

6045.

Gupta, A. & Kumar, V. (1993), ‘The scalability of FFT on parallel computers’, IEEE

Transactions on Parallel and Distributed Systems 4(8), 1–27.

Hamman, C., Kirby, R. & Berzin, M. (2007), ‘Parallelization and scalability of a spec-

tral element channel flow solver for incompressible Navier–Stokes equations’, Concur-

rency and Computation: Practice and Experience 19(10), 1403–1422.

Hesthaven, J. & Warburton, T. (2008), Nodal discontinuous Galerkin methods: algo-

rithms, analysis, and applications, Springer Texts in Applied Mathematics 54, Springer

Verlag, New York.

Hirsch, C. (2007), Numerical computation of internal and external flows: Introduction to

the fundamentals of CFD, Butterworth-Heinemann, Oxford.

Hoefler, T., Dinan, J., Buntinas, D., Balaji, P., Barrett, B., Brightwell, R., Gropp, W., Kale,

V. & Thakur, R. (2013), ‘MPI + MPI: A New Hybrid Approach to Parallel Program-

ming with MPI Plus Shared Memory’, Journal of Computing (DOI 10.1007/s00607-

013-0324-2).

Hu, F. & Atkins, H. (2002), ‘Eigensolution analysis of the discontinuous Galerkin method

with nonuniform grids. Part I: One space dimension’, J. Comput. Phys. 182, 516–545.

Hussaini, M. & Zang, T. (1987), ‘Spectral methods in fluid dynamics’, Annual review of

Fluid Mechanics 19, 339–367.

Karniadakis, G. (1990), ‘Spectral Element-Fourier Methods for Incompressible Turbulent

Flows’, Computer Methods in Applied Mechanics and Engineering 80, 367–380.

Karniadakis, G., Israeli, M. & Orszag, S. (1991), ‘High-Order Splitting Methods for the

Incompressible Navier-Stokes Equations’, J. Comput. Phys. 97, 414–443.

Karniadakis, G. & Kirby, R. (2003), Parallel Scientific Computing in C++ and MPI:

A Seamless Approach to Parallel Algorithms and Their Implementation, Cambridge

University Press.

184

BIBLIOGRAPHY

Karniadakis, G. & Sherwin, S. (2005), Spectral/hp element methods for computational

fluid dynamics, Numer. Math. Sci. Comp., second edn, Oxford University Press, Ox-

ford.

Karypis, G. (2013), METIS’s Manual, 5.1.0 edn, Department of Computer Science and

Engineering, University of Minnesota, Minneapolis, MN 55455.

Khronos OpenCL Working Group (2008), The OpenCL Specification, version 1.0.29.

URL: http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf

Kim, J. (1989), ‘On the structure of pressure fluctuations in simulated turbulent channel

flow’, Journal of Fluid Mechanics 205, 421–451.

Kim, J., Moin, P. & Moser, R. (1987), ‘Turbulence statistics in fully developed channel

flow at low Reynolds number’, Journal of Fluid Mechanics 177, 133–166.

Kim, J. & Sandberg, R. (2012), ‘Efficient parallel computing with a compact finite differ-

ence scheme’, Computers & Fluids 58(1), 70–87.

Kirby, R. & Sherwin, S. (2006a), ‘Stabilisation of spectral/hp element methods through

spectral vanishing viscosity: Application to fluid mechanics modelling’, Computer

Methods in Applied Mechanics and Engineering 195(23–24), 3128–3144.

Kirby, R. & Sherwin, S. (2006b), ‘The Nektar++ project’. http://www.nektar.info.

Koberg, H. (2007), Turbulence control for drag reduction with active wall deformation,

PhD thesis, Imperial College London.

Li, N. & Laizet, S. (2010), 2DECOMP&FFT - a highly scalable 2D decomposition

library and FFT interface, in ‘Cray User Group 2010 conference’.

Liang, C., Cox, C. & Plesniak, M. (2013), ‘A comparison of computational efficiencies

of spectral difference method and correction procedure via reconstruction’, Journal of

Computational Physics 239, 138–146.

Lörcher, F., Gassner, G. & Munz, C. (2008), ‘An explicit discontinuous Galerkin scheme

with local time-stepping for general unsteady diffusion equations’, Journal of Compu-

tational Physics 227(11), 5649–5670.

185

BIBLIOGRAPHY

Lusk, E. & Chan, A. (2008), ‘Early Experiments with the OpenMP/MPI Hybrid Program-

ming Model’, Lecture Notes in Computer Science 5004, 36–47.

Markall, G., Slemmer, A., Ham, D., Kelly, P., Cantwell, C. & Sherwin, S. (2013), ‘Finite

element assembly strategies on multi-core and many-core architectures’, International

Journal for Numerical Methods in Fluids 71(1), 80–97.

McIver, D., Blackburn, H. & Nathan, G. (2000), ‘Spectral element-Fourier methods ap-

plied to simulation of turbulent pipe flow’, ANZIAM Journal 42, 954–977.

Meuer, H., Strohmaier, E., Dongarra, J. & Simon, H. (2013), ‘Top500 supercomputer

sites’, http://www.top500.org.

Mininni, P., Rosenberg, D., Reddy, R. & Pouquet, A. (2011), ‘A hybrid MPI–OpenMP

scheme for scalable parallel pseudospectral computations for fluid turbulence’, Parallel

Computing 37(6–7), 316–326.

Moin, P. & Kim, J. (1982), ‘Numerical investigation of turbulent channel flow’, Journal

of Fluid Mechanics 118, 341–377.

Moser, R., Kim, J. &Mansour, N. (1999), ‘Direct numerical simulation of turbulent chan-

nel flow up to Reτ = 590’, Physics of Fluids 11(4), 943–945.

Nichols, B., Buttlar, D. & Farrell, J. (1996), Pthreads programming, O’Reilly and Asso-

ciates, CA, USA.

No, J., Park, S., Perez, J. & Choudhary, A. (2002), ‘Design and Implementation of a Paral-

lel I/O Runtime System for Irregular Applications’, Journal of Parallel and Distributed

Computing 62(2), 193 – 220.

Nogueira Jr., A. & Bittencourt, M. (2007), ‘Spectral/HP finite elements applied to lin-

ear and non-linear structural elastic problems’, Latin American Journal of Solids and

Structures 4(1), 61.

Orszag, S. (1980), ‘Spectral methods for problems in complex geometries’, J. Comput.

Phys. 37(1), 70–92.

186

BIBLIOGRAPHY

Orszag, S. & Israeli, M. (1974), ‘Numerical simulation of viscous incompressible flows’,

Annual Review of Fluid Mechanics 6, 281–318.

Patera, A. (1984), ‘A spectral element method for fluid dynamics: Laminar flow in a

channel expansion’, Journal of Computational Physics 54, 468–488.

Patterson, G. & Orszag, S. (1971), ‘Spectral calculations of isotropic turbulence: Efficient

removal of aliasing interactions’, Physics of Fluids 14, 2538–2541.

Peterson, T. (1991), ‘A note on the convergence of the discontinuous Galerkin method for

a scalar hyperbolic equation’, SIAM J. Numer. Anal. 28, 133–140.

Pope, S. (2000), Turbulent Flows, Cambridge University Press.

Reed, W. &Hill, T. (1973), Triangular MeshMethods for the Neutron Transport Equation,

Technical report, Los Alamos Scientific Laboratory, Los Alamos, NM.

Roberts, M. & Bowman, J. (2011), ‘Dealiased convolutions for pseudospectral simula-

tions’, Journal of Physics: Conference Series 318, 072037.

Rogallo, R. (1981), Numerical experiments in homogeneous tubulence, Technical Mem-

orandum 81315, NASA, Ames Research Center.

Rønquist, E. (1988), Optimal spectral element methods for the Unsteady three-

dimensional incompressible Navier-Stokes equations, PhD thesis, Massachusetts In-

stitute of Technology.

Sanders, J. & Kandrot, E. (2010), CUDA by Example: An Introduction to General-

Purpose GPU Programming, 1st edn, Addison-Wesley Professional.

Sharma, A., Abdessemed, N., Sherwin, S. & Theofilis, V. (2011), ‘Transient growth

mechanisms of low Reynolds number flow over a low-pressure turbine blade’, The-

oretical and Computational Fluid Dynamics 25(1–4), 19–30.

Sherwin, S. (2000), ‘Dispersion Analysis of the Continuous and Discontinuous Galerkin

Formulations’, Lecture Notes in Computational Science and Engineering .

187

BIBLIOGRAPHY

Sherwin, S. & Karniadakis, G. (1995), ‘A Triangular Spectral Element Method; Applica-

tions to the Incompressible Navier-Stokes Equations’, Computer Methods in Applied

Mechanics and Engineering 123, 189–229.

Stroud, A. (1966), Gaussian quadrature formula, first edn, Prentice-Hall.

Szabó, B. & Babuška, I. (1991), Finite Element Analysis, Wiley, New York.

Takahashi, D. (2003), ‘Efficient implementation of parallel three-dimensional FFT on

clusters of PCs’, Computer Physics Communications 152(2), 144–150.

Tufo, H. & Fischer, P. (2001), ‘Fast Parallel Direct Solvers For Coarse Grid Problems’, J.

Par. & Dist. Comput. 61, 151–177.

Vos, P. (2010), From h to p Efficiently: Optimising the Implementation of Spectral/hp

Element Methods, PhD thesis, Imperial College London.

Vos, P., Eskilsson, C., Bolis, A., Chun, S., Kirby, R. & Sherwin, S. (2011), ‘A generic

framework for time-stepping partial differential equations (PDEs): general linear meth-

ods, object-oriented implementation and application to fluid problems’, International

Journal of Computational Fluid Dynamics 25(3), 107–125.

Vos, P., Sherwin, S. & Kirby, R. (2010), ‘From h to p efficiently: Implementing finite and

spectral/hp element methods to achieve optimal performance for low-and high-order

discretisations’, Journal of Computational Physics 229(13), 5161–5181.

Warburton, T. (1999), Spectral/hp methods on polymorphic multi-domains: algorithms

and applications, PhD thesis, Brown University.

Warburton, T. & Hagstrom, T. (2008), ‘Taming the CFL number for Discontinuos

Galerkin Methods on Structured Meshes’, SIAM Journal on Numerical Analysis

46(6), 3151–3180.

Warburton, T., Lomtev, I., Du, Y., Sherwin, S. & Karniadakis, G. (1999), ‘Galerkin and

discontinuous Galerkin spectral/hp methods’, Computer Methods in Applied Mechan-

ics and Engineering 175, 343–359.

188

BIBLIOGRAPHY

Williams, D., Canstonguay, P., Vincent, P. & Jameson, A. (2013), ‘Energy stable flux re-

construction schemes for advection-diffusion problems on triangles’, J. Comput. Phys.

250, 53–76.

Wood, W. (1990), Practical Time-stepping Schemes, Clarendon Press.

Zhang, Q. & Shu, C. (2010), ‘Stability analysis and a priori error estimates to the third or-

der explicit Runge-Kutta discontinuous Galerkin Method for scalar conservation laws’,

SIAM Journal on Numerical Analysis 48(3), 1038–1063.

Zienkiewicz, O., Taylor, R., Sherwin, S. & Peiro, J. (2003), ‘On Discontinuous Galerkin

Methods’, International Journal for Numerical Methods and Engineering 58, 1119–

1148.

189

Appendix A

Nektar++

In this appendix we present Nektar++ structure and we give a brief overview of all its

sub-libraries. The development and the extension of Nektar++ implementation was part

of the research project, as well as the creation of a substantial documentation of the code

for future users and/or developers1. The encapsulation of key concepts and the design of

flexible algorithms is a key point for a piece of software which intends to implement a

spectral/hp element method in a maintainable and coherent manner.

Nektar++ ++ implementation philosophy is based on the isolation of the spectral/hp

element method fundamental building-blocks. Once the mathematical (or geometrical)

concepts have been isolated, they can be encapsulated in a C++ virtual object (or a cas-

cade of them). This yields an almost perfect decoupling of the various implementation

aspects promoting code reusability, modular development and high maintainability. Fig.

A.1 shows a schematic representation of Nektar++where the following libraries are high-

lighted:

- the supporting utilities sub-library (LibUtilities),

- the standard elemental region sub-library (StdRegions),

- the parametric mapping sub-library (SpatialDomains),

- the local elemental region sub-library (LocalRegions),
1Part of what is reported in this appendix and further information can be found on Nektar++website (Kirby

& Sherwin 2006b).

191

APPENDIX A

- the global region sub-library (MultiRegions).

This structure can also be related to the formulation of a global spectral/hp element ex-

pansion as

u(x) =

MultiRegions library
︷ ︸︸ ︷
∑

e∈E

∑

n∈N

φe
n(x)û

e
n

︸ ︷︷ ︸

LocalRegions library

=
∑

e∈E

∑

n∈N

φstd
n

SpatialDomains library
︷ ︸︸ ︷

([χe]−1 (x)) ûe
n

︸ ︷︷ ︸

StdRegions library

(A.1)

where e indicates the element index within the E element collection in which the physical

domain Ω has been subdivided. As mentioned in Chapter 2, φe
n is one of theN polynomi-

als used to approximate the solution on the element e and ûe
n is the associated coefficient

(degree of freedom). The second part of Eq. (A.1) highlights the mapping [χe]−1 between

the real domains and the standard domain where all basic operations are performed.

In addition to the libraries layout, the Solvers and SolvUtilities blocks are reported

in Fig. A.1. They are meant to provide a global view of the software, where the basic

sub-libraries are used to solve PDE systems.

A.1 LibUtilities Sub-library

This is the most basic sub-library, where all the generic implementations which are not

spectral/hp element specific are collected. We can find here:

- BasicConst: definition of all the constants used in Nektar++ and the values preci-

sion to facilitate portability across architectures.

- BasicUtils: external libraries interface (Boost, Metis, TinyXml, etc) and basic algo-

rithms to generalise operations between vectors and scalars. It also contains classes

to read and parse input files.

- Communication: it is the parallelisation abstraction of Nektar++ ++. It contains a

cascade of virtual objects which generalise all the operations involved in a parallel

execution.

- FFT: it is a cascade of classes meant to wrap external FFT libraries. It allows the

192

NEKTAR++

Figure A.1: Nektar++ framework. Structure of the of the sub-libraries and contents. Arrows

indicate some of the inheritance paths.

193

APPENDIX A

usage of any FFT library, although only a virtual object to interface FFTW has been

implemented so far.

- Foundations: it contains series of C++ objects representing all the types of quadra-

ture points, weights and basis.

- Interpreter: it contains classes designed to parse, interpret and evaluate equations

in string format.

- LinearAlgebra: it contains the interface for BLAS, Lapack and Arpack and it gen-

eralises the matrix-vector operations.

- Memory: classes to control memory usage and allocation/deallocation of memory.

- Polylib: it contains a class used to define Jacobi polynomials.

- TimeItegration: it encapsulates the concept of time-integration.

A.2 StdRegions Sub-library

The StdRegions sub-library bundles all classes that mimic a spectral/hp element expansion

on a standard region

u(ξ) =
∑

n∈N

φn(ξ)ûn, (A.2)

where ξ are the coordinates on the standard reference system. The data required to define

an expansion on a standard region are:

- the coefficient vector û,

- the polynomial expansion φn(ξ) defined by the discrete basis matrixB,

- the vector u which represents the values of the expansion at the quadrature points

ξi.

All standard shapes can be abstracted in a similar way. Therefore, it is possible to

define these data structures in an abstract base class (i.e. the class StdExpansion). The

methods which are identical among all shapes are implemented in this class. On the other

194

NEKTAR++

hand, the methods which are different from shape to shape are defined here and adapted

later on using polymorphism.

The specialisation of the methods (integration, differentiation, etc.) goes down the in-

heritance tree, from methods which are common to all standard expansions (implemented

in StdExpansion), methods which depend on the dimensionality of the expansion (imple-

mented in StdExpansion1D, StdExpansion2D and StdExpansion3D) and methods which

are shape-specific (implemented in StdSegExp, StdQuadExp, etc.).

A.3 SpatialDomains Sub-library

The SpatialDomains sub-library encapsulates the concept of mapping. Given a standard

element defined in StdRegions, we need a series of operations to map operations defined

over ξ) to the real geometry (overx), i.e.we need a tool to move from the standard system

to our real coordinate system (the one used in LocalRegions).

The most important class is the Geometry. These classes are the representation of an

element in physical space and they are equipped with the following data structures:

- an object of StdExpansion class, and

- a data structure that contains the metric terms (Jacobian, derivative metrics) of the

transformations.

A.4 LocalRegions Sub-library

The LocalRegions library is designed to encompass all classes that encapsulate the ele-

mental spectral/hp expansions in physical space. A local expansion essentially is a stan-

dard expansion that has a additional coordinate transformation that maps the standard

element to the local element. The classes in the LocalRegions sub-library are derived

from the corresponding StdExpansion classes but they are supplied with an additional

data member representing the geometry of the local element (coming from SpatialDo-

main). Depending on the shape-specific class in the LocalRegions library, this additional

data member is an object of the corresponding class in the Geometry class structure.

195

APPENDIX A

A.5 MultiRegions Sub-library

In the MultiRegions sub-library we encapsulate the assembly concept. This library is

meant to collect a series of subdomains, objects of LocalRegions, over which a spectral/hp

expansion is defined, and then to assemble all the local contributions into the global dis-

cretisation defining at the same time the type of connectivity between elements.

The base class is ExpList. Following all the classes are the abstraction of a multi-

elemental spectral/hp element expansion. The tree start from ExpList and then it spe-

cialises through dimensionality first (ExpList1D, ExpList2D, etc.) and connectivity after-

ward (DisContField1D, ContField1D,DisContField2D,etc.). Objects of these last classes

should be used when solving partial differential equations using a discontinuous or contin-

uous Galerkin approach. These classes enforce a coupling between elements and specify

boundary conditions. Disregarding the connectivity between elements, we can define a

global expansion as:

uδ(x) =
Nel∑

e=1

N e−1
∑

n=0

ûe
nφ

e
n(x) (A.3)

where

- Nel is the number of elements,

- N e is the number of local expansion modes within the element e,

- φe
n(x) is the nth local expansion mode within the element e,

- ûe
n is the nth local expansion coefficient within the element e.

The Fouirer spectral/hp element approach is an extension of the 1D and the 2D spec-

tral/hp element method. This technique allows to study 3D problems combining the spec-

tral/hp element method with a spectral method. In the case of one homogenous direction,

the third dimension (z-axis) is expanded with an harmonic expansion (a Fourier series). In

each quadrature point of the Fourier discretisation we can find a 2D plane discretised with

a 2D spectral/hp element expansion. In the case of two homogeneous directions a plane is

discretised with a 2D Fourier expansion (y-z plane). In each one of the quadrature point

of this 2D harmonic expansion there is a 1D spectral/hp element discretisation. The ho-

mogenous classes derive directly form ExpList, and they are ExpListHomogeneous1D and

196

NEKTAR++

ExpListHomogeneous2D. This classes are used to represent the collections of 2D (or 1D)

spectral/hp element discretisations which are located in the Fourier expansion quadrature

points to create a 3D problem.

197

Appendix B

Time-Stepping Schemes Tableau

In this appendix we report some further time-integration schemes which have been im-

plemented in Nektar++ framework to provide a full reference of the implementation and

an extension to what reported in Chapters 2, 3 and in (Vos et al. 2011). This can also

been seen as a guideline on how insert new time-integration methods for future Nektar++

users.

B.1 Multi-Step Methods

In contrast to multi-stagemethods, multi-stepmethods have a single stage, but the solution

at the new time-level is computed as a linear combination of information at the r previous

time-levels. Linear multi-step methods can be formulated to satisfy the relation

yn =
r
∑

i=1

αiyn−i + ∆t
r
∑

i=0

βiF n−i. (B.1)

B.1.1 Forward Euler

The Forward Euler method, which corresponds to the first order Adams-Bashforth scheme,

is an explicit one-step method of the form

yn = yn−1 + ∆t
(

f (yn−1)
)

, (B.2)

199

APPENDIX B

which has the following GLM representation

A U

B V

 =

0 1

1 1

 . (B.3)

B.1.2 Backward Euler

The Backward Euler method is a one-step implicit method, identical to the first order

Adams-Moulton scheme and the first order implicit BDF method, and can be written as

yn = yn−1 + ∆t (f(yn)) , (B.4)

which has the following GLM representation

A U

B V

 =

1 1

1 1

 . (B.5)

B.1.3 Adams-Bashforth Order 2

This explicit two-step method can be written as

yn = yn−1 + ∆t

(

3

2
f (yn−1)−

1

2
f(yn−2)

)

, (B.6)

which has the following GLM representation

A U

B V

 =

0 1 0

3
2 1 −1

2

1 0 0

. (B.7)

B.1.4 Adams-Bashforth Order 3

The third order Adams-Bashforth schems is an explicit three-step method of the form

yn = yn−1 + ∆t

(
23

12
f (yn−1)−

4

3
f(yn−2) +

5

12
f (yn−3)

)

, (B.8)

200

TIME-STEPPING SCHEMES TABLEAU

which has the following GLM representation

A U

B V

 =

0 1 23
12 −4

3
5
12

0 1 23
12 −4

3
5
12

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

. (B.9)

B.1.5 Adams-Moulton Order 2

The Adams-Moultonmethod, is a family of multi-step implict schemes for solving ODEs.

While the first order scheme corresponds to the Backward Euler approach mentioned

before, the second order ones has the following form

yn = yn−1 + ∆t

(
1

2
f (yn) +

1

2
f (yn−1)

)

, (B.10)

which has the following GLM representation

A U

B V

 =

1
2 1 1

2

1
2 1 1

2

1 0 0

. (B.11)

B.2 Multi-Stage Methods

Multi-stage methods consist of a single step and many stages. They can be represented as

a general linear method with r = 1. It is sufficient to write U = [1 1 · · · 1]$, V = [1]

and to set the coefficient matrices A and B to the matrix A and the single row b$ of the

corresponding Butcher tableau.

201

APPENDIX B

B.2.1 Explicit Runge-Kutta 2

The explicit second order Runge-Kutta scheme has the following Butcher table

c A

b$
=

0 0 0

1 1 0

1
2

1
2

(B.12)

which has the following GLM representation

A U

B V

 =

0 0 1

1 0 1

1
2

1
2 1

. (B.13)

B.2.2 Explicit Runge-Kutta 4

The explicit fourth-order Runge-Kutta scheme is one of the most known and used scheme

for the solution of ODEs and its Butcher tableau is

c A

b$
=

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

, (B.14)

which has the following GLM representation

A U

B V

 =

0 0 0 0 1

1
2 0 0 0 1

0 1
2 0 0 1

0 0 1 0 1

1
6

1
3

1
3

1
6 1

. (B.15)

202

TIME-STEPPING SCHEMES TABLEAU

B.3 Implicit-Explicit Methods

In case we want to treat some of the numerical operators explicitly and some implicitly

we can take advantages of the IMEX schemes family, which encompasses a series of

multi-stage and multi-step schemes.

B.3.1 Backward-Forward Euler

The IMEX first order multi-step scheme can be written as

yn = yn−1 + ∆t
(

g(yn) + f(yn−1)
)

, (B.16)

and it yields the following GLM format

AIM AEX U

BIM BEX V

 =

1 0 1 1

1 0 1 1

0 1 0 0

. (B.17)

B.3.2 CN-AB

This is a second order Crank-Nicholson/Adams-Bashforth linear multi-step scheme of the

form

yn = yn−1 + ∆t

(
1

2
g(yn) +

1

2
g(yn−1) +

3

2
f (yn−1)−

1

2
f(yn−2)

)

, (B.18)

and it can be represented using the following GLM matrix

AIM AEX U

BIM BEX V

 =

1
2 0 1 1

2
3
2 −1

2

1
2 0 1 1

2
3
2 −1

2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

. (B.19)

203

APPENDIX B

B.3.3 Stiffly-Stable IMEX-3

The third order stiffly-stable IMEX scheme defined for the velocity correction scheme in

Chapter 2 is

yn = yn−1 + ∆t

(
1

2
g(yn) +

1

2
g(yn−1) +

3

2
f(yn−1)−

1

2
f (yn−2)

)

, (B.20)

and it can be represented as

AIM AEX U

BIM BEX V

 =

6
11 0 18

11 − 9
11

2
11

18
11 −18

11
6
11

6
11 0 18

11 − 9
11

2
11

18
11 −18

11
6
11

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

. (B.21)

204

